US3880023A - Crimping mechanism in a nut runner - Google Patents

Crimping mechanism in a nut runner Download PDF

Info

Publication number
US3880023A
US3880023A US348274A US34827473A US3880023A US 3880023 A US3880023 A US 3880023A US 348274 A US348274 A US 348274A US 34827473 A US34827473 A US 34827473A US 3880023 A US3880023 A US 3880023A
Authority
US
United States
Prior art keywords
levers
crimping
sleeve
nut
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US348274A
Inventor
Lester A Amtsberg
William K Wallace
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chicago Pneumatic Tool Co LLC
Original Assignee
Chicago Pneumatic Tool Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chicago Pneumatic Tool Co LLC filed Critical Chicago Pneumatic Tool Co LLC
Priority to US348274A priority Critical patent/US3880023A/en
Application granted granted Critical
Publication of US3880023A publication Critical patent/US3880023A/en
Assigned to NATIONAL WESTMINSTER BANK USA reassignment NATIONAL WESTMINSTER BANK USA SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHICAGO PNEUMATIC TOOL COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/001Combined nut setting and crimping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53709Overedge assembling means
    • Y10T29/53717Annular work
    • Y10T29/53726Annular work with second workpiece inside annular work one workpiece moved to shape the other
    • Y10T29/53765Annular work with second workpiece inside annular work one workpiece moved to shape the other including near side fastener shaping tool

