US3880566A - Apparatus for forming spheroidal particles - Google Patents

Apparatus for forming spheroidal particles Download PDF

Info

Publication number
US3880566A
US3880566A US477388A US47738874A US3880566A US 3880566 A US3880566 A US 3880566A US 477388 A US477388 A US 477388A US 47738874 A US47738874 A US 47738874A US 3880566 A US3880566 A US 3880566A
Authority
US
United States
Prior art keywords
particles
ring
chamber
openings
nip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US477388A
Inventor
Ronald J Komarek
Gordon L Hume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Priority to US477388A priority Critical patent/US3880566A/en
Application granted granted Critical
Publication of US3880566A publication Critical patent/US3880566A/en
Anticipated expiration legal-status Critical
Assigned to NATIONSBANK OF NORTH CAROLINA, N.A. reassignment NATIONSBANK OF NORTH CAROLINA, N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TYCO INDUSTRIES, INC.
Assigned to TYCO INDUSTRIES, INC. reassignment TYCO INDUSTRIES, INC. RELEASE OF SECURITY INTEREST Assignors: NATIONSBANK, N.A. (CAROLINAS), FORMERLY KNOWN AS NATIONSBANK OF NORTH CAROLINA, N.A., AS AGENT
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/46Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles using fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • B29C43/08Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts with circular movement, e.g. mounted on rolls, turntables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/08Screen moulding, e.g. forcing the moulding material through a perforated screen on to a moulding surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/12Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space co-operating with moulds on the circumference of a rotating drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • B29C2043/461Rollers the rollers having specific surface features
    • B29C2043/465Rollers the rollers having specific surface features having one or more cavities, e.g. for forming distinct products

