US3876902A - Damped delay line for travelling-wave tubes - Google Patents
Damped delay line for travelling-wave tubes Download PDFInfo
- Publication number
- US3876902A US3876902A US428184A US42818473A US3876902A US 3876902 A US3876902 A US 3876902A US 428184 A US428184 A US 428184A US 42818473 A US42818473 A US 42818473A US 3876902 A US3876902 A US 3876902A
- Authority
- US
- United States
- Prior art keywords
- delay line
- partitions
- raster
- depressions
- partition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005192 partition Methods 0.000 claims abstract description 71
- 239000000463 material Substances 0.000 claims abstract description 31
- 238000010894 electron beam technology Methods 0.000 claims description 14
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 4
- 238000009760 electrical discharge machining Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 2
- 238000013016 damping Methods 0.000 description 18
- 238000010276 construction Methods 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- LSIXBBPOJBJQHN-UHFFFAOYSA-N 2,3-Dimethylbicyclo[2.2.1]hept-2-ene Chemical compound C1CC2C(C)=C(C)C1C2 LSIXBBPOJBJQHN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/16—Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
- H01J23/24—Slow-wave structures, e.g. delay systems
- H01J23/30—Damping arrangements associated with slow-wave structures, e.g. for suppression of unwanted oscillations
Definitions
- ABSTRACT 1 An improved delay line for travelling wave tubes com- [52] US. Cl. 3l5/3.5, 3l5/3.633333/3g prising a hollow cylindrical member formed with a plurality of resonant cavities and wherein the selected [5 :22- Cl. C sides of each of the partitions between the cavities is [581 lem of Search.
- This invention relates in general to delay lines for travelling wave tubes and in particular to an improved delay line comprising a hollow cylinder divided into individual resonant cavities by successively arranged partitions which are provided with depressions and lossy material formed therein.
- German Letters Pat. No. 1,274,742 discloses a travelling wave tube which includes a plurality of resonant cavities arranged in line and with damping material pro vided in each cell which extends into the coupling opening of the partitions separating adjacent resonant cavities. Such a construction of the damping cell gives rise, however, to mounting and heat dissipation problems. As shown in German Letters Pat. No.
- the partition walls as well as the other conducting parts will be produced of good heat conducting material, as, for example, copper.
- the damping material which is mounted in the depressions of the partition could in some instances be omitted since the provision of depressions in the form of a raster on the partition provides a significant damping effect.
- In the specification, In the form ofa raster" means that the depressions are formed substantially over the entire partition with many depressions formed in the surface of the partition. If a damping material is not used, a conductive material which does not conduct as well as copper, as, for example, V2a-steel, could be used for the rastered partitions.
- the proposed depressions formed into a raster on the partition provides a delay line which has a number of advantageous characteristics.
- the protuberances and depressions provide an arrangement which damps very intensively due to the local increase of the field intensity as well as due to the increase in length of the current paths in the partition.
- a damping material can be inserted and supported in the rastered depression and sticks very well.
- the contact surfaces between the damping material and the metallic partition are considerably increased in the raster.
- heat generated due to energy losses developed in the damping material is easily removed due to its intimate contact with the partition.
- Another advantage of the invention is that since the damping material which is inserted into the raster partition does not function as a characteristic hollow space load, reflections and deformations of the electromagnetic waves are substantially reduced and discontinuities are not introduced by the material.
- the distance between adjacent partitions become progressively closer together due to the action of the delay line and the partitions further along the line require a smaller absorbing area since the damping increases continuously with raster tapering and reflections and mismatch of the waves can thus be avoided.
- the variations of the length of the cavities reduces the cavity impedance and effects higher current damping and ultimately results in shorter construction length with increased damping per cavity.
- the depth of the raster and, if necessary, the cavity length can be advantageously changed uniformly such that in each cavity the same heat loss is incurred and thus the amount of heat dissipated in each cavity will be uniform. This prevents overheating and maintains a constant temperature gradient throughout the structure.
- the partitions for the delay line of the present invention can be produced by using a spark erosion means comprising, for example, a comb-shaped member which has a plurality of finger shape electrodes and which are placed adjacent a partition so as to erode material from the partition. After the raster has been formed in this manner the lossy material can be rubbed into the depressions formed in the partition and sintered so as to provide a seal between the lossy material and the partition. Samples of lossy material are well known and conventional lossy materials may be utilized.
