US3876336A - Tankless automatic water system - Google Patents
Tankless automatic water system Download PDFInfo
- Publication number
- US3876336A US3876336A US028637A US2863770A US3876336A US 3876336 A US3876336 A US 3876336A US 028637 A US028637 A US 028637A US 2863770 A US2863770 A US 2863770A US 3876336 A US3876336 A US 3876336A
- Authority
- US
- United States
- Prior art keywords
- pressure
- pump
- service
- switch
- service line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03B—INSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
- E03B5/00—Use of pumping plants or installations; Layouts thereof
Definitions
- a small expansible ii chamber in flow communication with the service line i i 28 43 and in pressure communication with a pressure switch l 0 Ear: 6/ connected to the pump motor comprises a switch means assembly which responds to the opening of the service line for energizing the pump motor
- a valve [56] References Cited assembly associated with the pump, the expansible UNITED STATES PATENTS chamber. and the service line.
- FIG. I is a view depicting an automatic water system embodying the present invention.
- FIG. 2 is a view in section through a valve assembly constituting a critical portion of the system of FIG. 1;
- FIG. 3 is a view in elevation ofthe valve assembly of FIG, 2;
- FIG, 4 is a view depicting a modification of the system of FIG. 1;
- FIG, 5 is a view in section through a valve assembly employed in the system of FIG. 4;
- FIGS. 6, 7 and 8 depict characteristic performance curves of the two systems illustrated, and the performance curve of a comparable system employing a consumer storage tank.
- such system involves a pump 1, driven by a motor 3 which is drive coupled thereto in any appropriate manner.
- the pump draws water from any suitable source such as a well 5 by means of a suction line 7 connected at one end of the suction side of the pump, and extending down into the well where it terminates below water level, in a foot valve 9.
- the Water thus drawn from the well is discharged through a service line 11 extending from the discharge side of the pump to service where it terminates in a controllable valve 13 such as a spigot or the like.
- switch means assembly 2 which is responsive to the opening of a service line, to cause the pump to start and immediately deliver water to service at substantially a constant pressure, and so long as there exists a service demand on the system.
- switch means assembly 2 Upon shut down of the service demand, the switch means is promptly restored to its prior condition, in the course of which, the pump motor is de-energized to stop the pump, which remains ready to start again in response to a subsequent service demand on the system.
- Such switch means involves an assembly of a pressure switch 23, a variable pressure device 25 which is flow connected thereto, and a valve assembly 27, which assembly controls the application of shut down pressure to the pressure switch.
- the pressure switch may be of any conventional type adapted to close at a predetermined pressure and open at a predetermined higher pressure.
- Such pressure switches have been used extensively in water systems employing hydro-pneumatic storage tanks and in subsequent systems employing Hydrocels,
- the pressure switch functioned to connect the pump motor to an electrical power source when the supply of water in the consumer storage tank or *Hydrocel" units diminished to a point of low pressure, at which time, the pump would start up to replenish the tank or Hydrocel" units while supplying any prevailing service demands,
- the pressure switch would disconnect the pump motor and shut down the pump, whereupon, the duty of supplying subsequent service demands was transferred to the tank or Hydrocel units as the case may be.
- the pump motor would again become energized and the cycle would be repeated.
- the pressure switch accordingly, did not function to start the pump until only after the contents of the consumer storage tank had been depleted to the point of lower pressure, and this point conceivably might not be reached until after many service demands.
- the pressure switch functions more in the nature of an onoff" switch, to connect the pump motor in response to each opening of a service line valve, and not to hold up the connection of the pump motor until a storage tank or the like in the system has become substantially depleted.
- variable pressure device 25 may be of any type which can respond to the pressure in the service line and transmit such pressure to the pressure switch.
- this variable pressure device involves an inflatable tube 29 in a housing 31, and flow connected to the pump 1 and service line 11, and pressure coupled to the pressure switch 23.
- the inflatable tube 29 is an open ended tube supported axially through the housing with adequate space within the housing for expansion of the tube in response to water pumped into the tube under pressure.
- One end of the tube is flow connected to the pump and service line via in valve assembly 27, while the other end of the tube is coupled to the pressure switch 23 whereby the prevailing pressure of the water in the tube will register on the pressure switch to determine its operation.
