US3873845A - Method of producing electric energy including coal gasification - Google Patents
Method of producing electric energy including coal gasification Download PDFInfo
- Publication number
- US3873845A US3873845A US398543A US39854373A US3873845A US 3873845 A US3873845 A US 3873845A US 398543 A US398543 A US 398543A US 39854373 A US39854373 A US 39854373A US 3873845 A US3873845 A US 3873845A
- Authority
- US
- United States
- Prior art keywords
- electric energy
- gases
- steam
- compressed
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/26—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
- F02C3/28—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/82—Gas withdrawal means
- C10J3/84—Gas withdrawal means with means for removing dust or tar from the gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/067—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0903—Feed preparation
- C10J2300/0909—Drying
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0946—Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
- C10J2300/0976—Water as steam
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/12—Heating the gasifier
- C10J2300/1253—Heating the gasifier by injecting hot gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1603—Integration of gasification processes with another plant or parts within the plant with gas treatment
- C10J2300/1606—Combustion processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1846—Partial oxidation, i.e. injection of air or oxygen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1884—Heat exchange between at least two process streams with one stream being synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1861—Heat exchange between at least two process streams
- C10J2300/1892—Heat exchange between at least two process streams with one stream being water/steam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/32—Direct CO2 mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Definitions
- the present invention relates to a method of producing electric energy, and more particularly to a method of producing electric energy based upon the partial oxidation of coal dust. Still more specifically, the present invention relates to the production of electric energy using hot gases which are obtained by the partial oxidation of coal dust.
- an object of the present invention is to provide an improved method of producing electric energy by utilizing hot gases obtained by the partial axidation of coal dust.
- one feature of the invention resides in a method of producing electric energy, in the steps of advancing coal dust in concurrent flow with a stream of heated air, and effecting its gasification at atmospheric pressure and ata temperature of substantially l,500C.
- the resulting combustion gases are cooled in a waste-heat boiler to substantially C. and concurrently steam is produced by heat exchange with the gases. At least some of the thus produced steam is utilized to generate electric energy at such times as the electric energy which can be generated with the aid of the steam is sufficient to meet demands.
- the cooled combustion gases have dust electrostatically removed from them, and are thereupon compressed on a pressure of between substantially 2O 50 atmospheres, and finally dc-sulphurized. At least some of the de-sulphurized compressed gases are used to generate additional electric energy only at such times as the demand for electric energy exceeds the amount thereof which can be generated with the aid of the steam produced by cooling the combusion gases.
- the coal dust oxidation installation is so dimensioned that the heat which can be reovered by heat exchange in the waste-heat boiler from the combustion gases produced by the partial oxidation of the coal dust, is at least sufficient to generate that amount of electric energy which is necessary to meet the basic energy demand, that is to produce the amount of electric energy which the producer can sell on 24-hour basis.
- the gases, however, which produce the steam required for generating the basic amount of energy are utilized for producing additional electric energy at the peak demand periods, that is to produce the amount of energy which must be added to the basic amount produced by the steam in order to meet the peak energy demand.
- any gases which are not required for the production of additional electric energy can, in accordance with the present invention, be utilized for other purposes so as not to be wasted.
- these gases can be converted into a methane-rich gas, into hydrogen and/or a so-called ammonium-synthesis gas. Two or more of these conversions can be carried out simultaneously, by allocating appropriate parts of the available gases to the different conversion methods. It is evidently also possible to convert the gases for other purposes, which will suggest themselves to those skilled in the art.
- the coal dust required for the present invention can be produced by a so-called comminuting or grinding drying process, which will be described subsequently.
- chunk coal is converted into coal dust.
- sufficient coal dust is already available as a waste product of normal coal production, particularly if the coal is produced under certain production conditions.
- the coal dust is already available, it need be merely dried, not comminuted.
- An essential feature of the present invention is the fact that the gasification or partial oxidation ofthe coal dust is carried out at normal pressure, that is at atmospheric pressure.
- it has always been an aim of the industry to operate coal dust gasifying equipment at increased pressure levels, during gasification of the coal at temperatures of approximately l,500 C. which are above the slag melting point.
- the introduction of the quantities of which are required for carrying out the method of the present invention, for instance on the order of 500 tons per hour creates certain problems if the gasification equipment operates at super-atmospheric pressure.
