US3883376A - High reactivity fuels for supersonic combustion ramjets - Google Patents

High reactivity fuels for supersonic combustion ramjets Download PDF

Info

Publication number
US3883376A
US3883376A US357748A US35774873A US3883376A US 3883376 A US3883376 A US 3883376A US 357748 A US357748 A US 357748A US 35774873 A US35774873 A US 35774873A US 3883376 A US3883376 A US 3883376A
Authority
US
United States
Prior art keywords
percent
fuel
ethyldecaborane
trimethylaluminum
diethyldecaborane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US357748A
Inventor
Frederick S Billig
Jr James C Pirkle
Jr Stephen E Grenleski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US357748A priority Critical patent/US3883376A/en
Application granted granted Critical
Publication of US3883376A publication Critical patent/US3883376A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/301Organic compounds compounds not mentioned before (complexes) derived from metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)

Definitions

  • the invention provides highly reactive fuel compositions capable of efficient oxidation and thrust production even within the low combustor residence time of a supersonic combustion ramjet engine.
  • the fuel compositions comprise specific blends of a major fuel component and an additive which, on pyrophoric combustion thereof, produces sufficient heat energy to spontaneously ignite and burn the major fuel component at a substantially increased rate.
  • Scramjet fuel compositions should also have a high heating value per unit mass; high density, which in turn defines the heating value per unit volume; good storage and thermal stability characteristics; high heat capacity if the fuel is to be used for regenerative cooling; low cost; and low toxicity.
  • scramjet engines with low takeover Mach numbers, e.g., M 4-6 the requirement for high reactivity is of greatest importance.
  • An acceptable supersonic ramjet engine fuel composition must ignite spontaneously and burn efficiently within the extremely brief residence time (-0.5 msec) available for oxidation in the air flow through the supersonic combustor.
  • heavy hydrocarbon fuels have high heat content per unit volume and are easily handled and stored, these fuel compositions often fail even to ignite in the scramjet engine.
  • Substances capable of acceptable ignition and combustion within the low residence time in the scramjet engine are generally expensive, toxic, and difficult to store and handle. Many of these readily ignitable substances are actually pyrophoric in nature, that is, the substance ignites spontaneously on exposure to an oxidizing source.
  • the boranes and alkaylated boranes meet the reactivity requirement but are undesirable due to cost, handling, storage, toxicity, and other considerations.
  • Pentaborane and other lower boranes are pyrophoric at room temperature and also have a relatively low density.
  • Aluminum alkyls also meet the reactivity requirement but are pyrophoric and have low energy densities.
  • the invention provides fuel compositions combining the desirable characteristics of the hydrocarbons with an essentially pyrophoric additive blend.
  • the present fuel compositions substantially exhibit desired cost, handling, storage, and density properties while being capable of ignition and efficient combustion within the low residence times encountered in a supersonic combustor.
  • the present fuel compositions essentially consist of blends of a major fuel component usually consisting of a heavy hydrocarbon component which ordinarily would not ignite under scramjet conditions, and an additive component present in a relatively low proportion for initiating ignition and aiding in continued combustion of the composition.
  • the major fuel component may be chosen from a large group of suitable hydrocarbons. Primary considerations for hydrocarbon choice are density, cost, and storability. Straight-chain alkanes, such as n-dodecane (C I-I may be chosen but are not generally as desirable as the highdensity heterocyclic hydrocarbons.
  • MCPD methylcyclopentadiene dimer
  • T-HMCPD tetra-hydro methylcyclopentadiene dimer
  • Shelldyne-I-I a proprietary product of Shell Development Corporation, is a heavier hydrogenated hydrocarbon (C I-I molecular weight 186.3) having acceptable handling and density chracteristics. Low molecular weight hydrocarbons have storage and handling difficulties which usually outweigh any advantage to their use.
  • pyrophoric additives having the high reactivity necessary to promote rapid ignition of the fuel compositions include mixtures of the alkylated aluminums, such as triethylaluminum (TEA) and trimethylaluminum (TMA), and the boranes and alkylated boranes, particularly pentaborane (B 11 and either a mixture of diethyldecaborane and ethyldecaborane (C H B HiCal 3-D) or ethyldecaborane alone. Blends of these additive components, particularly TEA and I-IiCal 3D, are used in a composition including a heavy hydrocarbon as the major constituent.
  • Ignition of the present fuel compositions is provided by the additive mixture.
  • a fuel composition comprising a hydrocarbon, an aluminum alkyl, and HiCal 3-D
  • the aluminum alkyl burns initially, the combustion of the aluminum and recombination of alkyl radicals occurring first and producing a small exothermic heat release insufficient to ignite the hydrocarbon.
  • the heat released by the rapid aluminum reaction is sufficient to ignite the HiCal 3-D which does produce enough heat to ignite the hydrocarbon.
  • the organic portion of the aluminum alkyl usually burns subsequent to the combustion of the aluminum portion, this second phase combustion which releases the major portion of the heat of combustion of the aluminum alkyl is often too slow to effectively ignite the hydrocarbon.