Definitions

  • ABSTRACT An apparatus and method are described for forming generally spheroidal particles from plastic material.
  • the apparatus includes a molding ring which passes between the nip of a pair of cooperating rolls.
  • Plastic material is pressed into holes in the forming ring at the nip to form cylindrical particles having a height approximately equal to the diameter. and ejected into a rounding chamber for rounding the particles into generally spheroidal particles.
  • This invention relates in general to the production of generally spheroidal particles of solid material, and more particularly, this invention relates to the molding of particles of predetermined shapes and subsequently tumbling the particles to thereby shape the particles in a generally spheroidal manner.
  • plastic material While such material will be referred to herein as plastic material, it is understood that this term is used in a broad sense and includes such materials as dough, paste, etc.
  • particle forming devices are known in the art. Conventionally, such devices are a form or variation of the device illustrated in U.S. Pat No. 2,208,905 where particles are molded from a plastic mass using cooperating devices such as molding rolls, or a molding roll and a belt. Other forms of particle forming devices include extruders. Furthermore, it is known in the art that the particles so formed may be rounded or smoothed by various types of tumbling apparatus.
  • the particle forming apparatus of the present invention provides a convenient way of making generally spheroidal particles by apparatus designed to first form particles from a plastic mass in a generally cylindrical shape in which the cylinder height is approximately the same as the diameter, and second, round the edges of the so-formed particles by tumbling.
  • FIG. 1 is a schematic side elevation view of one form of the apparatus according to my invention
  • FIG. 2 is an enlarged partial view of the particle forming element of my invention
  • FIG. 3a is an enlarged view of a particle which has just been ejected from the particle forming apparatus
  • FIG. 3b is an enlarged view of a particle which has been nearly made spheroidal
  • FIG. 3c is an enlarged view of a generally spherodial particle made by the apparatus according to this invention.
  • FIG. 4 is an enlarged partial section view of the particle ejecting device.
  • FIG. 5 is a plan view of the apparatus shown in FlG.
  • FIGS. 1 and 2 illustrate a preferred embodiment of the invention wherein a mass of plastic material to be made into particles is supported by means of movable molding ring 12, retaining plate 14, and conventional end plates (not shown) which retain the sides of the plastic mass to the extent necessary.
  • Molding ring 12 is positioned for movement between the nip of axially parallel rolls l6 and 18, and is supported by an additional guide member 20. Additional guide members may be used and placed at suitable locations on the forming ring.
  • One, or both, of the rolls l6 and 18 are driven by conventional power means (not shown) and in turn operate to frictionally rotate molding ring 12 about an imaginary axis, at for example point 20. Molding ring 12 is thus supported by rolls l6 and 18, and guide member 20.
  • Rolls 16 and 18 are provided with shafts 22 and 24 which are suitably supported in bearings. Roll 16, roll 18, or both, may therefore be gear driven by suitable meansv Roll 16 is placed near the bottom of plastic mass 10 to provide bottom support therefor. Rolls l6 and I8 rotate in opposite directions as indicated by the arrows.
  • Molding ring 12 is preferably of a diameter at least twice that of rolls l6 and 18, and most preferably about two or four times the diameter of rolls l6 and 18.
  • lt may be fabricated from a relatively rigid or selfsupporting material such as metal. lt is provided with a multiplicity of cylindrical holes 26. For a desired size of particle to be formed, the thickness of the ring is chosen to be approximately the same as the diameter of holes 26.
  • An air jet is provided at a point along the periphery of molding ring 12 to discharge formed particles from holes 26.
  • the arrangement shown in the drawing is particularly suitable because an air jet 30 is provided on the inside periphery of the molding ring and discharges in a radially outward direction.
  • the air jet 30 is conveniently positioned adjacent the inner surface of molding ring 12.
  • Suitable air pressure is provided from an air compressing source (not shown) and operates in a continuous manner to discharge formed particles into rounding chamber 32.
  • Rounding chamber 32 is circular in structure, and is provided with high, rounded side walls 34 and 36 which serve to retain the particles in the rounding chamber during tumbling.
  • the particles are given a circular movement in rounding chamber 32 by means of spaced air nozzles 38 (one illustrated) which are directed tangentially with respect to rounding chamber 32. Additional air nozzles are preferably placed in the rounding chamber 32 in a similar manner to further aid the particles in their swirling motion.
  • Rounding chamber 32 is provided with a discharge point 40 located in the sidewall 36 for allowing rounded particles to exit therefrom.
  • FIGS. 40, 4b, and 4c illustrate the formed particles 50a, 50b and 50c in progressive stages of development.
  • the particle 50a is generally cylindrical, having a height 52 about equal to its diameter 54. This is the shape of the particle 50 as it is formed and as it is ejected from the molding ring.