Definitions

  • ABSTRACT A pneumatically powered nut running tool having a rotatable sleeve carrying jaw elements arranged to define a hexagonal opening into which a nut may be received and run down by the jaws when the sleeve is rotated, and which jaw elements are pivotable in another operation of the tool by means of a centrally moving wedge to crimp the nut.
  • This application is directed to the feature of the crimping mechanism in a nut running and crimping tool.
  • a feature of the crimping mechanism is a rotatable member carrying a group of pivotable jaw elements which provide two distinctive operational functions, namely, to run up a standard hexagonal nut upon a bolt to a predetermined seated condition and subsequently to crimp all sides of the nut into tight engagement with the bolt.
  • Another feature lies in the association of a wedge with the pivotable jaw elements, the wedge being movable axially of the jaw elements with a camming action against tail ends of the jaw elements so as to force lower jaw face portions angularly in the crimping action to penetrate a nut received between the jaw faces.
  • each jaw element is a flat planar face at its lower inner end area which defines the jaw.
  • This jaw face serves to contribute to an effective nut contact area to achieve defined nut runup; it also is cooperable in a crimping action angularly with a flat side of the nut so as to compressively displace a triangular volume of metal.
  • This structural arrangement is of decided advantage in that it does not allow the jaw to become locked or bound to the nut in the crimping action; and the jaw may, accordingly, be readily released.
  • Another feature of the combined nut running and crimping mechanism is that it is coupled to the motor so as to be responsive to rotation of the motor in one direction to run down the work and responsive to rotation of the motor in an opposite direction to crimp the work.
  • FIG. 1 is a sectional view of a nut runner embodying the invention
  • FIG. 2 is a section on line 2-2 of FIG. 1;
  • FIG. 3 is a section on line 33 of FIG. 1;
  • FIG. 4 is a section on line 4-4 of FIG. 1;
  • FIG. 5 is a detail view of the travel wedge
  • FIG. 6 is a bottom end view of FIG. 5;
  • FIG. 7 is a detail showing the normal or open position of a jaw element allowing reception of a work nut
  • FIG. 8 is a detail showing the jaw element pivoted in crimping relation to the work nut
  • FIG. 8a is an elevational view of the inner face of the element in FIG. 8b.
  • FIG. 8b is a detail in side elevation of a jaw element.
  • FIGS. 1-8b wherein is shown a pneumatically powered tool having a general housing 10 which includes an angle head section 11 detachably coupled, as by a threaded connection 12, with the front end of the housing. Supported in the housing is a conventional air driven reversible motor 13 of a radially slidable vane type. An inlet passage 14 to the tool is connectible to an external source of air having a constant pressure. A throttle valve 15 is manually operable to feed inlet air to a passage 16. A manually operable reversing valve 17 in passage 16 normally directs the air flow to one area of the motor chamber to cause forward or clockwise rotation of the motor. In an actuated position, the reversing valve directs air flow to a reverse area of the motor chamber to cause reverse or counterclockwise rotation of the motor.
  • Rotation of the motor is transmitted through conventional reduction gearing, generally indicated at 18, and through a splined driving connection 19 to a spindle 21.
  • the spindle extends axially into one arm 22 of the angle head, and is supported therein in bearings 23 and 24.
  • a beveled pinion 25 on the spindle drivingly engages a bevel gear member 26 of a combined nut running and nut crimping mechanism 27 housed in the angle head.
  • the mechanism is shown as arranged in a second arm 28 of the angle head, which arm extends at right angles to the longitudinal axis of the general housing of the tool.
  • the mechanism 27 has an initial first stage of operation upon application of torque to it by the spindle 21 in one direction to run a work nut 29 down to a predetermined degree of tightness; and it has a subsequent second stage of operation upon receiving torque from the spindle in an opposite direction to crimp the work nut.
  • the bevel gear member 26 of the mechanism 27 has a tubular body which is supported in a bearing 31 and has a splined driving connection 32 with a surrounding tubular body of a slidable dog 34;
  • the splined connection 32 allows axial movement of the dog relative to the gear member.
  • the dog has a group of end jaws 35 which are drivingly engageable with complementary jaws 36 of a drive nut 37.
  • a return spring 38 normally biases the dog axially to a position wherein the jaws of the dog are disengaged from those of the drive nut.
  • a piston 41 having a tubular body sleeved upon the body of the dog is pneumatically operable in an expansible chamber 42 to slide the dog against the resistance of the spring into clutched driving engagement with the drive nut.
  • a thrust ring bearing 43 is disposed between the piston and an overlying shoulder of the dog.
  • a passage 44 through the angle head connects the expansible chamber with an external hose 45 leading to a side port 46 of the housing. Port 46 connects with a chamber 47. The latter also connects with passage 16 leading to the motor; and is supplied with live air from the throttle valve 15.
  • the drive nut 37 has a tubular body, one end of which is journaled in a bearing 48 seated in an axial recess of a cap 49 that closes the rear end of the angle head.
  • Bearing 48 is confined to the recess by means of a retaining ring 51.
  • the opposite end of the drive nut has bearing contact with the upper end of the gear member 26; and a thrust ring bearing 52 is provided between the annular flange of the drive nut and the overhead retaining ring 51.
  • the drive nut has an internal helical splined engagement with an upper screw portion of the shaft of a travel wedge 54 (FIGS. 1 and An intermediate smooth cylindrical portion of the shaft depends slidably through the body of the gear member 26.
  • a lower shaft portion 55 of larger diameter depends below the gear member and projects slidably through an axial opening of a gland ring 56 into the interior of a jaw holding sleeve 57.
  • the gland ring is retained in a fixed position to the sleeve and serves as a closure to retain grease in the gear area above.
  • Below the gland ring the shaft of the travel wedge terminates in a wedge head 58 of larger diameter than its shaft portion 55.
  • the wedge head is splined to the holding sleeve for relative axial movement as well as for rotatably driving the sleeve.
  • the latter is loosely supported at its upper end in the angle head between an overlying shoulder of the latter and an underlying beveled surface 59 of a sleeve screw 61.
  • the latter is entered into an open bottom end of the angle head.
  • the holding sleeve 57 has rotation relative to the angle head but is restrained against relative axial movement.
  • a lower end of the holding sleeve projects externally of the angle head.
  • the holding sleeve (FIGS. 1, 4, 7) has a group of six internal longitudinally extending spline tracks 62 spaced circumferentially equally apart. In each track is slidably received a separate one of six radial splines 63 formed about the wedge head. Each spline has a downwardly and inwardly tapering flat angle surface 64 which terminates in a tip 65 common to the several splines. The axis of the tip coincides with that of the holding sleeve.
  • the wedge head normally has a raised position, as in FIGS. 1 and 7, under the bias of a return spring 66, in which position an annular shoulder at its top underlies the gland ring and an annular shoulder 60 of its shaft portion abuts the gear member 26. Also, in this normal position its common tip 65 is abutted slightly rearwardly of its apex by the rounded vertex ends 67 of a group of crimping levers or jaw elements 68.
  • the jaw elements are ofa general right triangular form. Each has a base end 69 and an upper tail portion having inner and back walls 71, 72 terminating in the vertex 67.
  • the base end has a rounded back corner or heel 73 pivotally seated in an inside radius or pocket 74 formed adjacent the bottom end of a related track of the holding sleeve; and the base end has a crimping toe or jaw 75 at its inner end.
  • the jaw 75 is flat faced and in extension of the wall 71.
  • a shallow inside radius 75a (FIGS. 8a, 8b) separates the jaw portion 75 from the upper portion of wall 71.