- the housing for the expansible tube may be vented to atmosphere through a vent 32 in the housing, in which case, the variable pressure device will structurally bear a close similarity to that of the aforementioned *Hydrocel unit as described in the previously cited C. Jacuzzi patent for Airless Water Pressure System.
- variable pressure device of the system of the present invention is of such small capacity, as to unload promptly upon the mere opening of the service line, whereby to effect a closing of the pressure switch promptly upon the creation of a demand from service so that the pump may promptly start to satisfy such service demand.
- the pump will function upon each demand for service.
- variable pressure device ofthe present system need be only one tenth or less, the size of the Hydrocel unit.
- This variable pressure device may for convenience be termed a minicell.
- valve assembly 27 Critical to the satisfactory operation of the system, depicted in FIG. 1, is the makeup of the valve assembly 27 through which the variable pressure device is in flow communication with the pump and service line.
- This valve assembly involves a valve body 33 open at opposite ends for connection in the service line 11, and includes an enlarged mid-section traversed by a partition including a horizontal section 37 which is provided with a valve opening 39.
- valve opening 43 In line with this valve opening, is a threaded opening 43 above in the valve body, at which location, is installed a flow coupling or connection 45 formed with an inwardly facing valve seat surrounding the flow passage through the coupling.
- a flow coupling or connection 45 formed with an inwardly facing valve seat surrounding the flow passage through the coupling.
- valve complex which, in part, includes a closing valve 51 spanning the valve opening in the partition, and a check valve 53 spanning the passageway in the flow connection 45 to the variable pressure device, both valves being normally pressured into seating engagement with their proximate valve seats, by a compression spring 55 installed under compression between the two valves, with each end of the spring seated in a recess provided for it in the proximate valve.
- the closing valve 51 seals with an O-ring 56, along the wall of the valve opening 39 and consequently seals before completing its travel in the closing direction.
- Both valves 51, 53 have central openings 57, 59 respectively, which are in alignment for reception of a tube 61 preferably of brass, such tube being fixed in the central opening 59 of the check valve 53 while the opening in the closing valve 51 is sufficiently large to provide leak passage 63 through this valve about the proximate end of this tube.
- valve disc 71 Spanning the legs on the closing valve, is a valve disc 71 of rubber or like material, and similarly spanning the legs associated with the check valve is a like disc 73, both discs being normally held in position against such legs by a connecting wire 75, preferably of brass, with the wire anchored under tension by a plastic bead 77 at each end in contact with the proximate disc.
- the disc valve 71 With the closing valve 51 in its seating position, and the check valve 53 open, which will occur when the pump is not functioning and a service line is opened, the disc valve 71 will move down with the check valve 53 and, accordingly, will maintain its relationship with respect to the proximate end of the tube. While this will leave an open flow connection between the variable pressure device 25 and the pump 1, no flow to the pump from the variable pressure device will occur by reason of the fact that the region below the closing valve 51 is filled with liquid.
- variable pressure device accordingly, will discharge its contents to the ser vice line immediately upon opening of such service line, whereby, in view of its limited capacity, the pressure in the variable pressure device will promptly drop from the high pressure setting of the pressure switch to the lower pressure, at which pressure the pressure switch will react to connect the pump motor and start the pump to supply prevailing service demands.
- a flow passage from the variable pressure device is provided through this leak path, and a slow discharge equal to the leak flow from the service line, will serve to maintain the service line full until the pressure in the variable device drops to the valve at which the pressure switch connects the pump motor, and the pump can then recharge the variable pressure device to its shutdown pressure. So long as such leaky faucet is tolerated, the pump will thus cycle to maintain a full service line.
- variable pressure device 25 With a system as described, it will be appreciated that with the variable pressure device 25 fully charged, the system is ready for operation at a moments notice, and that upon opening of a service line the variable pressure device will promptly lose pressure to the point of triggering the pressure switch and starting the pump motor, whereby the pump will then take over and supply the prevailing service demand, and will so continue at a constant pressure as long as the demand exists.
- the variable pressure device and the pressure switch together constitute switch means which is responsive to opening of the service line to start the pump.
- the disc valve 71 is in its closing position against the end of the tube 61 thus cutting off any flow connection from the pump to the variable pressure device. Thus all of the pump output goes to service.