  • FIG. 4b illustrates particle 50b in an intermediate stage of development, such as after travelling around the rounding chamber several times.
  • Particle 50c is in a finished shape afte' several more revolutions around the chamber. As illustrated, this particle is generally spheroidal.
  • plastic mass is positioned between molding ring 12 and retaining plate 14, resting partially on roll 16.
  • Plastic mass 10 may be maintained by a continuous feed, if desired.
  • One, or both, of the rolls l6 and 18 are driven for rotation in the direction indicated.
  • Molding ring 12, being in frictional engagement with rolls 16 and 18 is thereby moved in the direction indicated by the arrow.
  • Some of the plastic mass 10 trapped in the nip between roll 16 and molding ring 12 is packed into holes 26 thereof to form particles.
  • the so-formed particles travel in the molding ring 12 until they reach the position of air jet 30.
  • the particles are ejected here by action of the air pressure from air jet 30 into rounding chamber 32.
  • Air nozzles provide the particles with a uniform rotary and tumbling movement around the periphery thereof. As the particles become rounded and lighter, they migrate up the sides of rounding chamber 32 and eventually reach exit port 40 where they are collected for packaging or subsequent operations.
  • spheroidal particles of methionine approxi mately two mm. in diameter are made in the following manner.
  • Methionine is mixed with microcrystalline cellulose and safflower oil in an l8:l:l ratio. Water is added to this mixture until the material reaches a cookie dough" consistency, ie, forms easily but does not adhere to a dry surface.
  • the dough is converted into generally spheroidal particles by processing through the forming ring and rounding vessel. The velocity of the air used in the rounding vessel isjust sufficient to keep the particles moving and tumbling. After the particles are removed from the rounding vessel they are further dried at ambient temperatures.
  • this basic procedure may be used to make generally spheroidal particles of lysine and sodium sulphate.
  • Material which is to be prepared into spheroidal par ticles must be capable of being made into a plastic mass which will have cookie dough" texture, i.e., can be forced into the forming ring yet will not adhere to the ring firmly enough to cause a large amount of distortion when ejected from the ring with a jet of air. Particles smaller than one mm. are more difficult to round be' cause it is more difficult to adjust the air flow for proper movement and tumbling. Spheres are large as ten mm. and larger may also be made.
  • Forming rings can be made with any choice of holes about the same length (thickness of the ring) as the diameter. Forming ring width and diameter may vary according to the production capacity desired.
  • the rounding vessel can be modified for continuous production by insuring uniform air flow and by placing an exit port on the upper portion of the outer wall. The uniform air flow will allow stratification of the particles according to the density of the particles. The particles will partially dry in the air flow reducing their density as they are rounded.
  • spheroidal By generally spheroidal,” it is meant to include particles which are spherical, as well as particles which may not, in the strict sense of the word, be rounded suf flciently to be called spheroidal. The majority of particles, however, will be spheroidal.
  • Apparatus for preparing particles of solid material comprising a7 a movable molding ring having a multiplicity of generally cylindrical openings extending through said ring, the diameters of said openings being approximately equal to the depths thereof,
  • Apparatus according to claim 1 which includes a receiving chamber for said cylindrical particles having means to cause tumbling of said particles until they become generally spheroidal.
  • Apparatus according to claim 1 wherein said means for ejecting said particles is an air jet.
  • Apparatus for preparing generally spheroidal particles of solid material comprising a. a movable molding ring having a multiplicity of generally cylindrical openings extending through said ring, the diameters of said openings being approximately equal to the depths thereof,
  • a receiving chamber for said cylindrical particles having means to cause tumbling of said particles until they become generally spheroidal.
  • Apparatus for rounding particles of solid material comprising a circular chamber having a sidewall which curves upwardly and inwardly defining a generally smooth path for particles orbiting within said chamber, means for imparting a circular movement to said particles within said chamber, and exit means in said sidewall spaced from the bottom thereof for allowing said particles to exit from said chamber.
  • Apparatus for preparing generally spheroidal particles of solid material comprising a. a movable molding ring having a multiplicity of generally cylindrical openings extending through said ring, the diameters of said openings being approximately equal to the depths thereof,
  • a receiving chamber for said cylindrical particles having means to cause tumbling of said particles comprising a circular chamber having a sidewall which curves upwardly and inwardly defining a generally smooth path for particles orbiting within said chamber, means for imparting a circular movement to said particles within said chamber, and exit means in said sidewall spaced from the bottom thereof for allowing said particles to exit from said chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