  • the several jaw elements are constantly urged by means of the load of spring 66 acting through a jaw return plunger 76 to pivot their tail or vertex ends inwardly of the holding sleeve into abutment with the tip of the wedge head and to draw their jaw ends 75 outwardly to an open condition as in FIGS. 1 and 7.
  • the plunger has an elongated axial stem 77 which is slidably received in an axial bore of the wedge head.
  • the stem 77 terminates at its bottom in an inverted cup portion or head 78 of enlarged diameter which has a bearing contact with the surrounding internal wall of the wedge head.
  • the cup portion has a radial annular lip 79 at its bottom, in the undersurface of which is a group of six radial slots 81 (FIGS. 3, 7) spaced equally apart.
  • each slot is received a separate lug 82 projecting from below the mid-area of the inner face of a jaw element
  • each slot is pressed under the load of the spring 66 upon the underlying lug 82 so as to pivot the vertex end 67 of the related jaw element inwardly into abutment with the tip of the wedge head as in FIGS. 1 and 7.
  • the return spring is under constant compression between opposed shoulders of the travel wedge and the plunger.
  • a slight inside radius 83 above the heel 73 of each jaw element is adapted in this outward pivoting action to seat over a complementary radius 84 located above the pocket 74 so as to permit the rear wall of the jaw to limit substantially upon the opposed back wall of the related track of the holding sleeve.
  • This arrangement serves to maintain a proper seated relation of the heel of the jaw to its pocket during pivoting of the jaw in a crimping direction.
  • the normally open jaw end of the tool as provided by the six jaw elements 68, is first seated over the work nut, as in FIG. 1.
  • the throttle valve 15 is then manually actuated to open condition as in FIG. 1, causing inlet air to flow to the common chamber 47. From the latter, it flows through the side port 46 and the external hose 45 to the piston chamber 42 in the angle head causing piston 41 to slide the dog 34 into driving engagement with the drive nut 37. Air also flows from chamber 47 through passage 16 to the motor. Resultant rotation of the motor is transmitted through the bevel gearing 25, 26 and dog 34 to impart clockwise rotation to the drive nut 37.
  • Consequent reverse rotation of the drive nut 37 relative to the travel wedge 54 causes the latter to travel linearly downward against the force of the return spring 66.
  • the wedge head 58 rides down the spline tracks 62 relative to the jaw holding sleeve.
  • the coned surface of the sleeve becomes loaded against the opposed mating surface 59 of the screw 61 so that the sleeve is restrained against rotation in a loosening direction of the nut.
  • the downwardly moving wedge head cooperates with the several jaw elements 68 to compressively and forcefully close their jaws upon and crimp the work nut. Resistance offered by the jaw elements to further pivoting as their backs stop against the wall of the sleeve stalls the motor.
  • the tool Since the crimping of the work nut occurs after a final torque has been delivered to the work nut, marks left by the biting action of the jaw ends 75 of the jaw elements into all six sides of the work nut provide a permanent indication that the required torque has been delivered. It is apparent that if the tool is used in setting a bolt having a hexagonal head, it would serve not only in delivering a predetermined degree of torque to the bolt, but it would also serve by means of the biting marks made by the jaws in the bolt head to visibly indicate that the bolt head has obtained the required torque. Accordingly, the tool is useable, not only as a nut setting and crimping device, but also as a bolt setting and bolt marking device.
  • Crimping mechanism for crimping a multi-sided nut comprising a rotatable sleeve, a group of crimping levers arranged in the sleeve in surrounding relation to its axis and having rotation with the sleeve as a unit, each lever having an inner wall provided with a cam surface at its upper end area and a crimping surface at its lower end area, each lever having a fulcrum point substantially opposite its crimping surface engaging a fulcrum portion of the inner wall of the sleeve, means constantly urging the levers about their fulcrums to swing their cam surface ends to a normal condition toward the axis of the sleeve away from the wall of the sleeve and their crimping surface ends away from the axis of the sleeve, the crimping surfaces defining in the normal condition of the levers a multi-walled opening for slidable reception therein of a correspondingly sided sided
  • Crimping mechanism as in claim 1, wherein the wall of the sleeve serves as a stop having cooperation with opposed areas of the levers to limit the extent of pivoting of the upper ends of the levers away from their normal condition.
  • Crimping mechanism as in claim 1, wherein the crimping surfaces of the levers are flat and have a lower leading edge adapted to make the first contact with the nut as the levers are pivoted as a consequence of the wedge means moving into camming relation to their cam surfaces.
  • Crimping mechanism as in claim 1, wherein means is provided for selectively controlling the direction of axial movement of the wedge means relative to the levers.
  • Nut crimping mechanism comprising a rotatable sleeve; a group of crimping levers pivoted about the interior of the sleeve in circumferentially spaced relation to each other and rotatable with the sleeve as a unit; each lever having a long arm, a short arm terminating in an inner jaw face, and a pivot support between the long and short arms; the several levers having a normal position wherein the several jaw faces define a multiwalled socket for reception of a multi-sided nut and for subsequent rotation of the nut upon rotation of the sleeve, the jaw faces being arranged to transmit in the normal position of the levers rotation of the sleeve to a nut received in the socket, wedge means movable axially of the several levers for cooperating with the several long arms to pivot the several levers so as to force their short arms to bring their jaw faces compressively against the sides of a nut received in the socket, and means for selectively controlling rotation of the slee
  • Nut crimping mechanism comprising a rotatable sleeve; a group of crimping levers pivoted about the interior of the sleeve in circumferentially spaced relation to each other and rotatable with the sleeve as a unit; each lever having a long arm, a short arm terminating in an inner jaw face, and a pivot support between the long and short arms; the several levers having a normal position wherein the several jaw faces define a socket for reception of a multi-sided nut and subsequent rotation of the nut upon rotation of the sleeve, wedge means movable axially of the several levers for cooperating with the several long arms to pivot the several levers so as to force their short arms to bring their jaw faces compressively against the sides of a nut received in the socket, and means for selectively controlling rotation of the sleeve or axial movement of the wedge means, wherein the wedge means has an upper portion having splines in axially slidable splined engagement
  • Crimping means for crimping a multi-sided nut including a housing having a front end provided with an axial opening for reception of a work nut, a rotary motor in the housing, a group of crimping levers pivotally supported in the front end in surrounding relation to the opening, the levers being pivotable radially inwardly of the opening to effect a crimping action upon a nut received in the opening, wedging means movable linearly in the front end and axially relative to the levers having cooperation in such movement with the levers to pivot them radially inwardly of the opening to effect said crimping action,- and screw means for translating rotation of the motor into said linear and axial movement of the wedging means.
  • a nut running too] including a rotary motor, a housing supporting the motor and having a front end providing an axial opening for reception of a nut, crimping means for effecting a crimping action upon a nut received in the opening, the crimping means comprising a group of crimping levers pivotally supported in the front end in surrounding relation to the opening, the levers being pivotable radially inwardly of the opening to effect a crimping action on the nut, wedging means movable linearly in the front end and axially relative to the levers to pivot them radially inwardly of the opening into crimping relation with the nut, and screw means for translating rotation of the motor into said linear and axial movement of the wedging means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hand Tools For Fitting Together And Separating, Or Other Hand Tools (AREA)