- the closing valve 51 closes and during cosing, opens the disc valve 71 thus placing the variable pressure device in flow communication with the pump, and the pump immediately recharges this variable pressure device to the pressure at which the pressure switch would disconnect the pump motor and shut down the pump.
- variable pressure device is of such limited volume, that it will start operation of the pump in response to each opening of a service line, and is not be to confused with any consumer storage tank, the purpose of which is to supply consumer demand over a period of time, which may involve repeated openings of the service line without an operation of the pump.
- the pumps primary function in such prior art system is to recharge the storage tank, though should service be required during such recharging, the pump will also supply service, though the degree to which each will be supplied will vary as the prevailing conditions vary.
- the pressure switch 23 is coupled directly into the service line 11 through a valve assembly 85 while the variable pressure device 25 is flow connected directly to the service line without any intermediate valving.
- variable pressure device and the pressure switch in this embodiment are in a sense not physically related in the same manner as in the embodiment of FIG. 1, they remain pressure coupled through the intermediate portion of the service line connecting the two.
- This arrangement permits of a simplified valve assembly such as is disclosed in FIG. 5 of the drawings, to which reference will be made.
- valve body 87 has a through passageway 89, to one end of which is coupled the variable pressure device 25, and to the other end of which is connected the service or discharge line 11. Intermediate the ends of this passageway is an opening for coupling a flow connection 91 from the pump. Spanning this connection is a closing valve 93 similar to the closing valve 51 and including an O-ring seal 95, the valve being urged to its seating position by a compression spring 97 bearing against the roof of the valve housing in a circular recess 101 provided for the spring.
- a passage 103 Centrally of the circular recess is a passage 103 through the wall of the valve housing, the passage terminating in a fitting 105 cast integral with the housing and having a threaded opening to which the pressure switch may be coupled to place it in pressure communication with the interior of the valve housing.
- a disc valve 109 adjacent the entrance to the passage, is axially mounted on a length of wire 111 which at one end passes centrally through the closing valve 93, where it is precluded from being withdrawn by a bend in the wire. At its other end, the wire freely enters the passage 103.
- a coil spring 112 under compression between the closing valve 93 and the disc valve, serves to stabilize the disc valve and assure proper functioning thereof.
- the installed location of the disc valve on the wire is such, that it will open following the initial sealing and during the overtravel of the closing valve, thus exposing the pressure switch to pressure conditions in the service line.
- the disc valve In the open position of the closing valve, as when the pump is supplying service the disc valve will be in seating position against the proximate end of the passage 103, thereby cutting off the pressure switch from the conditions existing within the service line.
- variable pressure device Upon opening a service line, the variable pressure device, like in the previously described system of FIG. 1, will promptly discharge and drop in pressure to the value which will cause the pressure switch to connect the pump motor and start the pump, whereby the resulting opening of the closing valve to supply service, will bring about a closing of the disc valve 109 to disconnect the pressure switch from the pressure conditions existing in the service line.
- variable pressure device being fully exposed to the pressure conditions in the service line, will immediately recharge to the prevailing pressure in the service line, whereby, upon a subsequent closing of the service line, its pressure will have reached a pressure sufficient to operate the pressure switch.
- the closing of the valve 93 opens the disc valve 109, and the variable pressure device, being now pres sure coupled to the pressure switch, will immediately disconnect the pump motor to shut down the pump.
- the curve is representative of that of the system of FIG. 1, using a pump having a capacity of 5 gallons per minute at an output pressure of pounds per square inch, and 0.4 gallons per minute at an output pressure of pounds per square inch.
- the variable pressure unit has a capacity of0.l gallons and a fill rate at 0.4 gallons per minute.
- the pressure switch was set to connect the pump motor when the pressure in the variable pressure device dropped to 20 pounds per square inch, and to disconnect the pump motor when the pressure in the variable pressure device reached a value of pounds per square inch.
- the pressure in the variable pressure device Upon opening the service line valve 13, the pressure in the variable pressure device immediately drops within about one fiftieth of a second, from the high pressure of 50 pounds per square inch to the low pres sure of 20 pounds per square inch to start the pump, the discharge pressure following a very steep portion 115 of the curve.
- the pressure Immediately upon starting the pump, the pressure almost instantaneously, builds up to a value ofabout pounds per square inch along a vertical portion N7 of the curve, which pressure value, though higher than the cut-out pressure ofthe pressure switch, does not result in disconnection of the pump motor, since at this point, the variable pressure device is valved off from the system.