An apparatus and method are described for forming generally spheroidal particles from plastic material. The apparatus includes a molding ring which passes between the nip of a pair of cooperating rolls. Plastic material is pressed into holes in the forming ring at the nip to form cylindrical particles having a height approximately equal to the diameter, and ejected into a rounding chamber for rounding the particles into generally spheroidal particles.

Description

United States Patent 11 1 Komarek et al.
' 14 1 Apr. 29, 1975 l l APPARATUS FOR FORMING SPHEROIDAL PARTICLES ]75] Inventors: Ronald J. Komarek. Rochester;
Gordon L. Hume. Alhion both of N.Y.
[73] Assignee: Eastman Kodak Company,
Rochester. N.Y.
]22] Filed: June 7., I974 ]2l] Appl. No.: 477.388
I52] [1.5. CI. 425/362. 425/222; 425/331; 425/324 ]5l Int. Cl B30h 3/00; B3(lh 9/28; 82% 3/00 [58] Field of Search 425/l94. 222 33L 332. 425/335, 336. 362, 360, 324
I56] References Cited UNITED STATES PATENTS 3.58L67ll l/l97l Landers .i 425/33l X 3.7l3 l87 l/l973 Quartarone et al 425/333 X 3.792.655 2/1974 Caddell ct al 425/33] X 3.801822 4/l974 Harhison i a i w i 425/222 3.807.926 4/1974 Morse U 425/33] 3.84l 6l7 Ill/I974 Moldenhauer et al i. 425/33] Primary E.\'umin0rJ. Howard Flint, Jr. Almrncy. Agent. or Firm.lohn F. Stevens; Daniel B. Reece, Ill
]57] ABSTRACT An apparatus and method are described for forming generally spheroidal particles from plastic material. The apparatus includes a molding ring which passes between the nip of a pair of cooperating rolls. Plastic material is pressed into holes in the forming ring at the nip to form cylindrical particles having a height approximately equal to the diameter. and ejected into a rounding chamber for rounding the particles into generally spheroidal particles.
12 Claims, 7 Drawing Figures PmENIEmPnzems SHEET 10? 2 APPARATUS FOR FORMING SPHEROIDAL PARTICLES This invention relates in general to the production of generally spheroidal particles of solid material, and more particularly, this invention relates to the molding of particles of predetermined shapes and subsequently tumbling the particles to thereby shape the particles in a generally spheroidal manner.
This invention is particularly applicable to the production of solid particles from plastic material. While such material will be referred to herein as plastic material, it is understood that this term is used in a broad sense and includes such materials as dough, paste, etc.
Various forms of particle forming devices are known in the art. Conventionally, such devices are a form or variation of the device illustrated in U.S. Pat No. 2,208,905 where particles are molded from a plastic mass using cooperating devices such as molding rolls, or a molding roll and a belt. Other forms of particle forming devices include extruders. Furthermore, it is known in the art that the particles so formed may be rounded or smoothed by various types of tumbling apparatus.
The particle forming apparatus of the present invention provides a convenient way of making generally spheroidal particles by apparatus designed to first form particles from a plastic mass in a generally cylindrical shape in which the cylinder height is approximately the same as the diameter, and second, round the edges of the so-formed particles by tumbling.
It is therefore an object of this invention to provide apparatus for forming generally spheroidal particles from a plastic mass.
It is another object of this invention to provide apparatus for forming generally spheroidal particles in an efficient and economical manner.
It is a further object of this invention to provide apparatus for forming particles of a shape which requires a minimum of coating material, where the particles are to be coated, because of their high volume to surface area ratio.
Other objects and advantages of this invention will appear herein.
In the drawings:
FIG. 1 is a schematic side elevation view of one form of the apparatus according to my invention;
FIG. 2 is an enlarged partial view of the particle forming element of my invention;
FIG. 3a is an enlarged view of a particle which has just been ejected from the particle forming apparatus;
FIG. 3b is an enlarged view of a particle which has been nearly made spheroidal;
FIG. 3c is an enlarged view of a generally spherodial particle made by the apparatus according to this invention; and
FIG. 4 is an enlarged partial section view of the particle ejecting device.
FIG. 5 is a plan view of the apparatus shown in FlG.
Referring to the drawings, FIGS. 1 and 2 illustrate a preferred embodiment of the invention wherein a mass of plastic material to be made into particles is supported by means of movable molding ring 12, retaining plate 14, and conventional end plates (not shown) which retain the sides of the plastic mass to the extent necessary. Molding ring 12 is positioned for movement between the nip of axially parallel rolls l6 and 18, and is supported by an additional guide member 20. Additional guide members may be used and placed at suitable locations on the forming ring. One, or both, of the rolls l6 and 18 are driven by conventional power means (not shown) and in turn operate to frictionally rotate molding ring 12 about an imaginary axis, at for example point 20. Molding ring 12 is thus supported by rolls l6 and 18, and guide member 20.