- the present invention proposes to subject the gases proucked during the coal dust gasification to an electrostatic dust-removal operation, and thereupon to compress them at pressures of between substantially 20 50 atmospheres. Since the present invention requires the use of air in conjunction with the coal dust during the gasification of the latter, the advantage which exists in certain prior-art gasification proposals,- namely to operate the gasification equipment at higher pressure levels in order to eliminate or reduce the necessity for subsequent compression of the gas. does not exist in any case, but its absence is far outweighed by the advantages obtainable with the present method.
- FIGURE is a flow diagram which illustrates, by way of example, how the present invention operates.
- the coal to be gasified is admitted from the coal bunker 1 through a conduit 2 into a drying tube 3 the upper end of which is divergent as shown, and which operates as an airdryer.
- coal dust is combusted in a furnace or combustion chamber 4 and the hot combustion gases are admitted at approximately 800C. temperature through the conduit 5 into the lower end of the conduit 3, to rise herein.
- the coarse coal particles admitted from the bunker l are removed from the rising gas stream at the upper diverging part of the conduit 3, whereas the fine coal dust which is carried along by the upwardly moving gas stream enteres the cyclone 7, where it is separated from the gas stream in dry condition.
- the vapors which develop during this drying operation for the coal dust are withdrawn through the conduit 6, after they have passed through a cooling and scrubbing stage 8.
- This air has previously been pressurized in blower l5, and pre-heated to approximately 600 C. in an air heater 16.
- the mixture of air and coal dust enteres the gasification unit 17 which is of completely conventional construction, as described in Ullmanns Encylklopadie de Scchnischen Chemie Vol. 10, 1958, page 4l2-4l3 (Berlin-Mandren) and is gasified therein at a temperature of approximately 1,500 C.
- the molten slag which results during gasification is withdrawn in molten condition through the conduit 10, and is subsequently subjected to a granulation step. Since the gasification takes place at normal pressure, that is at atmospheric pressure, the unit 17 must be appropriately large-dimensioned. To retard as much as possible the heat energy radiation, the unit 17 must be provided with an effective thermal insulation, and it will be noted that the wasteheat boiler 20 is located not in the unit 17 itself, but is arranged separate from the same.
- This gas if of course hot. It is admitted via the conduit 19 into the waste-heat boiler 20, where it is cooled from approximately 1,500C. to approximately 150C.
- This steam is furnished via the conduit 21 to a turbine 22 which is coupled with a generator 23, capable of producing the normally required amount of electrical energy, that is the amount of electric energywhich can be sold on a 24-hour basis. This, in other words, is the amount of energy that can be sold around the clock.
- the steam which has been expanded and cooled in the turbine 22, is furnished via the conduit 24 into the condenser 25.
- Cooling water required for the operation of the condenser 25 is supplied to the same via conduit 28 from a cooling tower 27, and after it has been heated up in the condenser 25 it is recirculated to the cooling tower 27 via a conduit 26.
- the condensate produced by condensing of the steam in the condenser 25 is returned via the conduit 29 into the waste-heat boiler 20 for the production of additional steam.
- the excess steam can be vented via the conduit 30 and supplied to the subsequently following gas processing stations, which will now be described.
- the gas which has been cooled in the boiler 20 to a temperature of approximately C., is vented from the boiler 20, and supplied to an electrostatic dust separator 32, wherein it is freed of dust particles. From there, it passes via the conduit 31 to the compressor 33 where it may be compressed to a pressure of between substantially -50 atmospheres, depending upon requirements. In the present example it is assumed that a pressure of approximately 30 atmospheres is sufficient.
- the thus compressed gas is then passed on through the conduit 34 into the de-sulphurizing unit 35, where it is scrubbed of the sulphur compounds, particularly the H S, by treating it in known manner with a known solution or substance, which flows through the unit 35 in downward direction, that is in counterflow to the gas which rises upwardly through the unit 25.
- the solution becomes enriched with the sulphur compounds, and is discharged into the scrubber 37 via the conduit 36 where it becomes regenerated.
- Scrubbed-out H 5 is supplied via the conduit 38 into the Claus oven 39, where it is combusted to form elementary sulphur which is vented out of the installation via the conduit 40.
- the regenerated solution is pumped out of the scrubber 37, and via the conduit 41 back to the top of the unit 35.