- the pump therefore, can continously supply the service at this pressure and at a discharge of 5 gallons per minute until the service line valve is shut off, This is represented by a horizontal portion ll) of the curve.
- variable pressure device is flow connected to the pump, and since the flow rate to the variable pressure device is substantially less than that which was previously pumped to service, the pump pressure will jump to a higher value of the order of pounds per square inch and continue at a high pressure along a portion 12] of the curve, until the resulting pressure build up in the variable pressure device reaches the cutout pressure of 50 pounds per square inch, at which point, the pressure switch will disconnect the pump motor and shut down the pump.
- the pressure in the variable pressure device upon opening the valve to a5 gallon per minute discharge rate, will immediately drop along a steep portion of the curve, from the cut-out pressure of 50 pounds per square inch to the cut-in pressure of 20 pounds per square inch, and the pump will start along the almost perpendicular portion 127 of the curve to reach a pressure of the order of 55 pounds per square inch, at which pressure it both supplies service and recharges the variable pressure device. Though this pressure exceeds the cut-out pressure of the pressure switch, the pressure switch is not affected because at this stage. it is effectively valved off and isolated from the pressure conditions existing in the system.
- the pumps start up immediately in response to opening of a service line and can maintain discharge to service at a constant pressure so long as service is required.
- the pumps are immediately shut down and remain in their quiescent state until service is again desiredv
- the pump does not start in response to opening of a service line, but remains quiescent until the contents of the consumer storage tank has been withdrawn to service to a point where the pressures therein has dropped to the cut-in pressure of the pump, at which time the pump starts to recharge the consumer storage tank if there is no demand from service.
- the pump will then supply both at a pressure determined by the overall prevailing load on the pumpv
- a fully charged consumer storage tank was assumed at the point of opening the service line valve and accordingly, the pressure has been shown as dropping along a portion 135 of the curve from 50 pounds to 20 pounds over a period of time.
- the pump is started to recharge the storage tank along a portion 137 of the curve, and the cycle is repeated, with variations depending on the time and quantity of the service requirements.
- the pressure cyclically fluctuates within the pressure switch.
- the pump in such system cannot supply service at a con stant pressure, which is an important characteristic of the systems of the present invention.
- An automatic water system comprising a pump having an inlet and a discharge side, a drive motor coupled to said pump, at least one service line to be supplied by said pump, a pressure responsive valve on the discharge side of said pump in the flow path to said service line, switch means controlling operation of said pump and responsive to opening of said service line, for energizing said motor, said switch means including a pressure switch in circuit with said pump motor, and an expansible tube flow coupled to said service line, and means for pressure coupling said expansible tube to said pressure switch through the water of said system, said pressure switch being adapted for setting to close at a predetermined pressure and open at a higher pressure and said expansible tube having a variable pressure range spanning the low to high pressure range of said pressure switch, and means rendering said switch means ineffective to disconnect said pump motor while said pump is satisfying normal demands of service and said pressure responsive valve is opened, and a leak passageway between the pump discharge and said switch means which is open when there is less than normal demands of service and said pressure responsive valve is closed so that said switch means becomes effective to disconnect said
- An automatic water system comprising a pump having an inlet and a discharge side, a drive motor coupled to said pump, at least one service line to be supplied by said pump, a pressure responsive valve on the discharge side of said pump in the flow path to said service line.
- switch means controlling operation of said pump and responsive to opening of said service line, for energizing said motor, said switch means including a pressure switch in circuit with said pump motor. and a variable pressure device flow coupled to said service line.