- FIG. 1 is a lateral sectional view of the novel delay line of the invention
- FIG. 2 is a plan view of a partition of the invention
- FIG. 3 is a sectional view illustrating the delay line of the invention.
- FIG. 4 is a plan view of a second partition embodiment.
- FIG. 1 illustrates a section of a delay line of the stacked type illustrating merely that portion of the delay line for a single conduction cycle.
- the portion of the delay line illustrated comprises a pair of profile disks 2 and 3 with a spacer ring 4 separating the disks 2 and 3 and with a spacer ring 6 mounted adjacent the ring 3 and separating it from the next adjacent profile disk, not shown.
- the delay line 1 is formed by arranging the profile disks 2 and 3 180 relative to the central axis of the delay line as shown such that the generally crescent-shaped coupling opening 8 of each of the disks 2 and 3 is offset by 180 as shown.
- Each of the disks 2 and 3 are provided with extending portions which extend beyond the center axis of the delay line and are formed with electron beam openings 7 through which the electron beam of the drift tube passes.
- Each of the disks 2 and 3 are formed with protuberances 9 and depressions 11 on opposite side surfaces of the disks in which damping material 12 is inserted.
- the electron beam openings 7 remain free of raster and damping material for high frequency reasons.
- the disk 2 shown in plan view in FIG. 2 has the rastered portion of the disk at the bottom relative to FIG. 2, whereas the disk 3 would have the rastered portion at the top relative to FIG. 1 as shown, thus being rotated 180 relative to the disk 2. Also, the coupling openings 8 in disks 2 and 3 would be rotated 180 as shown in FIG. 1.
- FIG. 3 illustrates a modification of the invention and discloses a plurality of resonant cavities which comprise several conduction cycles.
- the delay line illustrated in FIG. 3 is constructed according to stacking construction methods and comprises a plurality of conduction disks 13 and 14 arranged directly behind one another in the electron beam direction which is injected from the left relative to FIG. 3.
- the conduction disks 13 and 14 are connected together, as, for example, by welding, to form a solid structure.
- Spacer rings 15 are mounted between the disks 13 and 14 so as to provide resonant cavities.
- Each of the conduction disks 13 and 14 has cavity separating partitions 17 formed with electron beam openings 7 through which the electron beam passes and further include coupling openings 8 as illustrated, for example, in FIG. 4.
- Adjacent conduction disks 13 and 14 are mutually staggered about 180 and each pair forms a cycle of the delay line.
- the illustrated cavity group section is closed at its right end by disk 18 which has a central electron beam through opening 19.
- the lateral surfaces of the conduction disks 13 and 14 are provided with a raster of protuberances 9 and depressions 11 as shown in FIG. 4 into which damping material 12 is inserted. As shown, for high frequency and productional reasons it is desirable to keep the coupling openings 8 raster free as well as the electron beam through openings 7.
- the raster depth and length of the cavities are tapered so as to provide non-reflecting, high concentrated and complete dampening of the electromagnetic waves to be processed.
- the resonant cavities become progressively shorter from the left to the right as the beam traverses from the left to the right.
- the depth of the raster of the first partition 13 which is designated 5 becomes progressively deeper toward the right relative to the figure so that the raster depth of the last disk adjacent the end member 18, which is designated as 5 is much greater than 5,.
- the length of the resonant cavities which are designated as h decrease uniformly from the left to the right relative to FIG. 3 from a first height h for conduction disk 13 to a height h,, for the disks adjacent the member 18.
- the raster depth and cavity length remains constant.
- the cavity lengths are varied by providing spacer rings of different heights while maintaining the wall thickness of the partitions 17 constant.
- uniform conduction disk heights could be utilized and the width of the partition 17 could be varied so as to provide variable length in the resonant cavities.
- the depth of the raster as well as the length of the resonant cavity can be tapered with only one cell resonant cavity group section as the first embodiment illustrates.
- the raster depth dimensions and the resonant cavity length dimensions should change approximately symmetrically starting at the two ends of the damping area and proceeding toward their center.
- this invention provides for an improved delay line wherein the resonant cavities are separated by partitions having electron beam coupling openings as well as electron beam center passage openings and in which the side walls of the partitions are formed with depressions and protuberances in which lossy material is formed so as to attenuate undesirable energy.
- the attenuating characteristics of the partitions including the protuberances and the lossy material of the partitions on the left relative to FIG. 3 should be such that the quantity of energy dissipated in the partitions to the left equals the quantity of the energy dissipated in the partitions further to the right.