- the compressed and desulphurized gas is advanced via the conduit 42 to the distributor (e.g. valve) 43, where it can be split up into partial streams. That amount of gas which is to be used for producing additional electric energy to meet peak energy demand, is advanced via the conduit 44 into a pressure burner 45 in which it is combusted at for instance approximately 1,500 C and 30 atmospheres pressure.
- the combustion air required for this purpose is pressurized in the device 71 and blown under pressure through the conduit 46 into the unit 45.
- the hot combustion gases produced in the unit 45 are vented via the conduit 47, and are admixed with compressed air which is suppliedby a bypass conduit 48.
- any compressed and de-sulphurized gas which is not required for producing electric energy via the generator 51, can be processed for different purposes and in a different manner.
- it is split up at the point 43 into two partial streams, one of which is supplied via the conduit 52 into a methane producing installation 53, in which the gas is converted at a temperature of approximately 400 C. in the presence of an appropriate catalyst, for instance an iron catalyst well known in the art, to form a methane rich gas.
- the water vapor necessary for this conversion can be supplied via the conduit 54 which communicates with the unit 53 and with the conduit 30. If no vapor or steam can be supplied via the conduit 30, then it is of course necessary to derive the vapor or steam from an external source.
- the methane-rich gas produced in the unit 53 and vented therefrom through the conduit 55 has the following composition:
- This gas which has been thus produced is admitted into a heat-exchanger 57 where it is cooled in heat exchange with a gas stream which comes from a gas separating unit 57. CO is separated from the gas and vented out of the installation via the conduit 58. ln the gas separating unit 57, Cl-l, and N Ch, are withdrawn via the conduit 59 which passes the heat exchanger 57. N is similarly withdrawn via the conduit 60.
- the second partial stream of compressed and desulphurized gas which is branched off at the point 43, is admitted via the conduit 61 into a converting unit 62 which receives steam from conduit 30 via a conduit 63 or via an external source of steam.
- the gas is converted in known manner, that is either by way of high temperature conversion or low temperature conversion, by contact with catalysts which are known in the art.
- the gas which is produced by conversion and which is vented from the unit 62 via the conduit 64 has the following composition:
- This gas is passed via the heat exchanger 65 into a gas separating unit 66; In the heat exchanger 65 it undergoes cooling, resulting in a separation of CO from the gas, which CO is withdrawn via the conduit 67.
- Excess H is withdrawn via conduit 69 and heat exchanger 65, whereas excess N is withdrawn via conduit 70 and heat exchanger 65, to be furnished to the conduit 60 and united with the N which is already present in the same.
- the present invention presents a method of producing electric energy which permits a heretofore unequaled flexibility in the production of electric energy that is a flexibility in the accommodation of the energy production to peak and off-peak demands. Moreover, the economy of energy production is not merely significantly improved over the prior art, but is guaranteed, because of the possibility afforded by the present invention, of converting the gas not required for the production of additional electric energy into other useful and economically valuable products, as part of the energy-production cycle.
- step of using said steamto produce electric energy comprises driving a turbine with said steam, and driving a generator with said turbine.
- step of using said compressed and de-sulphurized gases to generate electric energy comprises admitting said gases under pressure into a combustion chamber, combusting the gases to produce gaseous combustion products at substantially 1,500C, admixing pressurized air with said combustion products to form therewith a mixture having a temperature of substantially 820C, and driving with said mixture a turbine which is coupled with a generator.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2246407A DE2246407C2 (de) | 1972-09-21 | 1972-09-21 | Verfahren zum Erzeugen elektrischer Energie |