- variable pressure device means for pressure coupling said variable pressure device to said pressure switch through the water of said system
- said pressure switch being adapted for setting to close at a predetermined pressure and open at a higher pressure and said variable pressure device having a variable pressure range spanning the low to high pressure range of said pressure switch, and means rendering said switch means ineffective to disconnect said pump motor while said pump is satisfying normal demands of service and said pressure responsive valve is opened, and a leak passageway between the pump discharge and said switch means which is open when there is less than normal demands of service and said pressure responsive valve is closed so that said switch means becomes effective to disconnect said pump.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US028637A US3876336A (en) | 1970-04-15 | 1970-04-15 | Tankless automatic water system |
FR7041048A FR2092270A5 (de) | 1970-04-15 | 1970-11-16 | |
CA098182A CA931465A (en) | 1970-04-15 | 1970-11-16 | Tankless automatic water system |
GB59658/70A GB1293996A (en) | 1970-04-15 | 1970-12-16 | Water supply system |
ZA710349A ZA71349B (en) | 1970-04-15 | 1971-01-19 | Tankless automatic water system |
DE19712102386 DE2102386A1 (de) | 1970-04-15 | 1971-01-19 | Behalterlose, automatische Wasser Versorgungsanlage |
BR742/71A BR7100742D0 (pt) | 1970-04-15 | 1971-01-29 | Sistema automatico de abastecimento de agua em tanque |
ES388113A ES388113A1 (es) | 1970-04-15 | 1971-01-29 | Sistema automatico de bombeo de agua. |
SE7103144A SE411572B (sv) | 1970-04-15 | 1971-03-11 | Automatisk vattenanleggning |
CA171,203A CA948960A (en) | 1970-04-15 | 1973-05-03 | Tankless automatic water system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US028637A US3876336A (en) | 1970-04-15 | 1970-04-15 | Tankless automatic water system |
Publications (1)
Publication Number | Publication Date |
---|---|
US3876336A true US3876336A (en) | 1975-04-08 |
Family
ID=21844589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US028637A Expired - Lifetime US3876336A (en) | 1970-04-15 | 1970-04-15 | Tankless automatic water system |
Country Status (9)
Country | Link |
---|---|
US (1) | US3876336A (de) |
BR (1) | BR7100742D0 (de) |
CA (1) | CA931465A (de) |
DE (1) | DE2102386A1 (de) |
ES (1) | ES388113A1 (de) |
FR (1) | FR2092270A5 (de) |
GB (1) | GB1293996A (de) |
SE (1) | SE411572B (de) |
ZA (1) | ZA71349B (de) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3973877A (en) * | 1973-11-30 | 1976-08-10 | Hitachi, Ltd. | Automatic pumping device |
US4165951A (en) * | 1977-06-30 | 1979-08-28 | Amtrol Incorporated | Water pressure booster system and control valve therefor |
US4238073A (en) * | 1979-03-26 | 1980-12-09 | Miroslav Liska | Paint spray apparatus having pressure actuated control |
US4304526A (en) * | 1975-04-18 | 1981-12-08 | Shetler Sr Earl B | Well system and flow control tank |
DE3641792A1 (de) * | 1985-12-16 | 1987-06-19 | Amtrol Inc | Einrichtung zur druckerhoehung in einem wasserversorgungssystem |
US4921214A (en) * | 1989-05-18 | 1990-05-01 | Amtrol Inc. | Non-refillable packless valve for pressurized containers |
US5036876A (en) * | 1990-07-31 | 1991-08-06 | Amtrol Inc. | Non-refillable cylinder valve for returnable cylinders |
US5281101A (en) * | 1992-07-01 | 1994-01-25 | Mcneil (Ohio) Corporation | Water supply system and method of operation thereof |
US5509787A (en) * | 1994-10-07 | 1996-04-23 | Valdes; Osvaldo J. | Hydraulic actuator for pressure switch of fluidic system |
WO1998057065A1 (en) * | 1997-06-09 | 1998-12-17 | Flexcon Industries | Actuator valve for pressure switch for a hydraulic system |
EP0992687A3 (de) * | 1998-10-07 | 2001-01-31 | GARDENA Kress + Kastner GmbH | Ventilgesteuerte Durchflussregelung einer Haushaltspumpe |