Rolls 16 and 18 are provided with shafts 22 and 24 which are suitably supported in bearings. Roll 16, roll 18, or both, may therefore be gear driven by suitable meansv Roll 16 is placed near the bottom of plastic mass 10 to provide bottom support therefor. Rolls l6 and I8 rotate in opposite directions as indicated by the arrows.
Molding ring 12 is preferably of a diameter at least twice that of rolls l6 and 18, and most preferably about two or four times the diameter of rolls l6 and 18. lt may be fabricated from a relatively rigid or selfsupporting material such as metal. lt is provided with a multiplicity of cylindrical holes 26. For a desired size of particle to be formed, the thickness of the ring is chosen to be approximately the same as the diameter of holes 26.
An air jet is provided at a point along the periphery of molding ring 12 to discharge formed particles from holes 26. The arrangement shown in the drawing is particularly suitable because an air jet 30 is provided on the inside periphery of the molding ring and discharges in a radially outward direction. The air jet 30 is conveniently positioned adjacent the inner surface of molding ring 12. Suitable air pressure is provided from an air compressing source (not shown) and operates in a continuous manner to discharge formed particles into rounding chamber 32.
Rounding chamber 32 is circular in structure, and is provided with high, rounded side walls 34 and 36 which serve to retain the particles in the rounding chamber during tumbling. The particles are given a circular movement in rounding chamber 32 by means of spaced air nozzles 38 (one illustrated) which are directed tangentially with respect to rounding chamber 32. Additional air nozzles are preferably placed in the rounding chamber 32 in a similar manner to further aid the particles in their swirling motion. Rounding chamber 32 is provided with a discharge point 40 located in the sidewall 36 for allowing rounded particles to exit therefrom.
Other types of rounding chambers are known in the art and may be used in place of the particular one illustrated. A chamber in the form of a spiral having several turns, preferably about 4 or 5 turns. wherein particles enter one end and travel around the spirals to be tumbled, and exit at the other end, is also particularly desirable.
FIGS. 40, 4b, and 4c illustrate the formed particles 50a, 50b and 50c in progressive stages of development. The particle 50a is generally cylindrical, having a height 52 about equal to its diameter 54. This is the shape of the particle 50 as it is formed and as it is ejected from the molding ring. FIG. 4b illustrates particle 50b in an intermediate stage of development, such as after travelling around the rounding chamber several times. Particle 50c is in a finished shape afte' several more revolutions around the chamber. As illustrated, this particle is generally spheroidal.
In operation, plastic mass is positioned between molding ring 12 and retaining plate 14, resting partially on roll 16. Plastic mass 10 may be maintained by a continuous feed, if desired. One, or both, of the rolls l6 and 18 are driven for rotation in the direction indicated. Molding ring 12, being in frictional engagement with rolls 16 and 18 is thereby moved in the direction indicated by the arrow. Some of the plastic mass 10 trapped in the nip between roll 16 and molding ring 12 is packed into holes 26 thereof to form particles. The so-formed particles travel in the molding ring 12 until they reach the position of air jet 30. The particles are ejected here by action of the air pressure from air jet 30 into rounding chamber 32. Air nozzles provide the particles with a uniform rotary and tumbling movement around the periphery thereof. As the particles become rounded and lighter, they migrate up the sides of rounding chamber 32 and eventually reach exit port 40 where they are collected for packaging or subsequent operations.
In a typical use of the invention described herein, generally spheroidal particles of methionine approxi mately two mm. in diameter are made in the following manner. Methionine is mixed with microcrystalline cellulose and safflower oil in an l8:l:l ratio. Water is added to this mixture until the material reaches a cookie dough" consistency, ie, forms easily but does not adhere to a dry surface. The dough is converted into generally spheroidal particles by processing through the forming ring and rounding vessel. The velocity of the air used in the rounding vessel isjust sufficient to keep the particles moving and tumbling. After the particles are removed from the rounding vessel they are further dried at ambient temperatures.
In other examples, this basic procedure may be used to make generally spheroidal particles of lysine and sodium sulphate.
Material which is to be prepared into spheroidal par ticles must be capable of being made into a plastic mass which will have cookie dough" texture, i.e., can be forced into the forming ring yet will not adhere to the ring firmly enough to cause a large amount of distortion when ejected from the ring with a jet of air. Particles smaller than one mm. are more difficult to round be' cause it is more difficult to adjust the air flow for proper movement and tumbling. Spheres are large as ten mm. and larger may also be made.