Publications (1)
Publication Number | Publication Date |
---|---|
US3873845A true US3873845A (en) | 1975-03-25 |
Family
ID=5856992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US398543A Expired - Lifetime US3873845A (en) | 1972-09-21 | 1973-09-18 | Method of producing electric energy including coal gasification |
Country Status (7)
Country | Link |
---|---|
US (1) | US3873845A (enrdf_load_stackoverflow) |
JP (1) | JPS5612695B2 (enrdf_load_stackoverflow) |
BE (1) | BE804055A (enrdf_load_stackoverflow) |
DE (1) | DE2246407C2 (enrdf_load_stackoverflow) |
FR (1) | FR2200665B1 (enrdf_load_stackoverflow) |
GB (1) | GB1415411A (enrdf_load_stackoverflow) |
ZA (1) | ZA736093B (enrdf_load_stackoverflow) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3990229A (en) * | 1974-06-22 | 1976-11-09 | Krupp-Koppers Gmbh | Method and arrangement for the generation of energy, particularly electrical energy |
US3991557A (en) * | 1974-07-22 | 1976-11-16 | Donath Ernest E | Process for converting high sulfur coal to low sulfur power plant fuel |
US4007786A (en) * | 1975-07-28 | 1977-02-15 | Texaco Inc. | Secondary recovery of oil by steam stimulation plus the production of electrical energy and mechanical power |
US4202167A (en) * | 1979-03-08 | 1980-05-13 | Texaco Inc. | Process for producing power |
US4608058A (en) * | 1984-09-12 | 1986-08-26 | Houston Industries, Incorporated | Steam supply system for superposed turine and process chamber, such as coal gasification |
US4974412A (en) * | 1986-12-23 | 1990-12-04 | Rwe-Energie Aktiengesellschaft | Power plant installation |
US5069685A (en) * | 1990-08-03 | 1991-12-03 | The United States Of America As Represented By The United States Department Of Energy | Two-stage coal gasification and desulfurization apparatus |
US5251432A (en) * | 1991-07-17 | 1993-10-12 | Siemens Aktiengesellschaft | Method for operating a gas and steam turbine plant |
US5285627A (en) * | 1991-07-17 | 1994-02-15 | Siemens Aktiengesellschaft | Method for operating a gas and steam turbine plant and a plant for performing the method |
WO1997005216A1 (en) * | 1995-08-01 | 1997-02-13 | Isentropic Systems Ltd. | Improvements in the use of carbonaceous fuels |
US5617715A (en) * | 1994-11-15 | 1997-04-08 | Massachusetts Institute Of Technology | Inverse combined steam-gas turbine cycle for the reduction of emissions of nitrogen oxides from combustion processes using fuels having a high nitrogen content |
US5626638A (en) * | 1993-06-04 | 1997-05-06 | Biokat Corporation | Gasification of low calorific value solid fuels to produce electric energy |
WO1999025792A1 (en) * | 1997-11-14 | 1999-05-27 | Aeci Limited | Gasification of coal |
AU714670B2 (en) * | 1995-08-01 | 2000-01-06 | Dut Pty Ltd | Improvements in the use of carbonaceous fuels |
US20090235587A1 (en) * | 2008-03-24 | 2009-09-24 | Battelle Energy Alliance, Llc | Methods and systems for producing syngas |
EP2067939A3 (en) * | 2007-10-26 | 2017-05-10 | General Electric Company | Fuel feed system for a gasifier and method of gasification systems start-up |
US20210355392A1 (en) * | 2020-05-13 | 2021-11-18 | Velocys Technologies Ltd | Process |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1470867A (en) * | 1973-12-27 | 1977-04-21 | Texaco Development Corp | Gas turbine process utilizing purified fuel and recirculated fuel gas |
US4158948A (en) * | 1978-08-16 | 1979-06-26 | Texaco Inc. | Conversion of solid fuels into fluid fuels |
US4341069A (en) * | 1980-04-02 | 1982-07-27 | Mobil Oil Corporation | Method for generating power upon demand |
EP0113380A1 (en) * | 1982-07-12 | 1984-07-18 | Uop Inc. | Cogeneration process linking FCC regenerator and power plant turbine |
DE3320228A1 (de) * | 1983-06-03 | 1984-12-06 | Kraftwerk Union AG, 4330 Mülheim | Kraftwerk mit einer integrierten kohlevergasungsanlage |