  • an aluminum alkyl to an alkylated borane can shorten r of the alkylated borane by as much as percent. For example, 20 percent by weight of triethylaluminum to HiCal 3D shortens the ignition delay of the alkylated borane by nearly 50 percent, due to ignition of the I-IiCal 3-D by the rapid heat release of the aluminum in the TEA as described generduced causes a proportionally more rapid ignition of 5 the hydrocarbon component of the present fuel compositions.
  • Ignition delay tests were conducted using air supplied 10 at 2000R at 1520 psia to a plenum attached to a converging nozzle having a nominal Mach number of 0.75 exiting into a rectangular test section.
  • the components were injected from a 2mm diameter hole in the tip of a tube located on the axis of the nozzle.
  • static pressures were measured in the plenum, at the nozzle exit, and at several locations in the test section. Parameters affecting performance are found to include the initial air static temperature T and the initial fuel temperature T both of which cause reduction in r as they increase. Overall fuel/air ratio does not seem to affect r Mach 1.6 and Mach 2.5 nozzles were also used in the test arrangement described. The results of these tests are summarized in Tables I, II, and III reproduced below.
  • composition No. Components by weight per cent 1 triethylaluminum 10% HiCal 3-D 80% MCPD 6.7% trimethylaluminum 8.9% HiCal 3-D 84.4% MCPD 8% trimethylaluminum 9% pentaborane 83% MCPD
  • Table I the additive blends of the present fuel compositions cause ignition of a heavy hydrocarbon which will not ignite alone in the available residence time.
  • Triethylaluminum alone is also shown to be insufficient to ignite the heavy hydrocarbon, Shelldyne-l-l.
  • T total temperature
  • P 7.4 psia
  • T 1520R total temperature
  • a 7.27 in.- long cylinder was inserted between the nozzle and the fuel injector.
  • Fuel was injected perpendicular to the air stream from ten 0.030-in.-diameter holes that were equally spaced circumferentially.
  • the combustor had a step increase in diameter from 2.74 in. to 3.28 in.
  • the 14.4- in.-long cylinder was followed by a l.4-half-angle, l4.4-in.-long conical section, which resulted in an overall combustor exit/injector area ratio of 2.
  • Pitot and cone-static pressure measurements in the combustor exit plane provide the data necessary to describe the flow properties in that plane.
  • water was sprayed into the stream to quench the reaction rapidly.
  • the heat release and combustion efficiency were obtained by making a calorimetric balance on the exhaust gases, using temperature measurements from a sixteen-point thermocouple rake in the exit of the calorimeter together with all of the water-coolant rates. Water flow to the calorimeter was controlled to yield exit temperatures between 700F and l000F, and to keep the wall temperatures at 400F800F in order to guarantee that all water was vaporized and that reactions were effectively quenched.
  • Combustion efficiency is defined as the sum of the total heat released upstream of the calorimeter exit plus the sensible heat in the products of combustion when cooled from the colorimeter exit temperature to 212F (without condensation of water) divided by the lowering heating value of the fuel.
  • the total heat release includes the change in heat flux to the walls with combustion. With this combustor geometry the total heat loss to the walls is approximately 110 Btu/sec for the nominal conditions without fuel flow. With burning, the heat flux increases to about 500 Btu/sec for ER 1.0, run lengths between 30 and 45 sec with 10-15 sec for each fuel setting.
  • a fuel composition capable of ignition within the low residence times occurring in a supersonic ramjet combustion engine comprising:
  • a hydrocarbon selected from thegroup consisting of n-dodecane, methylcyclopentadiene dimer, and tetra-hydro methylcyclopentadiene dimer, the hydrocarbon being present in the fuel composition in a proportion equal to at least 50 percent and not more than 87.5 percent by weight thereof; and, a pyrophoric additive component selected from the group consisting of respective mixtures of trimethylaluminum and ethyldecaborane; trimethylaluminum and pentaborane; triethylaluminum, ethyldecaborane, and diethyldecaborane; and, trimethylaluminum, ethyldecaborane, and diethyldecaborane; the additive component being present in the fuel composition in a proportion equal to not more than 50 percent by weight thereof and wherein the first-named constituent of each mixed additive component constitutes at least 20 percent of the additive component by weight.
  • a fuel composition capable of ignition within the low residence times occurring in a supersonic ramjet combustion engine comprising:
  • methylcyclopentadiene dimer having a weight percent of at least percent of the total composition
  • a pyrophoric additive component selected from the group consisting of respective mixtures of trimethylaluminum and pentaborane having relative weight percents of at least 8 percent and at least 9 percent respectively of the total composition; triethylaluminum, diethyldecaborane, and ethyldecaborane having relative weight percents of at least 6 percent of the total composition for triethylaluminum and at least 6 percent of the total composition for the mixture of diethyldecaborane and ethyldecaborane; and trimethylaluminum, diethyldecaborane, and ethyldecaborane having relative weight percents of at least 6 percent of the total composition for trimethylaluminum and at least 8 percent of the total composition for the mixture of diethyldecaborane and ethyldecaborane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The invention relates to highly reactive fuel compositions primarily intended for supersonic combustion ramjet engines. In particular, the invention provides highly reactive fuel compositions capable of efficient oxidation and thrust production even within the low combustor residence time of a supersonic combustion ramjet engine. The fuel compositions comprise specific blends of a major fuel component and an additive which, on pyrophoric combustion thereof, produces sufficient heat energy to spontaneously ignite and burn the major fuel component at a substantially increased rate.