Forming rings can be made with any choice of holes about the same length (thickness of the ring) as the diameter. Forming ring width and diameter may vary according to the production capacity desired. The rounding vessel can be modified for continuous production by insuring uniform air flow and by placing an exit port on the upper portion of the outer wall. The uniform air flow will allow stratification of the particles according to the density of the particles. The particles will partially dry in the air flow reducing their density as they are rounded.
By generally spheroidal," it is meant to include particles which are spherical, as well as particles which may not, in the strict sense of the word, be rounded suf flciently to be called spheroidal. The majority of particles, however, will be spheroidal.
Although the invention has been described in considerable detail with particular reference to certain preferred embodiments thereof, variations and modifications can be effected within the spirit and scope of the invention.
We claim:
1. Apparatus for preparing particles of solid material comprising a7 a movable molding ring having a multiplicity of generally cylindrical openings extending through said ring, the diameters of said openings being approximately equal to the depths thereof,
bv a pair of cooperating rolls positioned on opposite sides of said molding ring and adapted to rotate in unison, the surfaces thereof being spaced apart an amount sufficient for said molding ring to pass within the nip of said rolls,
0. means for holding a mass of plastic material in the nip between said ring and one of said rolls whereby said plastic material is compressed into the openings of said ring during movement through said nip to form generally cylindrical particles, and
(1. means for ejecting said cylindrical particles from said openings.
2. Apparatus according to claim 1 wherein the mold ing ring is substantially self-supporting.
3. Apparatus according to claim 1 wherein said mold ing ring is of a substantially greater diameter than said cooperating rolls.
4. Apparatus according to claim 1 wherein both of said cooperating rolls are in frictional engagement with said molding ring.
5. Apparatus according to claim 1 which includes a receiving chamber for said cylindrical particles having means to cause tumbling of said particles until they become generally spheroidal.
6. Apparatus according to claim 1 wherein said means for ejecting said particles is an air jet.
7. Apparatus for preparing generally spheroidal particles of solid material comprising a. a movable molding ring having a multiplicity of generally cylindrical openings extending through said ring, the diameters of said openings being approximately equal to the depths thereof,
b. a pair of cooperating rolls positioned on opposite sides of said molding ring and adapted to rotate in unison, the surface thereof being spaced apart an amount sufficient for said molding ring to pass within the nip of said rolls,
c. means for holding a mass of plastic material in the nip between said ring and one of said rolls whereby said plastic material is compressed into the openings of said ring during movement through said nip to form generally cylindrical particles,
d. means for ejecting said cylindrical particles from said openings, and
e. a receiving chamber for said cylindrical particles having means to cause tumbling of said particles until they become generally spheroidal.
8. Apparatus for rounding particles of solid material comprising a circular chamber having a sidewall which curves upwardly and inwardly defining a generally smooth path for particles orbiting within said chamber, means for imparting a circular movement to said particles within said chamber, and exit means in said sidewall spaced from the bottom thereof for allowing said particles to exit from said chamber.
9. Apparatus according to claim 7 wherein said sidewall is substantially semicircular.
10. Apparatus according to claim 7 wherein said chamber has a raised center portion.
11. Apparatus according to claim 7 wherein said particles are given movement by means of an air stream.
12. Apparatus for preparing generally spheroidal particles of solid material comprising a. a movable molding ring having a multiplicity of generally cylindrical openings extending through said ring, the diameters of said openings being approximately equal to the depths thereof,
b. a pair of cooperating rolls positioned on opposite sides of said molding ring and adapted to rotate in unison, the surfaces thereof being spaced apart an amount sufficient for said molding ring to pass within the nip of said rolls,
c, means for holding a mass of plastic material in the nip between said ring and one of said rolls whereby said plastic material is compressed into the openings of said ring during movement through said nip to form generally cylindrical particles,
d. means for ejecting said cylindrical particles from said openings, and
e. a receiving chamber for said cylindrical particles having means to cause tumbling of said particles comprising a circular chamber having a sidewall which curves upwardly and inwardly defining a generally smooth path for particles orbiting within said chamber, means for imparting a circular movement to said particles within said chamber, and exit means in said sidewall spaced from the bottom thereof for allowing said particles to exit from said chamber.