WO2001014745A1 (en) * | 1999-08-25 | 2001-03-01 | Flexcon Industries | Actuator valve for pressure switch for a fluidic system |
US6227241B1 (en) | 1997-06-09 | 2001-05-08 | Flexcon Industries | Actuator valve for pressure switch for a fluidic system |
US7077632B2 (en) * | 2002-11-14 | 2006-07-18 | Andreas Stihl Ag & Co. Kg | Blower having a blower tube incorporating a reduction device for reducing the clear flow cross section of said blower tube at idle operation |
US20070122288A1 (en) * | 2005-11-28 | 2007-05-31 | Shun-Zhi Huang | Pressurizing water pump with control valve device |
US20150192930A1 (en) * | 2014-01-08 | 2015-07-09 | Maxtec Plastics, Inc. | Method for controlling water outgoing from container by pressure and device for achieving the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2057635B (en) * | 1978-10-11 | 1982-10-13 | Amtrol Inc | Control valve for a water pressure booster system |
IT1268937B1 (it) * | 1994-01-14 | 1997-03-18 | Co Ge S R L | Dispositivo per il comando di un impianto di distribuzione d'acqua |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1981160A (en) * | 1933-09-05 | 1934-11-20 | Ray T Lloyd | Water system |
US2761389A (en) * | 1952-05-09 | 1956-09-04 | Gen Motors Corp | Regulating valves for jet pumps |
US3106894A (en) * | 1960-10-10 | 1963-10-15 | Johnsen Odd Fredheim | Pressure operated valve, especially for water supply systems |
US3394733A (en) * | 1965-01-27 | 1968-07-30 | Jacuzzi Bros Inc | Airless water pressure system |
US3457864A (en) * | 1967-05-01 | 1969-07-29 | Bernard F Price | Pressure control for installation in wells |
US3563671A (en) * | 1969-10-01 | 1971-02-16 | Weber Ind Inc | Pump control |
-
1970
- 1970-04-15 US US028637A patent/US3876336A/en not_active Expired - Lifetime
- 1970-11-16 FR FR7041048A patent/FR2092270A5/fr not_active Expired
- 1970-11-16 CA CA098182A patent/CA931465A/en not_active Expired
- 1970-12-16 GB GB59658/70A patent/GB1293996A/en not_active Expired
-
1971
- 1971-01-19 DE DE19712102386 patent/DE2102386A1/de not_active Ceased
- 1971-01-19 ZA ZA710349A patent/ZA71349B/xx unknown
- 1971-01-29 ES ES388113A patent/ES388113A1/es not_active Expired
- 1971-01-29 BR BR742/71A patent/BR7100742D0/pt unknown
- 1971-03-11 SE SE7103144A patent/SE411572B/xx unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1981160A (en) * | 1933-09-05 | 1934-11-20 | Ray T Lloyd | Water system |
US2761389A (en) * | 1952-05-09 | 1956-09-04 | Gen Motors Corp | Regulating valves for jet pumps |
US3106894A (en) * | 1960-10-10 | 1963-10-15 | Johnsen Odd Fredheim | Pressure operated valve, especially for water supply systems |
US3394733A (en) * | 1965-01-27 | 1968-07-30 | Jacuzzi Bros Inc | Airless water pressure system |
US3457864A (en) * | 1967-05-01 | 1969-07-29 | Bernard F Price | Pressure control for installation in wells |
US3563671A (en) * | 1969-10-01 | 1971-02-16 | Weber Ind Inc | Pump control |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3973877A (en) * | 1973-11-30 | 1976-08-10 | Hitachi, Ltd. | Automatic pumping device |
US4304526A (en) * | 1975-04-18 | 1981-12-08 | Shetler Sr Earl B | Well system and flow control tank |
US4165951A (en) * | 1977-06-30 | 1979-08-28 | Amtrol Incorporated | Water pressure booster system and control valve therefor |
US4238073A (en) * | 1979-03-26 | 1980-12-09 | Miroslav Liska | Paint spray apparatus having pressure actuated control |
DE3641792A1 (de) * | 1985-12-16 | 1987-06-19 | Amtrol Inc | Einrichtung zur druckerhoehung in einem wasserversorgungssystem |
US4921214A (en) * | 1989-05-18 | 1990-05-01 | Amtrol Inc. | Non-refillable packless valve for pressurized containers |
US5036876A (en) * | 1990-07-31 | 1991-08-06 | Amtrol Inc. | Non-refillable cylinder valve for returnable cylinders |
US5281101A (en) * | 1992-07-01 | 1994-01-25 | Mcneil (Ohio) Corporation | Water supply system and method of operation thereof |
US5509787A (en) * | 1994-10-07 | 1996-04-23 | Valdes; Osvaldo J. | Hydraulic actuator for pressure switch of fluidic system |