Description

United States Patent Billig et al.
HIGH REACTIVITY FUELS FOR SUPERSONIC COMBUSTION RAMJETS Inventors: Frederick S. Billig, Rockville; James C. Pirkle, Jr., Wheaton; Stephen E. Grenleski, Jr., Silver Spring, all of Md.
Assignee: The United States of America as represented by the Secretary of the Navy, Washington, DC.
Filed: May 7, 1973 Appl. No.: 357,748
Related U.S. Application Data Continuation-in-part of Ser. No. 87,344, Nov. 5, 1970, abandoned.
U.S. Cl. 149/22; 44/57; 44/68; 44/76; 149/87; 149/109.4
Int. Cl C101 l/30 Field of Search 149/22, 87, 109.4; 44/57, 44/68, 76
References Cited UNITED STATES PATENTS 8/1961 Hamilton 149/87 X 3,139,724 7/1964 Nerad et al. 149/22 X 3,242,667 3/1966 Kidwell 149/87 X 3,347,931 10/1967 Wunz et al 149/22 X 3,498,859 3/1970 Gluckstein et al 149/22 3,634,156 1/1972 Batson 149/22 Primary ExaminerBenjamin R. Padgett Assistant Examiner-E. A. Miller [57] ABSTRACT The invention relates to highly reactive fuel compositions primarily intended for supersonic combustion ramjet engines. In particular, the invention provides highly reactive fuel compositions capable of efficient oxidation and thrust production even within the low combustor residence time of a supersonic combustion ramjet engine. The fuel compositions comprise specific blends of a major fuel component and an additive which, on pyrophoric combustion thereof, produces sufficient heat energy to spontaneously ignite and burn the major fuel component at a substantially increased rate.
2 Claims, N0 Drawings 1 HIGH REACTIVITY FUELS FOR SUPERSONIC COMBUSTION RAMJETS CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of U.S. patent application, Ser. No. 87,344 now abandoned, of the same title, filed Nov. 5, 1970, by the same inventors; the aforesaid application being hereby abandoned.
BACKGROUND AND SUMMARY OF THE INVENTION In recent years increased interest has developed in the use of liquids for fuels in a supersonic combustion ramjet engine, known in the art as a scramjet engine. Although the static temperatures and pressures in the scramjet combustor are often similar to their subsonic counterparts, the typical residence time for ignition and combustion are considerably shorter. In the scramjet engine the effects of a higher vehicle velocity coupled with the exclusion of baffles, turbulence generators, etc., produce substantially lower fuel residence times in the supersonic combustor. Thus, in general, the fuel for a supersonic combustion ramjet must be more reactive than that for a subsonic combustion ramjet. Scramjet fuel compositions should also have a high heating value per unit mass; high density, which in turn defines the heating value per unit volume; good storage and thermal stability characteristics; high heat capacity if the fuel is to be used for regenerative cooling; low cost; and low toxicity. However, for scramjet engines with low takeover Mach numbers, e.g., M 4-6, the requirement for high reactivity is of greatest importance.
An acceptable supersonic ramjet engine fuel composition must ignite spontaneously and burn efficiently within the extremely brief residence time (-0.5 msec) available for oxidation in the air flow through the supersonic combustor. Fuels previously employed in subsonic ramjet engines, while having desirable cost, handling, and high heat content characteristics, cannot satisfy the high reactivity requirement of the scramjet at the combustor static temperatures and pressures typical of scramjet take-over conditions. Although heavy hydrocarbon fuels have high heat content per unit volume and are easily handled and stored, these fuel compositions often fail even to ignite in the scramjet engine.
Substances capable of acceptable ignition and combustion within the low residence time in the scramjet engine are generally expensive, toxic, and difficult to store and handle. Many of these readily ignitable substances are actually pyrophoric in nature, that is, the substance ignites spontaneously on exposure to an oxidizing source. For instance, the boranes and alkaylated boranes meet the reactivity requirement but are undesirable due to cost, handling, storage, toxicity, and other considerations. Pentaborane and other lower boranes are pyrophoric at room temperature and also have a relatively low density. Aluminum alkyls also meet the reactivity requirement but are pyrophoric and have low energy densities.