Claims (12)

1. Apparatus for preparing particles of solid material comprising a. a movable molding ring having a multiplicity of generally cylindrical openings extending through said ring, the diameters of said openings being approximately equal to the depths thereof, b. a pair of cooperating rolls positioned on opposite sides of said molding ring and adapted to rotate in unison, the surfaces thereof being spaced apart an amount sufficient for said molding ring to pass within the nip of said rolls, c. means for holding a mass of plastic material in the nip between said ring and one of said rolls whereby said plastic material is compressed into the openings of said riNg during movement through said nip to form generally cylindrical particles, and d. means for ejecting said cylindrical particles from said openings.
2. Apparatus according to claim 1 wherein the molding ring is substantially self-supporting.
3. Apparatus according to claim 1 wherein said molding ring is of a substantially greater diameter than said cooperating rolls.
4. Apparatus according to claim 1 wherein both of said cooperating rolls are in frictional engagement with said molding ring.
5. Apparatus according to claim 1 which includes a receiving chamber for said cylindrical particles having means to cause tumbling of said particles until they become generally spheroidal.
6. Apparatus according to claim 1 wherein said means for ejecting said particles is an air jet.
7. Apparatus for preparing generally spheroidal particles of solid material comprising a. a movable molding ring having a multiplicity of generally cylindrical openings extending through said ring, the diameters of said openings being approximately equal to the depths thereof, b. a pair of cooperating rolls positioned on opposite sides of said molding ring and adapted to rotate in unison, the surface thereof being spaced apart an amount sufficient for said molding ring to pass within the nip of said rolls, c. means for holding a mass of plastic material in the nip between said ring and one of said rolls whereby said plastic material is compressed into the openings of said ring during movement through said nip to form generally cylindrical particles, d. means for ejecting said cylindrical particles from said openings, and e. a receiving chamber for said cylindrical particles having means to cause tumbling of said particles until they become generally spheroidal.
8. Apparatus for rounding particles of solid material comprising a circular chamber having a sidewall which curves upwardly and inwardly defining a generally smooth path for particles orbiting within said chamber, means for imparting a circular movement to said particles within said chamber, and exit means in said sidewall spaced from the bottom thereof for allowing said particles to exit from said chamber.
9. Apparatus according to claim 7 wherein said sidewall is substantially semicircular.
10. Apparatus according to claim 7 wherein said chamber has a raised center portion.
11. Apparatus according to claim 7 wherein said particles are given movement by means of an air stream.
12. Apparatus for preparing generally spheroidal particles of solid material comprising a. a movable molding ring having a multiplicity of generally cylindrical openings extending through said ring, the diameters of said openings being approximately equal to the depths thereof, b. a pair of cooperating rolls positioned on opposite sides of said molding ring and adapted to rotate in unison, the surfaces thereof being spaced apart an amount sufficient for said molding ring to pass within the nip of said rolls, c. means for holding a mass of plastic material in the nip between said ring and one of said rolls whereby said plastic material is compressed into the openings of said ring during movement through said nip to form generally cylindrical particles, d. means for ejecting said cylindrical particles from said openings, and e. a receiving chamber for said cylindrical particles having means to cause tumbling of said particles comprising a circular chamber having a sidewall which curves upwardly and inwardly defining a generally smooth path for particles orbiting within said chamber, means for imparting a circular movement to said particles within said chamber, and exit means in said sidewall spaced from the bottom thereof for allowing said particles to exit from said chamber.
US477388A 1974-06-07 1974-06-07 Apparatus for forming spheroidal particles Expired - Lifetime US3880566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US477388A US3880566A (en) 1974-06-07 1974-06-07 Apparatus for forming spheroidal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US477388A US3880566A (en) 1974-06-07 1974-06-07 Apparatus for forming spheroidal particles

Publications (1)

Publication Number Publication Date
US3880566A true US3880566A (en) 1975-04-29

Family

ID=23895721

Family Applications (1)

Application Number Title Priority Date Filing Date
US477388A Expired - Lifetime US3880566A (en) 1974-06-07 1974-06-07 Apparatus for forming spheroidal particles

Country Status (1)