RU2133347C1 (ru) * | 1996-09-04 | 1999-07-20 | Научно-производственная корпорация "Сапфир" | Способ получения электроэнергии и ароматических углеводородов и устройство для его осуществления |
RU2174611C1 (ru) * | 2000-08-29 | 2001-10-10 | Поляков Виктор Иванович | Энергоблок |
FR2826681B1 (fr) | 2001-06-27 | 2003-11-21 | Patrick Heritier | Pare-soleil individuel de plage |
RU2241904C1 (ru) * | 2003-03-26 | 2004-12-10 | Общество с ограниченной ответственностью "ТАЕЖНОЕ" | Комплекс для переработки твердого топлива на основе биоресурсов и получения тепловой энергии |
EA201100042A1 (ru) * | 2010-11-26 | 2011-08-30 | Закрытое Акционерное Общество "Карбоника-Ф" | Установка для получения тепловой энергии из твердого топлива на основе биоресурсов |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1900141A (en) * | 1927-05-31 | 1933-03-07 | Universal Oil Prod Co | Method for making producer gas |
US2614915A (en) * | 1947-11-24 | 1952-10-21 | Gulf Research Development Co | Manufacture of synthesis gas |
US2761772A (en) * | 1952-05-31 | 1956-09-04 | Texas Co | Process for the production of carbon monoxide from a solid fuel |
US3002347A (en) * | 1956-05-24 | 1961-10-03 | Babcock & Wilcox Co | Method and apparatus for a binary fluid power plant |
US3086362A (en) * | 1957-11-29 | 1963-04-23 | Richard W Foster-Pegg | Combined steam-gas turbine plant |
US3503724A (en) * | 1969-04-14 | 1970-03-31 | Consolidation Coal Co | Method and apparatus for producing mixtures of methane,carbon monoxide,and hydrogen |
-
1972
- 1972-09-21 DE DE2246407A patent/DE2246407C2/de not_active Expired
-
1973
- 1973-08-27 BE BE134965A patent/BE804055A/xx not_active IP Right Cessation
- 1973-08-30 GB GB4098773A patent/GB1415411A/en not_active Expired
- 1973-08-30 FR FR7331379A patent/FR2200665B1/fr not_active Expired
- 1973-09-05 ZA ZA736093A patent/ZA736093B/xx unknown
- 1973-09-18 US US398543A patent/US3873845A/en not_active Expired - Lifetime
- 1973-09-21 JP JP10682373A patent/JPS5612695B2/ja not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1900141A (en) * | 1927-05-31 | 1933-03-07 | Universal Oil Prod Co | Method for making producer gas |
US2614915A (en) * | 1947-11-24 | 1952-10-21 | Gulf Research Development Co | Manufacture of synthesis gas |
US2761772A (en) * | 1952-05-31 | 1956-09-04 | Texas Co | Process for the production of carbon monoxide from a solid fuel |
US3002347A (en) * | 1956-05-24 | 1961-10-03 | Babcock & Wilcox Co | Method and apparatus for a binary fluid power plant |
US3086362A (en) * | 1957-11-29 | 1963-04-23 | Richard W Foster-Pegg | Combined steam-gas turbine plant |
US3503724A (en) * | 1969-04-14 | 1970-03-31 | Consolidation Coal Co | Method and apparatus for producing mixtures of methane,carbon monoxide,and hydrogen |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3990229A (en) * | 1974-06-22 | 1976-11-09 | Krupp-Koppers Gmbh | Method and arrangement for the generation of energy, particularly electrical energy |
US3991557A (en) * | 1974-07-22 | 1976-11-16 | Donath Ernest E | Process for converting high sulfur coal to low sulfur power plant fuel |
US4007786A (en) * | 1975-07-28 | 1977-02-15 | Texaco Inc. | Secondary recovery of oil by steam stimulation plus the production of electrical energy and mechanical power |
US4202167A (en) * | 1979-03-08 | 1980-05-13 | Texaco Inc. | Process for producing power |
US4608058A (en) * | 1984-09-12 | 1986-08-26 | Houston Industries, Incorporated | Steam supply system for superposed turine and process chamber, such as coal gasification |
US4974412A (en) * | 1986-12-23 | 1990-12-04 | Rwe-Energie Aktiengesellschaft | Power plant installation |
US5069685A (en) * | 1990-08-03 | 1991-12-03 | The United States Of America As Represented By The United States Department Of Energy | Two-stage coal gasification and desulfurization apparatus |
US5369949A (en) * | 1991-07-17 | 1994-12-06 | Siemens Aktiengensellschaft | Method for operating a gas and steam turbine plant and a plant for performing the method |
US5345755A (en) * | 1991-07-17 | 1994-09-13 | Siemens Aktiengesellschaft | Steam turbine plant |