The invention provides fuel compositions combining the desirable characteristics of the hydrocarbons with an essentially pyrophoric additive blend. Particularly, the present fuel compositions substantially exhibit desired cost, handling, storage, and density properties while being capable of ignition and efficient combustion within the low residence times encountered in a supersonic combustor.
Accordingly, it is the primary object of the invention to provide fuel compositions for supersonic ramjet engines which ignite and burn efficiently within the low residence times of a supersonic combustor.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present fuel compositions essentially consist of blends of a major fuel component usually consisting of a heavy hydrocarbon component which ordinarily would not ignite under scramjet conditions, and an additive component present in a relatively low proportion for initiating ignition and aiding in continued combustion of the composition. The major fuel component may be chosen from a large group of suitable hydrocarbons. Primary considerations for hydrocarbon choice are density, cost, and storability. Straight-chain alkanes, such as n-dodecane (C I-I may be chosen but are not generally as desirable as the highdensity heterocyclic hydrocarbons. In particular fuels such as methylcyclopentadiene dimer (MCPD, C H and its hydrogenated derivative, tetra-hydro methylcyclopentadiene dimer (T-HMCPD, C H have desirable characteristics. Shelldyne-I-I, a proprietary product of Shell Development Corporation, is a heavier hydrogenated hydrocarbon (C I-I molecular weight 186.3) having acceptable handling and density chracteristics. Low molecular weight hydrocarbons have storage and handling difficulties which usually outweigh any advantage to their use.
Essentially pyrophoric additives having the high reactivity necessary to promote rapid ignition of the fuel compositions include mixtures of the alkylated aluminums, such as triethylaluminum (TEA) and trimethylaluminum (TMA), and the boranes and alkylated boranes, particularly pentaborane (B 11 and either a mixture of diethyldecaborane and ethyldecaborane (C H B HiCal 3-D) or ethyldecaborane alone. Blends of these additive components, particularly TEA and I-IiCal 3D, are used in a composition including a heavy hydrocarbon as the major constituent.
Ignition of the present fuel compositions is provided by the additive mixture. For example, in a fuel composition comprising a hydrocarbon, an aluminum alkyl, and HiCal 3-D, the aluminum alkyl burns initially, the combustion of the aluminum and recombination of alkyl radicals occurring first and producing a small exothermic heat release insufficient to ignite the hydrocarbon. However, the heat released by the rapid aluminum reaction is sufficient to ignite the HiCal 3-D which does produce enough heat to ignite the hydrocarbon. Although the organic portion of the aluminum alkyl usually burns subsequent to the combustion of the aluminum portion, this second phase combustion which releases the major portion of the heat of combustion of the aluminum alkyl is often too slow to effectively ignite the hydrocarbon.
The addition of an aluminum alkyl to an alkylated borane can shorten r of the alkylated borane by as much as percent. For example, 20 percent by weight of triethylaluminum to HiCal 3D shortens the ignition delay of the alkylated borane by nearly 50 percent, due to ignition of the I-IiCal 3-D by the rapid heat release of the aluminum in the TEA as described generduced causes a proportionally more rapid ignition of 5 the hydrocarbon component of the present fuel compositions.
The present fuel compositions were tested to measure ignition time, t and combustion efficiency, 1