Abstract

A pneumatically powered nut running tool having a rotatable sleeve carrying jaw elements arranged to define a hexagonal opening into which a nut may be received and run down by the jaws when the sleeve is rotated, and which jaw elements are pivotable in another operation of the tool by means of a centrally moving wedge to crimp the nut.

Description

United States Patent Amtsberg et al.
CRIMPING MECHANISM IN A NUT RUNNER Inventors: Lester A. Amtsberg, Utica; William K. Wallace, Barneveld, both of NY.
Chicago Pneumatic Tool Company, New York, NY.
Filed: Apr. 5, 1973 Appl. No.: 348,274
Related US. Application Data Division of Ser. No. 121,867, March 8, 1971, Pat. No, 3,747,441
Assignee:
US. Cl 81/10; 72/391 Int. Cl. H B25b 27/00 Field of Search 72/391, 454; 81/10, 53,
References Cited UNITED STATES PATENTS Reynolds 81/10 Apr. 29, 1975 Weiss 29/240 Van Hecke 81/10 Primary ExaminerRichard .l. Herbst Assistant E.\'aminerGene P. Crosby Attorney, Agent, or Firm-Stephen J. Rudy [57] ABSTRACT A pneumatically powered nut running tool having a rotatable sleeve carrying jaw elements arranged to define a hexagonal opening into which a nut may be received and run down by the jaws when the sleeve is rotated, and which jaw elements are pivotable in another operation of the tool by means of a centrally moving wedge to crimp the nut.
10 Claims, 10 Drawing Figures QIQQ CRIMPING MECHANISM IN A NUT RUNNER BACKGROUND OF THE INVENTION This application is a division of application Ser. No. 121,867 filed Mar. 8, 1971, now US. Pat. No. 3,747,441, for a pneumatic tool having combined nut running and crimping mechanism.
This application is directed to the feature of the crimping mechanism in a nut running and crimping tool.
A feature of the crimping mechanism is a rotatable member carrying a group of pivotable jaw elements which provide two distinctive operational functions, namely, to run up a standard hexagonal nut upon a bolt to a predetermined seated condition and subsequently to crimp all sides of the nut into tight engagement with the bolt.
Another feature lies in the association of a wedge with the pivotable jaw elements, the wedge being movable axially of the jaw elements with a camming action against tail ends of the jaw elements so as to force lower jaw face portions angularly in the crimping action to penetrate a nut received between the jaw faces.
A characteristic of each jaw element is a flat planar face at its lower inner end area which defines the jaw. This jaw face serves to contribute to an effective nut contact area to achieve defined nut runup; it also is cooperable in a crimping action angularly with a flat side of the nut so as to compressively displace a triangular volume of metal. This structural arrangement is of decided advantage in that it does not allow the jaw to become locked or bound to the nut in the crimping action; and the jaw may, accordingly, be readily released.
Another feature of the combined nut running and crimping mechanism is that it is coupled to the motor so as to be responsive to rotation of the motor in one direction to run down the work and responsive to rotation of the motor in an opposite direction to crimp the work.
BRIEF DESCRIPTION OF THE DRAWING In the accompanying drawing:
FIG. 1 is a sectional view of a nut runner embodying the invention;
FIG. 2 is a section on line 2-2 of FIG. 1;
FIG. 3 is a section on line 33 of FIG. 1;
FIG. 4 is a section on line 4-4 of FIG. 1;
FIG. 5 is a detail view of the travel wedge;
FIG. 6 is a bottom end view of FIG. 5;
FIG. 7 is a detail showing the normal or open position of a jaw element allowing reception of a work nut;
FIG. 8 is a detail showing the jaw element pivoted in crimping relation to the work nut;
FIG. 8a is an elevational view of the inner face of the element in FIG. 8b; and
FIG. 8b is a detail in side elevation of a jaw element.
DESCRIPTION OF PREFERRED EMBODIMENT Reference is directed to the accompanying drawings, and now especially to FIGS. 1-8b, wherein is shown a pneumatically powered tool having a general housing 10 which includes an angle head section 11 detachably coupled, as by a threaded connection 12, with the front end of the housing. Supported in the housing is a conventional air driven reversible motor 13 of a radially slidable vane type. An inlet passage 14 to the tool is connectible to an external source of air having a constant pressure. A throttle valve 15 is manually operable to feed inlet air to a passage 16. A manually operable reversing valve 17 in passage 16 normally directs the air flow to one area of the motor chamber to cause forward or clockwise rotation of the motor. In an actuated position, the reversing valve directs air flow to a reverse area of the motor chamber to cause reverse or counterclockwise rotation of the motor.
Rotation of the motor is transmitted through conventional reduction gearing, generally indicated at 18, and through a splined driving connection 19 to a spindle 21. The spindle extends axially into one arm 22 of the angle head, and is supported therein in bearings 23 and 24. A beveled pinion 25 on the spindle drivingly engages a bevel gear member 26 of a combined nut running and nut crimping mechanism 27 housed in the angle head. The mechanism is shown as arranged in a second arm 28 of the angle head, which arm extends at right angles to the longitudinal axis of the general housing of the tool.
The mechanism 27 has an initial first stage of operation upon application of torque to it by the spindle 21 in one direction to run a work nut 29 down to a predetermined degree of tightness; and it has a subsequent second stage of operation upon receiving torque from the spindle in an opposite direction to crimp the work nut.
The bevel gear member 26 of the mechanism 27 has a tubular body which is supported in a bearing 31 and has a splined driving connection 32 with a surrounding tubular body of a slidable dog 34; The splined connection 32 allows axial movement of the dog relative to the gear member. The dog has a group of end jaws 35 which are drivingly engageable with complementary jaws 36 of a drive nut 37. A return spring 38 normally biases the dog axially to a position wherein the jaws of the dog are disengaged from those of the drive nut. One
end of the spring abuts an overhanging shoulder of the drive nut; and its other end is seated upon a ring 39 having a bearing support upon an underlying shoulder of the dog.
A piston 41 having a tubular body sleeved upon the body of the dog is pneumatically operable in an expansible chamber 42 to slide the dog against the resistance of the spring into clutched driving engagement with the drive nut. A thrust ring bearing 43 is disposed between the piston and an overlying shoulder of the dog. A passage 44 through the angle head connects the expansible chamber with an external hose 45 leading to a side port 46 of the housing. Port 46 connects with a chamber 47. The latter also connects with passage 16 leading to the motor; and is supplied with live air from the throttle valve 15.
The drive nut 37 has a tubular body, one end of which is journaled in a bearing 48 seated in an axial recess of a cap 49 that closes the rear end of the angle head. Bearing 48 is confined to the recess by means of a retaining ring 51. The opposite end of the drive nut has bearing contact with the upper end of the gear member 26; and a thrust ring bearing 52 is provided between the annular flange of the drive nut and the overhead retaining ring 51. By means of this arrangement, the drive nut has rotation relative to the angle head and to the gear member but is curbed against relative axial movement.