- the protuberances must become deeper at the right than they are at the left. This results in uniform heat dissipation throughout the length of the delay line and results in an improved structure.
- a delay line for travelling wave tubes in the form of a hollow tube divided into individual resonant cavities by means of successively arranged partitions, whereby at least some of said partitions absorb energy in order to form damped cavities and said some partitions have side walls formed with rasters of many protuberances and many depressions.
- a delay line for a travelling wave tube having a plurality of aligned resonant cavities through which an electron beam passes comprising a plurality of lossy partitions comprising outer cylindrical portions, segment portions of said partitions extending to the center of said travelling wave tube and formed with electron beam openings, and the side walls of said partitions formed with a raster of many depressions for attenuating energy.
- a delay line for a travelling wave tube according to claim 7 including lossy material mounted in said depressions of said side walls of said partitions.
- a delay line according to claim 8 further including sector shaped energy coupling openings formed in said partitions.
Landscapes
- Microwave Tubes (AREA)
- Particle Accelerators (AREA)
- Revetment (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19732300323 DE2300323C2 (de) | 1973-01-04 | 1973-01-04 | Bedämpfte Verzögerungsleitung von Lauffeldröhren und Verfahren zu ihrer Herstellung |
DE19732350239 DE2350239C2 (de) | 1973-10-05 | 1973-10-05 | Bedämpfte Verzögerungsleitung für Lauffeldröhren |
Publications (1)
Publication Number | Publication Date |
---|---|
US3876902A true US3876902A (en) | 1975-04-08 |
Family
ID=25764499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US428184A Expired - Lifetime US3876902A (en) | 1973-01-04 | 1973-12-26 | Damped delay line for travelling-wave tubes |
Country Status (4)
Country | Link |
---|---|
US (1) | US3876902A (en, 2012) |
JP (1) | JPS5725939B2 (en, 2012) |
FR (1) | FR2213579B1 (en, 2012) |
GB (1) | GB1456400A (en, 2012) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4088924A (en) * | 1975-12-18 | 1978-05-09 | Siemens Aktiengesellschaft | Delay line for travelling-wave tubes |
US4431944A (en) * | 1980-09-19 | 1984-02-14 | Thomson-Csf | Delay line having coupled cavities for a traveling-wave tube and a traveling-wave tube equipped with said line |
US4951380A (en) * | 1988-06-30 | 1990-08-28 | Raytheon Company | Waveguide structures and methods of manufacture for traveling wave tubes |
US5477107A (en) * | 1993-12-21 | 1995-12-19 | Hughes Aircraft Company | Linear-beam cavity circuits with non-resonant RF loss slabs |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5512682A (en) * | 1978-07-14 | 1980-01-29 | Nec Corp | Coupled cavity wave travelling tube |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3153767A (en) * | 1960-06-13 | 1964-10-20 | Robert L Kyhl | Iris-loaded slow wave guide for microwave linear electron accelerator having irises differently oriented to suppress unwanted modes |
US3354347A (en) * | 1964-10-28 | 1967-11-21 | Hughes Aircraft Co | Traveling-wave tube having lossy material walls separating adjacent oscillation suppression resonant cavities coupled to slow-wave structure interaction cells |
US3365607A (en) * | 1963-09-20 | 1968-01-23 | Varian Associates | Electron discharge device |
US3453491A (en) * | 1965-01-25 | 1969-07-01 | Hughes Aircraft Co | Coupled cavity traveling-wave tube with improved voltage stability and gain vs. frequency characteristic |
US3602766A (en) * | 1969-02-12 | 1971-08-31 | Hughes Aircraft Co | Traveling-wave tube having auxiliary resonant cavities containing lossy bodies which protrude into the slow-wave structure interaction cells to provide combined frequency sensitive and directionally sensitive attenuation |
US3771010A (en) * | 1972-11-22 | 1973-11-06 | Us Navy | Liquid cooled band edge oscillation prevention for a twt |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3264515A (en) * | 1961-06-29 | 1966-08-02 | Varian Associates | Collinear termination for high energy particle linear accelerators |
FR1402280A (fr) * | 1963-07-12 | 1965-06-11 | Ass Elect Ind | Perfectionnements aux accélérateurs linéaires |
-