Ignition delay tests were conducted using air supplied 10 at 2000R at 1520 psia to a plenum attached to a converging nozzle having a nominal Mach number of 0.75 exiting into a rectangular test section. The components were injected from a 2mm diameter hole in the tip of a tube located on the axis of the nozzle. In order to evaluate performance of the compositions, static pressures were measured in the plenum, at the nozzle exit, and at several locations in the test section. Parameters affecting performance are found to include the initial air static temperature T and the initial fuel temperature T both of which cause reduction in r as they increase. Overall fuel/air ratio does not seem to affect r Mach 1.6 and Mach 2.5 nozzles were also used in the test arrangement described. The results of these tests are summarized in Tables I, II, and III reproduced below.
TABLE I Results of Subsonic Ignition Tests of Pyrophoric-l-Iydrocarbon Mixtures Fuel Air Combustion Combustion Fuel Total Total Static Mach Static Flow Flow Fuel Velocity Delay Delay Temp. Pressure Pressure Number Temp. Temp. Dist. Time (R) (psia) (psia) (R) (lb/sec) (lb/sec) ("R) (ft/sec) (inches) (msec) 50.0%NDD 1927 19.25 13.92 0.695 1757 0.0280 0.843 730 1427 17.0 0.99 12.0%TEA 37.57 H'Cal-3D 50.07ZSDH 1953 22.97 19.79 0.465 1871 0.0256 0.777 714 985 6.0 0.51 12.5%TEA 37.57H'C 1-3D 7507251 311 1945 24.57 20.54 0.512 1848 0.0268 0.892 775 1078 7.0 0.54 12.5%TEA 12.57-HiCa1-3D 87.50 7rSDH 1940 23.47 19.87 0.493 1851 0.0259 0.830 808 1043 7.0 0.56
6.25%TEA 6.257 HiCal 3D shelldy ne-H 1959 25.52 21.44 0.505 1863 0.0140 0.916 868 1068 no ignition 10.0%TEA 1959 17.19 11.03 0.823 1725 0.0250 0.823 821 1670 no 90.0%SDH ignition Shelldyne-H 1937 19.78 13.13 0.790 1722 0.0844 0.913 847 1606 no ignition 12.5%TEA 1944 27.07 23.14 0.480 1858 0.0400 0.941 766 1014 0 0.50 12.5%HiCal-3D 7 SDH NTC ZD 1944 13.05 19.36 0.773 1736 0.0420 0.884 787 1578 no ignition 6.25%TEA 1943 23.86 20.35 0.482 1854 0.0476 0.831 739 1017 5.0 0.41 6.25%HiCal-3D 87.50%MCPD TABLE II Mach Initial Air Initial Fuel Ignition Delay Fuel Ngim- Temperature,R Temperature,R Time, msec 6.7 TMA 8.9 I-IiCal 3-D 87.50% MCPD 2.5 1535 710 0.20 12.5 TEA 12.5 HiCal 3-D 2.5 1535 710 Q15 75.0 Shelldyne-H TEA Tricthyl aluminum TMA Trimethyl aluminum MCPD Methylcyclopentadienc dimer THMCPD Telrahydro-methylcyclopcntadiene dimer TABLE 111 Fuel o ER TI P, T; P Combustion y Weight (psia) efficiency (R) (R) (psia) (11) 1] 8.2 TMA 3.23 0.53 4020 1527 459 723 7.63 0.41 9.0 HiCal 3-D 82 8 MCPD 12.5 TEA 3.24 0.58 3876 1457 448 711 7.37 0.32 12.1 HiCal 3-D 75.4 Shelldyne-H Other tests indicate that the following fuel compositions according to the present invention ignite within 0.2 msec for T 1535R and M 2 2.5, conditions corresponding to a Mach 5 takeover speed at 95,000 feet:
Composition No. Components by weight per cent 1 triethylaluminum 10% HiCal 3-D 80% MCPD 6.7% trimethylaluminum 8.9% HiCal 3-D 84.4% MCPD 8% trimethylaluminum 9% pentaborane 83% MCPD As can be seen in Table I, the additive blends of the present fuel compositions cause ignition of a heavy hydrocarbon which will not ignite alone in the available residence time. Triethylaluminum alone is also shown to be insufficient to ignite the heavy hydrocarbon, Shelldyne-l-l.
Direct-connected supersonic combustion testing produced the results summarized in Tables II and Ill. Combustion efficiencies, longitudinal wall static pressure (P,,.) distributions, and radial profiles of properties in the combustor exit plane were determined at conditions simulating flight at M.,.,-7.25 in the tropopause (Ta.= 390R) at an altitude of 90,000 ft. These carefully instrumented tests, with a proven run-to-run reproducibility of i 3 percent on combustion efficiency, offer a realistic (but relatively expensive compared to the simpler ignition delay tests) means for evaluating scramjet fuels. Metered cold air was heated in a dc. arc heater to approximately 5000R and discharged into a mixing chamber. Unheated secondary air was added to obtain the desired total temperature, T, which is nominally 4000R. With the nominal plenum pressure of 460 psia the conditions at the supersonic nozzle-exit plane were M 3.23, P 7.4 psia, and T 1520R. To isolate combustor-induced disturbances a 7.27 in.