The drive nut has an internal helical splined engagement with an upper screw portion of the shaft of a travel wedge 54 (FIGS. 1 and An intermediate smooth cylindrical portion of the shaft depends slidably through the body of the gear member 26. A lower shaft portion 55 of larger diameter depends below the gear member and projects slidably through an axial opening of a gland ring 56 into the interior of a jaw holding sleeve 57. The gland ring is retained in a fixed position to the sleeve and serves as a closure to retain grease in the gear area above. Below the gland ring the shaft of the travel wedge terminates in a wedge head 58 of larger diameter than its shaft portion 55.
The wedge head is splined to the holding sleeve for relative axial movement as well as for rotatably driving the sleeve. To permit rotation of the sleeve, the latter is loosely supported at its upper end in the angle head between an overlying shoulder of the latter and an underlying beveled surface 59 of a sleeve screw 61. The latter is entered into an open bottom end of the angle head. In this arrangement, the holding sleeve 57 has rotation relative to the angle head but is restrained against relative axial movement. A lower end of the holding sleeve projects externally of the angle head.
The holding sleeve (FIGS. 1, 4, 7) has a group of six internal longitudinally extending spline tracks 62 spaced circumferentially equally apart. In each track is slidably received a separate one of six radial splines 63 formed about the wedge head. Each spline has a downwardly and inwardly tapering flat angle surface 64 which terminates in a tip 65 common to the several splines. The axis of the tip coincides with that of the holding sleeve.
The wedge head normally has a raised position, as in FIGS. 1 and 7, under the bias of a return spring 66, in which position an annular shoulder at its top underlies the gland ring and an annular shoulder 60 of its shaft portion abuts the gear member 26. Also, in this normal position its common tip 65 is abutted slightly rearwardly of its apex by the rounded vertex ends 67 of a group of crimping levers or jaw elements 68.
There are six jaw elements, each located in a separate track 62 of the holding sleeve in underlying relation to the angle surface 64 of a separate one of the splines of the wedge head. The jaw elements are ofa general right triangular form. Each has a base end 69 and an upper tail portion having inner and back walls 71, 72 terminating in the vertex 67. The base end has a rounded back corner or heel 73 pivotally seated in an inside radius or pocket 74 formed adjacent the bottom end of a related track of the holding sleeve; and the base end has a crimping toe or jaw 75 at its inner end. The jaw 75 is flat faced and in extension of the wall 71. A shallow inside radius 75a (FIGS. 8a, 8b) separates the jaw portion 75 from the upper portion of wall 71.
The several jaw elements are constantly urged by means of the load of spring 66 acting through a jaw return plunger 76 to pivot their tail or vertex ends inwardly of the holding sleeve into abutment with the tip of the wedge head and to draw their jaw ends 75 outwardly to an open condition as in FIGS. 1 and 7. The plunger has an elongated axial stem 77 which is slidably received in an axial bore of the wedge head. The stem 77 terminates at its bottom in an inverted cup portion or head 78 of enlarged diameter which has a bearing contact with the surrounding internal wall of the wedge head. The cup portion has a radial annular lip 79 at its bottom, in the undersurface of which is a group of six radial slots 81 (FIGS. 3, 7) spaced equally apart. In
each slot is received a separate lug 82 projecting from below the mid-area of the inner face of a jaw element,
The upper wall of each slot is pressed under the load of the spring 66 upon the underlying lug 82 so as to pivot the vertex end 67 of the related jaw element inwardly into abutment with the tip of the wedge head as in FIGS. 1 and 7. The return spring is under constant compression between opposed shoulders of the travel wedge and the plunger.
In this normal position of the jaw elements, their six inner faces 71 are in a substantially vertical position; and their jaws 75 define below the several lugs 82 a hexagonal opening for reception of a hex-form work nut 29, as appears in FIGS. 1 and 7. Accordingly, clockwise rotation of the jaw sleeve in this normal condition of the jaws will rotate and set the work nut.
It can be seen that if the wedge head 58 is caused to move axially downward relative to the holding sleeve 57, its tip and the angle surfaces 64 of its several splines will ride in a camming action over the vertexes 67 of the jaw elements causing the latter to pivot their tail ends outwardly. The outward pivoting will cause the several flat faced crimping jaws to swing inwardly in an arc so as to close upon and forcefully compress or crimp corresponding flats of the work nut, as in FIG. 8. A slight inside radius 83 above the heel 73 of each jaw element is adapted in this outward pivoting action to seat over a complementary radius 84 located above the pocket 74 so as to permit the rear wall of the jaw to limit substantially upon the opposed back wall of the related track of the holding sleeve. This arrangement serves to maintain a proper seated relation of the heel of the jaw to its pocket during pivoting of the jaw in a crimping direction.
It is to be noted in the crimping action that the jaw ends 75 of the jaw elements move relative to the corresponding flats of the work nut 29 in a radially and upwardly curved path, each defining an are which is concentric with its pivot. The flat face 75 of each jaw in penetrating a corresponding flat of the work compressively displaces a triangular volume of metal which flows inwardly to obtain a desirable locked condition of the nut and stud. When the jaws are withdrawn, a triangular indentation from which the metal was displaced appears in each flat. The deepest portion of the indentation is toward the work or lower end of the nut from where it extends angularly upward to intersect with the flat side of the nut. This manner of crimping the nut is of decided advantage in that it ensures that the jaws, as well as the tool will be readily released from the nut after the crimping cycle.
Summary of the operation of the tool: The normally open jaw end of the tool, as provided by the six jaw elements 68, is first seated over the work nut, as in FIG. 1. The throttle valve 15 is then manually actuated to open condition as in FIG. 1, causing inlet air to flow to the common chamber 47. From the latter, it flows through the side port 46 and the external hose 45 to the piston chamber 42 in the angle head causing piston 41 to slide the dog 34 into driving engagement with the drive nut 37. Air also flows from chamber 47 through passage 16 to the motor. Resultant rotation of the motor is transmitted through the bevel gearing 25, 26 and dog 34 to impart clockwise rotation to the drive nut 37. The clockwise torque of the drive nut is transmitted through the helical splines to draw the travel wedge 54 upwardly so as to frictionally lock its shoulder 60 against the bevel gear 26. With this action, the bevel gear, dog, drive nut and travel wedge rotate as a unit and act through the wedge head 58 to rotate the jaw holding sleeve 57 to cause the jaw elements 68 to run down and set the work nut 29. When the work nut is driven to a predetermined degree of tightness, the resultant overload causes the motor to stall. The operator then manually shifts the reversing valve 17 causing inlet air flow to shift its direction and drive the motor in an opposite direction. Consequent reverse rotation of the drive nut 37 relative to the travel wedge 54 causes the latter to travel linearly downward against the force of the return spring 66. In this movement, the wedge head 58 rides down the spline tracks 62 relative to the jaw holding sleeve. At this time, the coned surface of the sleeve becomes loaded against the opposed mating surface 59 of the screw 61 so that the sleeve is restrained against rotation in a loosening direction of the nut. The downwardly moving wedge head cooperates with the several jaw elements 68 to compressively and forcefully close their jaws upon and crimp the work nut. Resistance offered by the jaw elements to further pivoting as their backs stop against the wall of the sleeve stalls the motor. The operator then releases the throttle valve to closed condition, shutting off air flow to the motor. As the holding air acting in chamber 42 on the piston is then vented through the motor, spring 38 disengages the dog 34. With this action, the drive nut 37 spins freely about as the travel wedge is linearly returned to normal by the plunger spring 66. Simultaneously with this action, the several jaw elements are pivoted under the spring load of the plunger 76 to normal open condition as the wedge head restores upwardly. The tool is then lifted from the work; and the reversing valve 17 is manually reshifted to normal condition preparatory to the next work operation.
