US3872232A - Water-cooled flexible riser tube cable terminal - Google Patents
Water-cooled flexible riser tube cable terminal Download PDFInfo
- Publication number
- US3872232A US3872232A US432431A US43243174A US3872232A US 3872232 A US3872232 A US 3872232A US 432431 A US432431 A US 432431A US 43243174 A US43243174 A US 43243174A US 3872232 A US3872232 A US 3872232A
- Authority
- US
- United States
- Prior art keywords
- cable
- riser tube
- component
- terminal
- coolant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 claims abstract description 31
- 125000006850 spacer group Chemical group 0.000 claims abstract description 15
- 238000010891 electric arc Methods 0.000 claims abstract description 6
- 239000002826 coolant Substances 0.000 claims description 19
- 239000007769 metal material Substances 0.000 claims description 4
- 239000000498 cooling water Substances 0.000 abstract description 28
- 206010041662 Splinter Diseases 0.000 abstract description 11
- 239000002131 composite material Substances 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- 229910000679 solder Inorganic materials 0.000 abstract description 5
- 238000001816 cooling Methods 0.000 abstract description 3
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229910000906 Bronze Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B9/00—Power cables
- H01B9/001—Power supply cables for the electrodes of electric-welding apparatus or electric-arc furnaces
Definitions
- ABSTRACT This water-cooled electric arc furnace cable terminal consists of a cup-shaped head and a rearwardly- Mar. 18, 1975 projecting bar-shaped terminal blade containing a cooling water passageway communicating with the interior of the head and opening into a stepped riser tube surrounded by an annular cavity in which are secured, as by solder, the outer ends of the stranded cable conductors or ropes.”
- a perforated flexible tubular elastomeric core separates the inner sides of the stranded cable conductor from the inner component of the composite riser tube in spaced relationship therewith so as to provide a cooling water passesgeway therebetween.
- the tubular core is provided with perforations enabling the cooling water to pass therethrough into the interstices between the hair-like wires of the so-called cable conductors or ropes.
- the riser tube of the terminal is composed of coaxial outer and inner components of different diameters separated from one another by circumferentiallyseparated spacers so that the cooling water can flow through the arcuate auxiliary ports thus provided between the spacers and thereby flow around the outside of the inner component of the riser tube, as well as through the interior thereof, and thus bypass wire splinter masses which might otherwise clog or plug up the water cooling passageways and cause the cable to explode from the pressure of the steam thus produced.
- the riser tube mounted within the cup-shaped head of the cable terminal consists of an outer component of larger diameter than an inner component joined thereto by circumferentially separated spacers which define arcuate auxiliary cooling water ports therebetween.
- auxiliary cooling water ports are of sufficient size to enable the cooling water to pass therethrough and bypass collections or masses of cable wire splinters which may break off as a result of the flexing of the cable during use, and which might otherwise clog the cable and prevent the flow of the cooling water, with consequent accumulation of high pressure steam and eventual bursting of the cable hose as a result thereof.
- the present invention reduces the likelihood of cable explosions resulting from the clogging of the water passageways by wire splinters by providing additional water channels resulting from the use of outer and inner riser tube components of different diameters interconnected by spacers so that cooling water can flow around the outside of the smaller-diameter component as well as through it, and thus can bypass portions of the cable clogged by wire splinters.
- FIG. 1 is a central longitudinal section, taken along the line 1-1 in FIG. 2 and partly in side elevation, of a water-cooled electric furnace cable terminal equipped with the safety non-clogging riser tube of the present invention;
- FIG. 2 is a cross-section taken along the line 2--2 in FIG. 1;
- FIG. 3 is a cross-section taken along the line 3-3 in FIG. 1.
- FIGS. 1 to 3 show a water-cooled electric arc furnace cable.
- generally designated 10 including generally a furnace cable conductor assembly 11 disposed within a flexible tubular elastomeric casing or hose 13 and a terminal 12 joined thereto in the manner set forth below.
- Each cable 10 is provided with a pair of the terminals 12, one at each end, and as these two terminals 12 are of similar construction, only one is shown in the drawing.
- Each terminal 12 includes a body 15 having a cupshaped head 14 from which projects a bar-shaped blade or connection portion 16, notched out at 18 and drilled with multiple fastener holes 20 for the purpose of bolting or otherwise securing it to the transformer or furnace terminals (not shown).
- the blade 16 at its outer end 22 is provided with a threaded port 24 for the coupling thereto of the correspondingly threaded fitting of a cooling water supply conduit (not shown).
- a cooling water passageway 26 extends inward from the threaded port 24 and opens into a counterbore 30 from which an annular end surface 28 extends radially outward to a bore 34 in the cup-shaped socket 32 of the terminal head 14.