- long cylinder was inserted between the nozzle and the fuel injector. Fuel was injected perpendicular to the air stream from ten 0.030-in.-diameter holes that were equally spaced circumferentially. Immediately downstream of the injector the combustor had a step increase in diameter from 2.74 in. to 3.28 in. The 14.4- in.-long cylinder was followed by a l.4-half-angle, l4.4-in.-long conical section, which resulted in an overall combustor exit/injector area ratio of 2. Pitot and cone-static pressure measurements in the combustor exit plane provide the data necessary to describe the flow properties in that plane. Just downstream of the combustor exit, water was sprayed into the stream to quench the reaction rapidly. The heat release and combustion efficiency were obtained by making a calorimetric balance on the exhaust gases, using temperature measurements from a sixteen-point thermocouple rake in the exit of the calorimeter together with all of the water-coolant rates. Water flow to the calorimeter was controlled to yield exit temperatures between 700F and l000F, and to keep the wall temperatures at 400F800F in order to guarantee that all water was vaporized and that reactions were effectively quenched.
Combustion efficiency is defined as the sum of the total heat released upstream of the calorimeter exit plus the sensible heat in the products of combustion when cooled from the colorimeter exit temperature to 212F (without condensation of water) divided by the lowering heating value of the fuel. The total heat release includes the change in heat flux to the walls with combustion. With this combustor geometry the total heat loss to the walls is approximately 110 Btu/sec for the nominal conditions without fuel flow. With burning, the heat flux increases to about 500 Btu/sec for ER 1.0, run lengths between 30 and 45 sec with 10-15 sec for each fuel setting.
We claim:
1. A fuel composition capable of ignition within the low residence times occurring in a supersonic ramjet combustion engine comprising:
a hydrocarbon selected from thegroup consisting of n-dodecane, methylcyclopentadiene dimer, and tetra-hydro methylcyclopentadiene dimer, the hydrocarbon being present in the fuel composition in a proportion equal to at least 50 percent and not more than 87.5 percent by weight thereof; and, a pyrophoric additive component selected from the group consisting of respective mixtures of trimethylaluminum and ethyldecaborane; trimethylaluminum and pentaborane; triethylaluminum, ethyldecaborane, and diethyldecaborane; and, trimethylaluminum, ethyldecaborane, and diethyldecaborane; the additive component being present in the fuel composition in a proportion equal to not more than 50 percent by weight thereof and wherein the first-named constituent of each mixed additive component constitutes at least 20 percent of the additive component by weight.
2. A fuel composition capable of ignition within the low residence times occurring in a supersonic ramjet combustion engine comprising:
methylcyclopentadiene dimer having a weight percent of at least percent of the total composition; and,
a pyrophoric additive component selected from the group consisting of respective mixtures of trimethylaluminum and pentaborane having relative weight percents of at least 8 percent and at least 9 percent respectively of the total composition; triethylaluminum, diethyldecaborane, and ethyldecaborane having relative weight percents of at least 6 percent of the total composition for triethylaluminum and at least 6 percent of the total composition for the mixture of diethyldecaborane and ethyldecaborane; and trimethylaluminum, diethyldecaborane, and ethyldecaborane having relative weight percents of at least 6 percent of the total composition for trimethylaluminum and at least 8 percent of the total composition for the mixture of diethyldecaborane and ethyldecaborane.