Since the crimping of the work nut occurs after a final torque has been delivered to the work nut, marks left by the biting action of the jaw ends 75 of the jaw elements into all six sides of the work nut provide a permanent indication that the required torque has been delivered. It is apparent that if the tool is used in setting a bolt having a hexagonal head, it would serve not only in delivering a predetermined degree of torque to the bolt, but it would also serve by means of the biting marks made by the jaws in the bolt head to visibly indicate that the bolt head has obtained the required torque. Accordingly, the tool is useable, not only as a nut setting and crimping device, but also as a bolt setting and bolt marking device.
What is claimed is:
l. Crimping mechanism for crimping a multi-sided nut, comprising a rotatable sleeve, a group of crimping levers arranged in the sleeve in surrounding relation to its axis and having rotation with the sleeve as a unit, each lever having an inner wall provided with a cam surface at its upper end area and a crimping surface at its lower end area, each lever having a fulcrum point substantially opposite its crimping surface engaging a fulcrum portion of the inner wall of the sleeve, means constantly urging the levers about their fulcrums to swing their cam surface ends to a normal condition toward the axis of the sleeve away from the wall of the sleeve and their crimping surface ends away from the axis of the sleeve, the crimping surfaces defining in the normal condition of the levers a multi-walled opening for slidable reception therein of a correspondingly sided nut, and substantially coned wedge means movable axially of the sleeve and levers into camming relation with the cam surfaces of the several levers so as to pivot the levers about their fulcrums and force the upper ends of the levers toward the wall of the sleeve and to force their crimping surfaces into compressive relation with the sides of the nut, characterized in that the crimping surfaces of the several levers in the normal condition of the levers are adapted upon rotation of the sleeve to translate such rotation into rotation of a nut received in the opening, and in that control means is connected with the sleeve and the wedge means for selectively rotating the sleeve or axially moving the wedge means.
2. Crimping mechanism as in claim 1, wherein the wall of the sleeve serves as a stop having cooperation with opposed areas of the levers to limit the extent of pivoting of the upper ends of the levers away from their normal condition.
3. Crimping mechanism as in claim 1, wherein the crimping surfaces of the levers are flat and have a lower leading edge adapted to make the first contact with the nut as the levers are pivoted as a consequence of the wedge means moving into camming relation to their cam surfaces.
4. Crimping mechanism as in claim 1, wherein means is provided for selectively controlling the direction of axial movement of the wedge means relative to the levers.
5. Nut crimping mechanism comprising a rotatable sleeve; a group of crimping levers pivoted about the interior of the sleeve in circumferentially spaced relation to each other and rotatable with the sleeve as a unit; each lever having a long arm, a short arm terminating in an inner jaw face, and a pivot support between the long and short arms; the several levers having a normal position wherein the several jaw faces define a multiwalled socket for reception of a multi-sided nut and for subsequent rotation of the nut upon rotation of the sleeve, the jaw faces being arranged to transmit in the normal position of the levers rotation of the sleeve to a nut received in the socket, wedge means movable axially of the several levers for cooperating with the several long arms to pivot the several levers so as to force their short arms to bring their jaw faces compressively against the sides of a nut received in the socket, and means for selectively controlling rotation of the sleeve or axial movement of the wedge means.
6. Nut crimping mechanism comprising a rotatable sleeve; a group of crimping levers pivoted about the interior of the sleeve in circumferentially spaced relation to each other and rotatable with the sleeve as a unit; each lever having a long arm, a short arm terminating in an inner jaw face, and a pivot support between the long and short arms; the several levers having a normal position wherein the several jaw faces define a socket for reception of a multi-sided nut and subsequent rotation of the nut upon rotation of the sleeve, wedge means movable axially of the several levers for cooperating with the several long arms to pivot the several levers so as to force their short arms to bring their jaw faces compressively against the sides of a nut received in the socket, and means for selectively controlling rotation of the sleeve or axial movement of the wedge means, wherein the wedge means has an upper portion having splines in axially slidable splined engagement with the interior of the sleeve above the levers and has a substantially coned lower portion adapted for camming engagement with the long arms of the levers.
7. Nut crimping means as in claim 6, wherein the wedge means at times has rotatable movement with the sleeve and at other times has axial movement relative to the sleeve.
8. Nut crimping means as in claim 7, wherein control means is provided for selectively determining the particular directional movement the wedge means will take.
9. Crimping means for crimping a multi-sided nut including a housing having a front end provided with an axial opening for reception of a work nut, a rotary motor in the housing, a group of crimping levers pivotally supported in the front end in surrounding relation to the opening, the levers being pivotable radially inwardly of the opening to effect a crimping action upon a nut received in the opening, wedging means movable linearly in the front end and axially relative to the levers having cooperation in such movement with the levers to pivot them radially inwardly of the opening to effect said crimping action,- and screw means for translating rotation of the motor into said linear and axial movement of the wedging means.
10. In a nut running too] including a rotary motor, a housing supporting the motor and having a front end providing an axial opening for reception of a nut, crimping means for effecting a crimping action upon a nut received in the opening, the crimping means comprising a group of crimping levers pivotally supported in the front end in surrounding relation to the opening, the levers being pivotable radially inwardly of the opening to effect a crimping action on the nut, wedging means movable linearly in the front end and axially relative to the levers to pivot them radially inwardly of the opening into crimping relation with the nut, and screw means for translating rotation of the motor into said linear and axial movement of the wedging means.