US5251432A (en) * | 1991-07-17 | 1993-10-12 | Siemens Aktiengesellschaft | Method for operating a gas and steam turbine plant |
US5285627A (en) * | 1991-07-17 | 1994-02-15 | Siemens Aktiengesellschaft | Method for operating a gas and steam turbine plant and a plant for performing the method |
US5626638A (en) * | 1993-06-04 | 1997-05-06 | Biokat Corporation | Gasification of low calorific value solid fuels to produce electric energy |
US5617715A (en) * | 1994-11-15 | 1997-04-08 | Massachusetts Institute Of Technology | Inverse combined steam-gas turbine cycle for the reduction of emissions of nitrogen oxides from combustion processes using fuels having a high nitrogen content |
AU714670B2 (en) * | 1995-08-01 | 2000-01-06 | Dut Pty Ltd | Improvements in the use of carbonaceous fuels |
WO1997005216A1 (en) * | 1995-08-01 | 1997-02-13 | Isentropic Systems Ltd. | Improvements in the use of carbonaceous fuels |
WO1999025792A1 (en) * | 1997-11-14 | 1999-05-27 | Aeci Limited | Gasification of coal |
EP2067939A3 (en) * | 2007-10-26 | 2017-05-10 | General Electric Company | Fuel feed system for a gasifier and method of gasification systems start-up |
US9879191B2 (en) | 2007-10-26 | 2018-01-30 | General Electric Company | Fuel feed system for a gasifier and method of gasification system start-up |
US20090235587A1 (en) * | 2008-03-24 | 2009-09-24 | Battelle Energy Alliance, Llc | Methods and systems for producing syngas |
US8366902B2 (en) * | 2008-03-24 | 2013-02-05 | Battelle Energy Alliance, Llc | Methods and systems for producing syngas |
US20210355392A1 (en) * | 2020-05-13 | 2021-11-18 | Velocys Technologies Ltd | Process |
US12116538B2 (en) * | 2020-05-13 | 2024-10-15 | Velocys Technologies Ltd. | Process |
Also Published As
Publication number | Publication date |
---|---|
JPS5612695B2 (enrdf_load_stackoverflow) | 1981-03-24 |
GB1415411A (en) | 1975-11-26 |
ZA736093B (en) | 1974-08-28 |
FR2200665A1 (enrdf_load_stackoverflow) | 1974-04-19 |
DE2246407C2 (de) | 1982-02-18 |
FR2200665B1 (enrdf_load_stackoverflow) | 1980-04-11 |
BE804055A (fr) | 1973-12-17 |
DE2246407A1 (de) | 1974-04-04 |
JPS4970128A (enrdf_load_stackoverflow) | 1974-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3873845A (en) | Method of producing electric energy including coal gasification | |
US4756722A (en) | Device for gasifying coal | |
US3731485A (en) | Open-cycle gas turbine plant | |
US4199327A (en) | Process for gasification of coal to maximize coal utilization and minimize quantity and ecological impact of waste products | |
US4193259A (en) | Process for the generation of power from carbonaceous fuels with minimal atmospheric pollution | |
US4678480A (en) | Process for producing and using syngas and recovering methane enricher gas therefrom | |
US3818869A (en) | Method of operating a combined gasification-steam generating plant | |
US5666800A (en) | Gasification combined cycle power generation process with heat-integrated chemical production | |
US3990229A (en) | Method and arrangement for the generation of energy, particularly electrical energy | |
US3991557A (en) | Process for converting high sulfur coal to low sulfur power plant fuel | |
WO1986007396A1 (en) | Process for chemicals and energy recovery | |
CN1012000B (zh) | 清洁发电的方法 | |
US3871172A (en) | Process with fluidized combustor and fluidized heat exchanger for air | |
RU2121588C1 (ru) | Способ производства энергии | |
CN103045308A (zh) | 一种基于煤炭的碳氢组分分级转化的发电方法及系统 | |
US4444007A (en) | Method for combined cycle electrical power generation | |
SU1058509A3 (ru) | Установка дл переработки угл и получени электроэнергии и газа | |
US4143515A (en) | Converting fossil fuel and liberated water constituents to electrical energy, synthetic natural gas or miscellaneous hydrocarbons while avoiding befoulment of environment | |
JPH0250888B2 (enrdf_load_stackoverflow) | ||
WO1981002303A1 (en) | Combined production of electrical energy and fuel from peat | |
US4303415A (en) | Gasification of coal | |
US3432265A (en) | Ammonia production process | |
CN215333028U (zh) | 一种高热电比的igcc热电联产系统 | |
Squires | Clean power from dirty fuels | |
JP3787820B2 (ja) | ガス化複合発電設備 |