Country Link
US (1) US3880566A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256785A (en) * 1979-07-25 1981-03-17 Eastman Kodak Company Pellet coating process
US4297091A (en) * 1980-03-10 1981-10-27 Strefling Michael R Alfalfa pelletizing apparatus
US4306847A (en) * 1980-10-14 1981-12-22 George A. Roundtree Pelletizer
US5286181A (en) * 1991-04-26 1994-02-15 Berndorf Belt Systems, Inc. Extrusion apparatus having a nozzle-headed drum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581678A (en) * 1969-03-12 1971-06-01 Charles R Landers Pellet mill with bearing and wear translative element
US3713187A (en) * 1971-01-25 1973-01-30 J Quartarone Apparatus and method for forming meatballs
US3792655A (en) * 1972-02-18 1974-02-19 Kansas City Enterprises Inc Apparatus for the recovery of butter, oleomargerine, cheese or the like
US3802822A (en) * 1972-03-01 1974-04-09 Mars Mineral Corp Pelletizer
US3807926A (en) * 1972-04-06 1974-04-30 G Morse Pellet mill with positive feed
US3841617A (en) * 1972-08-18 1974-10-15 Pennsylvania Engineering Corp Adjustable tuyere for metallurgical vessels

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581678A (en) * 1969-03-12 1971-06-01 Charles R Landers Pellet mill with bearing and wear translative element
US3713187A (en) * 1971-01-25 1973-01-30 J Quartarone Apparatus and method for forming meatballs
US3792655A (en) * 1972-02-18 1974-02-19 Kansas City Enterprises Inc Apparatus for the recovery of butter, oleomargerine, cheese or the like
US3802822A (en) * 1972-03-01 1974-04-09 Mars Mineral Corp Pelletizer
US3807926A (en) * 1972-04-06 1974-04-30 G Morse Pellet mill with positive feed
US3841617A (en) * 1972-08-18 1974-10-15 Pennsylvania Engineering Corp Adjustable tuyere for metallurgical vessels

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256785A (en) * 1979-07-25 1981-03-17 Eastman Kodak Company Pellet coating process
US4297091A (en) * 1980-03-10 1981-10-27 Strefling Michael R Alfalfa pelletizing apparatus
US4306847A (en) * 1980-10-14 1981-12-22 George A. Roundtree Pelletizer
US5286181A (en) * 1991-04-26 1994-02-15 Berndorf Belt Systems, Inc. Extrusion apparatus having a nozzle-headed drum

Similar Documents

Publication Publication Date Title
US3860682A (en) Processing of finely divided particulate materials
US3880566A (en) Apparatus for forming spheroidal particles
JP2661812B2 (en) Method for producing gas generating material body
JPH03501949A (en) Method and device for manufacturing fillings using expanded material
US3034178A (en) Method of manufacturing parts of thin form by fritting
US3743464A (en) Continuous sphering apparatus
US3741703A (en) An apparatus for making spherical granules
US4390056A (en) Method and apparatus for producing one or more hollow sand cores suitable for casting moulds
US2904827A (en) Method and apparatus for the manufacture of small articles or pellets from paste material
US5236021A (en) Powder filling apparatus
US2830320A (en) Method of and device for pressing grinding wheel blanks
US3210772A (en) Pelletizing and sizing drum
CN115479458B (en) Drying device
US3427683A (en) Apparatus for forming spherical pellets
US3199465A (en) Pelleting machine having restricted passages
RU2077949C1 (en) Disk mill
JPS61202665A (en) Food forming machine
US2208146A (en) Apparatus for the manufacture of lead oxide
JPS6019835Y2 (en) powder compaction roller
CN116571168B (en) Granulator for producing granules
JPH0477159B2 (en)
SU872301A1 (en) Roll-type press
EP0429698A1 (en) Product based on solid carbon dioxide, device for conditioning and process for conditioning the product
JPH01304905A (en) Method and apparatus for manufacturing formed body out of plastic material
SU950501A1 (en) Apparatus for moulding apertured briquettes of powder

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONSBANK OF NORTH CAROLINA, N.A.

Free format text: SECURITY INTEREST;ASSIGNOR:TYCO INDUSTRIES, INC.;REEL/FRAME:006225/0964

Effective date: 19920603

AS Assignment

Owner name: TYCO INDUSTRIES, INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:NATIONSBANK, N.A. (CAROLINAS), FORMERLY KNOWN AS NATIONSBANK OF NORTH CAROLINA, N.A., AS AGENT;REEL/FRAME:007363/0210

Effective date: 19950224