Claims (10)

1. Crimping mechanism for crimping a multi-sided nut, comprising a rotatable sleeve, a group of crimping levers arranged in the sleeve in surrounding relation to its axis and having rotation with the sleeve as a unit, each lever having an inner wall provided with a cam surface at its upper end area and a crimping surface at its lower end area, each lever having a fulcrum point substantially opposite its crimping surface engaging a fulcrum portion of the inner wall of the sleeve, means constantly urging the levers about their fulcrums to swing their cam surface ends to a normal condition toward the axis of the sleeve away from the wall of the sleeve and their crimping surface ends away from the axis of the sleeve, the crimping surfaces defining in the normal condition of the levers a multi-walled opening for slidable reception therein of a correspondingly sided nut, and substantially coned wedge means movable axially of the sleeve and levers into camming relation with the cam surfaces of the several levers so as to pivot the levers about their fulcrums and force the upper ends of the levers toward the wall of the sleeve and to force their crimping surfaces into compressive relation with the sides of the nut, characterized in that the crimping surfaces of the several levers in the normal condition of the levers are adapted upon rotation of the sleeve to translate such rotation into rotation of a nut received in the opening, and in that control means is connected with the sleeve and the wedge means for selectively rotating the sleeve or axially moving the wedge means.
2. Crimping mechanism as in claim 1, wherein the wall of the sleeve serves as a stop having cooperation with opposed areas of the levers to limit the extent of pivoting of the upper ends of the levers away from their normal condition.
3. Crimping mechanism as in claim 1, wherein the crimping surfaces of the levers are flat and have a lower leading edge adapted to make the first contact with the nut as the levers are pivoted as a consequence of the wedge means moving into camming relation to their cam surfaces.
4. Crimping mechanism as in claim 1, wherein means is provided for selectively controlling the direction of axial movement of the wedge means relative to the levers.
5. Nut crimping mechanism comprising a rotatable sleeve; a group of crimping levers pivoted about the interior of the sleeve in circumferentially spaced relation to each other and rotatable with the sleeve as a unit; each lever having a long arm, a short arm terminating in an inner jaw face, and a pivot support between the long and short arms; the several levers having a norMal position wherein the several jaw faces define a multi-walled socket for reception of a multi-sided nut and for subsequent rotation of the nut upon rotation of the sleeve, the jaw faces being arranged to transmit in the normal position of the levers rotation of the sleeve to a nut received in the socket, wedge means movable axially of the several levers for cooperating with the several long arms to pivot the several levers so as to force their short arms to bring their jaw faces compressively against the sides of a nut received in the socket, and means for selectively controlling rotation of the sleeve or axial movement of the wedge means.
6. Nut crimping mechanism comprising a rotatable sleeve; a group of crimping levers pivoted about the interior of the sleeve in circumferentially spaced relation to each other and rotatable with the sleeve as a unit; each lever having a long arm, a short arm terminating in an inner jaw face, and a pivot support between the long and short arms; the several levers having a normal position wherein the several jaw faces define a socket for reception of a multi-sided nut and subsequent rotation of the nut upon rotation of the sleeve, wedge means movable axially of the several levers for cooperating with the several long arms to pivot the several levers so as to force their short arms to bring their jaw faces compressively against the sides of a nut received in the socket, and means for selectively controlling rotation of the sleeve or axial movement of the wedge means, wherein the wedge means has an upper portion having splines in axially slidable splined engagement with the interior of the sleeve above the levers and has a substantially coned lower portion adapted for camming engagement with the long arms of the levers.
7. Nut crimping means as in claim 6, wherein the wedge means at times has rotatable movement with the sleeve and at other times has axial movement relative to the sleeve.
8. Nut crimping means as in claim 7, wherein control means is provided for selectively determining the particular directional movement the wedge means will take.
9. Crimping means for crimping a multi-sided nut including a housing having a front end provided with an axial opening for reception of a work nut, a rotary motor in the housing, a group of crimping levers pivotally supported in the front end in surrounding relation to the opening, the levers being pivotable radially inwardly of the opening to effect a crimping action upon a nut received in the opening, wedging means movable linearly in the front end and axially relative to the levers having cooperation in such movement with the levers to pivot them radially inwardly of the opening to effect said crimping action, and screw means for translating rotation of the motor into said linear and axial movement of the wedging means.
10. In a nut running tool including a rotary motor, a housing supporting the motor and having a front end providing an axial opening for reception of a nut, crimping means for effecting a crimping action upon a nut received in the opening, the crimping means comprising a group of crimping levers pivotally supported in the front end in surrounding relation to the opening, the levers being pivotable radially inwardly of the opening to effect a crimping action on the nut, wedging means movable linearly in the front end and axially relative to the levers to pivot them radially inwardly of the opening into crimping relation with the nut, and screw means for translating rotation of the motor into said linear and axial movement of the wedging means.
US348274A 1971-03-08 1973-04-05 Crimping mechanism in a nut runner Expired - Lifetime US3880023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US348274A US3880023A (en) 1971-03-08 1973-04-05 Crimping mechanism in a nut runner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12186771A 1971-03-08 1971-03-08
US348274A US3880023A (en) 1971-03-08 1973-04-05 Crimping mechanism in a nut runner