Claims (2)

1. A FUEL COMPOSITION CAPABLE OF IGNITION WITHIN THE LOW RESIDENCE TIMES OCCURING IN A SUPERSONIC RAMJET COMBUSTION ENGINE COMPRISING: A HYDROGEN SELECTED FROM THE GROUP CONSISTING OF NDODECANE, METHYLCYCLOPENTADIENE DIMER, AND TETRA-HYDRO METHYLCYCLOPENTADIENE DIMER, THE HYDROCARBON BEING PRESENT IN THE FUEL COMPOSITION IN A PROPORTION EQUAL TO AT LEAST 50 PERCENT ANND NOT MORE THAN 87.5 PERCENT BY WEIGHT THEREOF, AND A PYROPHORIC ADDITIVE COMPONENT SELECTED FROM THE GROUP CONSISTING OF RESPECTIVE MIXTURES OF TRIMETHYLALUMINUM AND ETHYLDECARBORANE, TRIMETHYLALUMINUM AND PENTABORANE, TRIETHYLALUMINUM, ETHYLDECABORANE, AND DIETHYLDECARBORANE, AND TRIMETHYALUMINUM, ETHYLDECABORANE, AND DIETHYLDECABORANE, THE ADDITIVE COMPONENT BEING PRESENT IN THE FUEL COMPOSITION IN A PROPORTION EQUAL TO NOT MORE THAN 50 PERCENT BY WEIGHT THEREOF AND WHEREIN THE FIRST-NAMED CONSTITUENT OF EACH MIXED ADDITIVE COMPONENT CONSTITUTED AT LEAST 20 PERCENT OF THE ADDITIVE COMPONENT BY WEIGHT.
2. A fuel composition capable of ignition within the low residence times occurring in a supersonic ramjet combustion engine comprising: methylcyclopentadiene dimer having a weight percent of at least 80 percent of the total composition; and, a pyrophoric additive component selected from the group consisting of respective mixtures of trimethylaluminum and pentaborane having relative weight percents of at least 8 percent and at least 9 percent respectively of the total composition; triethylaluminum, diethyldecaborane, and ethyldecaborane having relative weight percents of at least 6 percent of the total composition for triethylaluminum and at least 6 percent of the total composition for the mixture of diethyldecaborane and ethyldecaborane; and trimethylaluminum, diethyldecaborane, and ethyldecaborane having relative weight percents of at least 6 percent of the total composition for trimethylaluminum and at least 8 percent of the total composition for the mixture of diethyldecaborane and ethyldecaborane.
US357748A 1970-11-05 1973-05-07 High reactivity fuels for supersonic combustion ramjets Expired - Lifetime US3883376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US357748A US3883376A (en) 1970-11-05 1973-05-07 High reactivity fuels for supersonic combustion ramjets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8734470A 1970-11-05 1970-11-05
US357748A US3883376A (en) 1970-11-05 1973-05-07 High reactivity fuels for supersonic combustion ramjets

Publications (1)

Publication Number Publication Date
US3883376A true US3883376A (en) 1975-05-13

Family

ID=26776870

Family Applications (1)

Application Number Title Priority Date Filing Date
US357748A Expired - Lifetime US3883376A (en) 1970-11-05 1973-05-07 High reactivity fuels for supersonic combustion ramjets

Country Status (1)

Country Link
US (1) US3883376A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969979A (en) * 1975-07-29 1976-07-20 Sun Ventures, Inc. Liquid propellant for a gun
DE2726863A1 (en) * 1976-06-16 1977-12-29 Osborg Hans NEW FUEL COMPOSITIONS AND METHODS TO IMPROVE FUEL COMBUSTION
US4197081A (en) * 1979-03-26 1980-04-08 Hans Osborg Method for improving combustion of fuels
US4201553A (en) * 1976-06-16 1980-05-06 Hans Osborg Method of improving combustion of fuels and novel fuel compositions
US4230509A (en) * 1979-04-13 1980-10-28 The United States Of America As Represented By The Secretary Of The Army Pyrophoric flame composition
US4387817A (en) * 1980-06-19 1983-06-14 Ethyl Products Company Child resistant container cover
US20060107648A1 (en) * 2004-02-19 2006-05-25 Aerojet-General Corporation, A Corporation Of The State Of Ohio Integrated air inlet system for multi-propulsion aircraft engines
CN106479582A (en) * 2016-10-25 2017-03-08 上海交通大学 Liquid carbon hydrogen fuel with low-temperature burning characteristic
US11198656B2 (en) * 2017-03-17 2021-12-14 Purdue Research Foundation Hypergolic hydrocarbon fuel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994191A (en) * 1956-09-24 1961-08-01 Phillips Petroleum Co Operation of reaction motors
US3139724A (en) * 1958-12-29 1964-07-07 Gen Electric Dual fuel combustion system
US3242667A (en) * 1963-04-09 1966-03-29 El Paso Natural Gas Prod Method of operating a jet engine using fuels prepared by heating cyclo-olefins
US3347931A (en) * 1958-08-14 1967-10-17 Callery Chemical Co Preparation of organoboron compounds
US3498859A (en) * 1967-12-22 1970-03-03 Ethyl Corp High energy pyrophoric fuel compositions
US3634156A (en) * 1961-06-26 1972-01-11 Ethyl Corp Ymerically thickened incendiary compositions containing aluminum compounds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2994191A (en) * 1956-09-24 1961-08-01 Phillips Petroleum Co Operation of reaction motors
US3347931A (en) * 1958-08-14 1967-10-17 Callery Chemical Co Preparation of organoboron compounds
US3139724A (en) * 1958-12-29 1964-07-07 Gen Electric Dual fuel combustion system
US3634156A (en) * 1961-06-26 1972-01-11 Ethyl Corp Ymerically thickened incendiary compositions containing aluminum compounds
US3242667A (en) * 1963-04-09 1966-03-29 El Paso Natural Gas Prod Method of operating a jet engine using fuels prepared by heating cyclo-olefins
US3498859A (en) * 1967-12-22 1970-03-03 Ethyl Corp High energy pyrophoric fuel compositions