WO1998057065A1 (en) * | 1997-06-09 | 1998-12-17 | Flexcon Industries | Actuator valve for pressure switch for a hydraulic system |
US5947690A (en) * | 1997-06-09 | 1999-09-07 | Flexcon Industries | Actuator valve for pressure switch for a fluidic system |
US6227241B1 (en) | 1997-06-09 | 2001-05-08 | Flexcon Industries | Actuator valve for pressure switch for a fluidic system |
EP0992687A3 (de) * | 1998-10-07 | 2001-01-31 | GARDENA Kress + Kastner GmbH | Ventilgesteuerte Durchflussregelung einer Haushaltspumpe |
WO2001014745A1 (en) * | 1999-08-25 | 2001-03-01 | Flexcon Industries | Actuator valve for pressure switch for a fluidic system |
AU759823B2 (en) * | 1999-08-25 | 2003-05-01 | Flexcon Industries | Actuator valve for pressure switch for a fluidic system |
US7077632B2 (en) * | 2002-11-14 | 2006-07-18 | Andreas Stihl Ag & Co. Kg | Blower having a blower tube incorporating a reduction device for reducing the clear flow cross section of said blower tube at idle operation |
US20070122288A1 (en) * | 2005-11-28 | 2007-05-31 | Shun-Zhi Huang | Pressurizing water pump with control valve device |
US20150192930A1 (en) * | 2014-01-08 | 2015-07-09 | Maxtec Plastics, Inc. | Method for controlling water outgoing from container by pressure and device for achieving the same |
Also Published As
Publication number | Publication date |
---|---|
CA931465A (en) | 1973-08-07 |
FR2092270A5 (de) | 1971-01-21 |
SE411572B (sv) | 1980-01-14 |
BR7100742D0 (pt) | 1973-04-17 |
DE2102386A1 (de) | 1971-11-04 |
ZA71349B (en) | 1971-12-29 |
GB1293996A (en) | 1972-10-25 |
ES388113A1 (es) | 1973-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3876336A (en) | Tankless automatic water system | |
US3940020A (en) | Leak detection system and method | |
US4257745A (en) | Automatic control system for centrifugal pumps | |
US3739810A (en) | Pressure controlled water system with isolatable pressure switch | |
US2787220A (en) | Pumping system | |
US3639081A (en) | Liquid pressure booster system with cutoff for minimum flow levels | |
US3493001A (en) | Hydraulic pumping system | |
US2412107A (en) | Liquid supply system | |
US2734462A (en) | Submersible water pumping system | |
US3150684A (en) | Device for the delivery of a fluid supplied by a motorpump | |
US4013221A (en) | Pressure balancing device for heating systems | |
US3457864A (en) | Pressure control for installation in wells | |
US3572381A (en) | Pump pressure system | |
US3692430A (en) | Liquid pumping system | |
US3733449A (en) | Pump protection system with pressure responsive switch and float valve | |
US2621596A (en) | Pressure system | |
US5137061A (en) | Fluid-delivering system | |
US5509787A (en) | Hydraulic actuator for pressure switch of fluidic system | |
US2807214A (en) | Pumping system | |
US2172097A (en) | Air-volume control mechanism | |
US3342136A (en) | Liquid supply circuit | |
US3738531A (en) | Liquid pumping system | |
US3593744A (en) | Pneumatically controlled water storage system | |
US2229601A (en) | Air voltjme control | |
US3035522A (en) | Pumps |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JACUZZI INC., 11511 NEW BENTON HIGHWAY, LITTLE ROC Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNORS:JACUZZI WHIRLPOOL BATH, INC.;JACUZZI BROS., INC.;REEL/FRAME:003873/0510;SIGNING DATES FROM 19810424 TO 19810508 |
|
STCK | Information on status: patent revival |
Free format text: ABANDONED - RESTORED |
|
AS | Assignment |
Owner name: JACUZZI INC., A DELAWARE CORPORATION, CALIFORNIA Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:JACUZZI INC., A FORMER DELAWARE CORPORATION;REEL/FRAME:009866/0373 Effective date: 19880402 |
|
AS | Assignment |
Owner name: JACUZZI INC., CALIFORNIA Free format text: NUNC PRO TUNC ASSIGNMENT EFFECTIVE AS OF 6-30-98;ASSIGNOR:JACUZZI INC.( A FORMER DELAWARE CORPORATION);REEL/FRAME:010061/0874 Effective date: 19990225 |