Publications (1)

Publication Number Publication Date
US3880023A true US3880023A (en) 1975-04-29

Family

ID=26819899

Family Applications (1)

Application Number Title Priority Date Filing Date
US348274A Expired - Lifetime US3880023A (en) 1971-03-08 1973-04-05 Crimping mechanism in a nut runner

Country Status (1)

Country Link
US (1) US3880023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310056A (en) * 1979-01-15 1982-01-12 Olsson Lars E G Pneumatic-hydraulic tool, preferably for blind riveting
US11338426B2 (en) 2015-11-02 2022-05-24 Black & Decker, Inc. Cordless power cutter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646837A (en) * 1970-05-18 1972-03-07 Cooper Ind Inc Tool for applying and locking threaded fasteners
US3653802A (en) * 1970-11-18 1972-04-04 Lowell Warner Weiss Nut crimping tool
US3689951A (en) * 1970-05-07 1972-09-12 Huck Mfg Co Fastener installation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689951A (en) * 1970-05-07 1972-09-12 Huck Mfg Co Fastener installation system
US3646837A (en) * 1970-05-18 1972-03-07 Cooper Ind Inc Tool for applying and locking threaded fasteners
US3653802A (en) * 1970-11-18 1972-04-04 Lowell Warner Weiss Nut crimping tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310056A (en) * 1979-01-15 1982-01-12 Olsson Lars E G Pneumatic-hydraulic tool, preferably for blind riveting
USRE31957E (en) * 1979-01-15 1985-07-30 Pneumatic-hydraulic tool, preferably for blind riveting
US11338426B2 (en) 2015-11-02 2022-05-24 Black & Decker, Inc. Cordless power cutter

Similar Documents

Publication Publication Date Title
US4147076A (en) Reversing-ratchet socket wrench
US3747441A (en) Pneumatic tool having combined nut running and crimping mechanism
US3772942A (en) Adjustable torque wrench
US2928302A (en) Means for achieving a predetermined extent of loading in tightening up nuts on bolts and studs
US3187860A (en) Portable nut runner having automatic speed change and automatic shut-off
US4576270A (en) Torque control and fluid shutoff mechanism for a fluid operated tool
US3477521A (en) Automatic power tool
GB1263238A (en) A power operated torque tool
US2069527A (en) Chuck adapted for stud driver or the like
US4078618A (en) Torque controller shutoff mechanism
GB1215110A (en) An improved valve operator
US4631992A (en) Screwdriver
US4154308A (en) Low torque automatic screwdriver
GB1332275A (en) Low torque automatic screwdriver
US3082742A (en) Torque tool control
US4223745A (en) Torque responsive motor shutoff mechanism for fluid operated tool
US3880023A (en) Crimping mechanism in a nut runner
US3220526A (en) One shot clutch
GB1340650A (en) Pneumatic screwdrivers with torque-responsive shut-off devices
US3877284A (en) Crimping mechanism in a nut runner
US3245137A (en) Rotating and impact tool for installing a keyed threaded element
US2518049A (en) Pneumatic screw driver
JPS5853990B2 (en) power operated tools
US2725961A (en) Torque control for rotary impact tool
US2259839A (en) Clutch

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL WESTMINSTER BANK USA, 175 WATER STREET, N

Free format text: SECURITY INTEREST;ASSIGNOR:CHICAGO PNEUMATIC TOOL COMPANY;REEL/FRAME:004681/0047

Effective date: 19861230