1973
- 1973-12-19 FR FR7345476A patent/FR2213579B1/fr not_active Expired
- 1973-12-26 US US428184A patent/US3876902A/en not_active Expired - Lifetime
- 1973-12-27 JP JP744337A patent/JPS5725939B2/ja not_active Expired
- 1973-12-31 GB GB6026073A patent/GB1456400A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3153767A (en) * | 1960-06-13 | 1964-10-20 | Robert L Kyhl | Iris-loaded slow wave guide for microwave linear electron accelerator having irises differently oriented to suppress unwanted modes |
US3365607A (en) * | 1963-09-20 | 1968-01-23 | Varian Associates | Electron discharge device |
US3354347A (en) * | 1964-10-28 | 1967-11-21 | Hughes Aircraft Co | Traveling-wave tube having lossy material walls separating adjacent oscillation suppression resonant cavities coupled to slow-wave structure interaction cells |
US3453491A (en) * | 1965-01-25 | 1969-07-01 | Hughes Aircraft Co | Coupled cavity traveling-wave tube with improved voltage stability and gain vs. frequency characteristic |
US3602766A (en) * | 1969-02-12 | 1971-08-31 | Hughes Aircraft Co | Traveling-wave tube having auxiliary resonant cavities containing lossy bodies which protrude into the slow-wave structure interaction cells to provide combined frequency sensitive and directionally sensitive attenuation |
US3771010A (en) * | 1972-11-22 | 1973-11-06 | Us Navy | Liquid cooled band edge oscillation prevention for a twt |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4088924A (en) * | 1975-12-18 | 1978-05-09 | Siemens Aktiengesellschaft | Delay line for travelling-wave tubes |
US4431944A (en) * | 1980-09-19 | 1984-02-14 | Thomson-Csf | Delay line having coupled cavities for a traveling-wave tube and a traveling-wave tube equipped with said line |
US4951380A (en) * | 1988-06-30 | 1990-08-28 | Raytheon Company | Waveguide structures and methods of manufacture for traveling wave tubes |
US5477107A (en) * | 1993-12-21 | 1995-12-19 | Hughes Aircraft Company | Linear-beam cavity circuits with non-resonant RF loss slabs |
Also Published As
Publication number | Publication date |
---|---|
FR2213579A1 (en, 2012) | 1974-08-02 |
JPS49103564A (en, 2012) | 1974-10-01 |
JPS5725939B2 (en, 2012) | 1982-06-01 |
GB1456400A (en) | 1976-11-24 |
FR2213579B1 (en, 2012) | 1978-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2320860A (en) | Electron discharge apparatus | |
US3221204A (en) | Traveling-wave tube with trap means for preventing oscillation at unwanted frequencies | |
USRE25070E (en) | Electron discharge devices | |
US3221205A (en) | Traveling-wave tube with trap means for preventing oscillation at unwanted frequencies | |
US3876902A (en) | Damped delay line for travelling-wave tubes | |
US3504222A (en) | Slow-wave circuit including meander line and shielding therefor | |
US2827588A (en) | Travelling wave discharge tube arrangements utilizing delay lines | |
US2939035A (en) | Helical delay lines | |
US2827589A (en) | Electron discharge device | |
US3602766A (en) | Traveling-wave tube having auxiliary resonant cavities containing lossy bodies which protrude into the slow-wave structure interaction cells to provide combined frequency sensitive and directionally sensitive attenuation | |
CA1135860A (en) | Slow-wave circuit for traveling-wave tubes | |
US2890384A (en) | Traveling wave electronic devices | |
US2939037A (en) | Apparatus for suppression of multipactor | |
US3471738A (en) | Periodic slow wave structure | |
US3273006A (en) | Traveling wave tube having a contoured anode collecting surface | |
US3205398A (en) | Long-slot coupled wave propagating circuit | |
US3043984A (en) | Travelling wave tubes | |
US3832593A (en) | Selectively damped travelling wave tube | |
US2754448A (en) | Velocity modulation tube of the kind comprising a drift space | |
US3200286A (en) | Traveling wave amplifier tube having novel stop-band means to prevent backward wave oscillations | |
US2446825A (en) | Ultra high frequency electric discharge device | |
US4866343A (en) | Re-entrant double-staggered ladder circuit | |
US3376463A (en) | Crossed field microwave tube having toroidal helical slow wave structure formed by a plurality of spaced slots | |
US3924151A (en) | Delay line with low reflection attenuation for transit-time tubes | |
US3654509A (en) | Dielectrically supported helix derived slow wave circuit |