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969979A (en) * 1975-07-29 1976-07-20 Sun Ventures, Inc. Liquid propellant for a gun
DE2726863A1 (en) * 1976-06-16 1977-12-29 Osborg Hans NEW FUEL COMPOSITIONS AND METHODS TO IMPROVE FUEL COMBUSTION
US4081252A (en) * 1976-06-16 1978-03-28 Hans Osborg Method of improving combustion of fuels and fuel compositions
US4201553A (en) * 1976-06-16 1980-05-06 Hans Osborg Method of improving combustion of fuels and novel fuel compositions
US4197081A (en) * 1979-03-26 1980-04-08 Hans Osborg Method for improving combustion of fuels
US4230509A (en) * 1979-04-13 1980-10-28 The United States Of America As Represented By The Secretary Of The Army Pyrophoric flame composition
US4387817A (en) * 1980-06-19 1983-06-14 Ethyl Products Company Child resistant container cover
US20060107648A1 (en) * 2004-02-19 2006-05-25 Aerojet-General Corporation, A Corporation Of The State Of Ohio Integrated air inlet system for multi-propulsion aircraft engines
US7216474B2 (en) 2004-02-19 2007-05-15 Aerojet-General Corporation Integrated air inlet system for multi-propulsion aircraft engines
USRE43731E1 (en) 2004-02-19 2012-10-16 Aerojet-General Integrated air inlet system for multi-propulsion aircraft engines
CN106479582A (en) * 2016-10-25 2017-03-08 上海交通大学 Liquid carbon hydrogen fuel with low-temperature burning characteristic
CN106479582B (en) * 2016-10-25 2018-01-02 上海交通大学 Liquid carbon hydrogen fuel with low-temperature burning characteristic
US11198656B2 (en) * 2017-03-17 2021-12-14 Purdue Research Foundation Hypergolic hydrocarbon fuel

Similar Documents

Publication Publication Date Title
Ishihara et al. Erosive burning mechanism of double-base propellants
US2655786A (en) Method of operating jet engines with fuel reforming
Schulte Fuel regression and flame stabilization studies of solid-fuel ramjets
US3883376A (en) High reactivity fuels for supersonic combustion ramjets
US2584803A (en) Mono-fuel
Lee et al. Aerothermochemical studies of energetic liquid materials. 2. Combustion and microexplosion of droplets of organic azides
Schadow Boron combustion characteristics in ducted rockets
US2867081A (en) Hydrocarbon fuel composition and the method of operating a jet engine therewith
Bell et al. Numerical simulation of a coal-fuelled compression-ignition engine
US2729936A (en) Fuel for and method of operating a jet engine
US5608182A (en) Fuel gas generator for airbreathing propulsion systems
US3383860A (en) Low flame temperature gas generant containing ammonium iodate and methode of operatin a gas generator
Nicholls Standing detonation waves
US2942964A (en) Stable gas-generating composition
Verneker et al. Correlation between combustion and decomposition in solid propellants
US3165887A (en) Method of operating a propulsion engine with polysubstituted methane fuel
US3067074A (en) Slow burning propellant composition
US2947618A (en) Liquid fuels for reaction motors
US2563532A (en) Spontaneous ignition of gasoline
US3214305A (en) Solid propellant
US3118275A (en) Solid psopeixant composition and meth-
Liu et al. Aluminum agglomeration in AP/RDX/Al/HTPB propellant combustion
Harikrishnan et al. Development of a Cool Composite Propellant Based on Guanidinium Azotetrazolate for Air Heater Igniter Application
Ishikawa et al. A study on combustion of boron powders through Bunsen flame
US3093522A (en) Liquid fuels for reaction motors