- soldered or otherwise secured in the counterbore 30 against the end wall 36 thereof is the rearward end 38 of the elongated outer component 40 of an elongated stepped composite riser tube, generally designated 42, including an elongated flexible inner riser tube component 44 of smaller diameter having its rearward end 48 mounted in radially spaced overlapping relationship to the forward end 46 of the outer component 40.
- Soldered or otherwise secured in circumferentially spaced relationship around the inner cylindrical surface 50 of the outer riser tube component 40 are the outer sides of several spacers 52, three being shown in FIG. 2.
- the outer surface 54 of the elongated inner riser tube component 44 near the outer end 48 thereof.
- the inner riser tube component 44 is preferably in the form of a flexible metal hose, such as flexible phosphor bronze metal hose.
- the terminal head 14, blade 16, and outer riser tube component 42 are also preferably made from nonferrous metal, such as copper or bronze.
- the inner and outer riser tube components 44 and 40 and their spacers 52 collectively form the composite flexible riser tube 42. Since the inner riser tube component 44 is of smaller diameter than the outer riser tube component 40 and is separated therefrom by the spacers 52, this arrangement provides a plurality of arcuate cooling water bypass ports between the spacers 52.
- the outer surface 46 of the outer riser tube component 40, the inner surface 34 of the cup-shaped socket 32 in the terminal head 14 and the annular end surface 28 thereof collectively define an annular stranded conductor or wire rope pocket or cavity 68.
- Secured, as by solder, in the annular cavity 68 are the outer end portions 70 of stranded cable conductors or wire ropes 72 which inwardly beyond their outer end portions 70 are surrounded by perforated elastomeric tubular jackets 76, these jackets extending lengthwise of the stranded conductors or wire ropes 72.
- the flexible riser tube component 44 extends partway into the core 78.
- the hollow cylindrical side wall 84 of the terminal head 14 is provided with an annularly toothed or jagged outer surface 86 over which is drawn the end portion 88 of the elastomeric casing or hose l3 tightly secured thereto by annular hose clamps 92.
- the rearward end 38 of the outer component 40 of the previously assembled composite flexible riser tube 42 is soldered or otherwise secured in the counterbore 30.
- the outer end portions 70 of the stranded wire conductors or wire ropes 72 are then inserted in the annular cavity 68 and secured therein by pouring solder, such as silver solder,
- the remaining portion of the cooling water which does not flow through the chamber 96 of the flexible inner riser tube component 44 passes through the arcuate cooling water ports 60 between the spacers 52 and around the outer end 74 of the tubular elastomeric core 78 and through the channels provided by its fluted external surface 77, whence it flows in a similar manner through the perforations 82 into the tubular cable conductor jackets 76 and cools the hair-like wires thereof of the stranded conductors or wire ropes Subsequently, when the transmission of electric current through the cable or cables to the electric furnace heats the stranded conductors or wire ropes 72, the cable conductor assemblies are cooled by the cooling water flowing through each perforated tubular jacket 76 around the hair-like wires of the stranded conductors or wire ropes 72 of each such rope 72 in the manner described above so as to carry away the heat arising within the cable and thus prevent the cable from burning up during operation.
- a cable terminal adapted to be connected to a cable conductor assembly including a multiplicity of flexible stranded wire conductor ropes surrounding a central flexible coolant conduit within the flexible tubular casing of a water-cooled electric arc furnace cable, said terminal comprising a terminal body having a cup-shaped head portion containing a socket and having an electrical connection portion projecting outward from one end of said head portion away from said socket, and an elongated riser tube structure having an outer component with an outer end secured to said body centrally within said socket and defining with said socket an annular cavity adapted to receive the outer ends of the conductor ropes and also adapted to receive means for securing the conductor ropes to said head portion, said body having a coolant passageway therethrough communicating with said outer end of said riser tube structure,
- riser tube structure having an inner component disposed in coaxial end-to-end relationship with said outer component and adapted to be inserted in the outer end portion ofthe central flexible coolant conduit,
- said riser tube structure having connecting means joining the outer end portion of said inner component with the inner end portion of said outer componentand having coolant bypass means disposed adjacent said connecting means and effecting coolant bypass flow from said outer component exteriorly of said inner component and also exteriorly of the flexible coolant conduit into the flexible tubular casing.
- a cable terminal according to claim 1, wherein said inner component is composed of flexible metallic material.
- a cable terminal according to claim 2, wherein said outer component is composed of substantially rigid metallic material.
- a cable terminal according to claim 1, wherein said connecting means are disposed substantially in the plane of the inner end of said cup-shaped head, said coolant bypass means comprising coolant outlet port means disposed between the interconnected end portions of said outer and inner components.
- a cable terminal according to claim 1, wherein said inner component is of smaller diameter than said outer component and wherein said connecting means secures said components to one another in radially spaced relationship, said coolant bypassing means being disposed in the space between said outer and inner components.
- a cable terminal according to claim 5, wherein said connecting means are secured in circumferentially to-end overlapping relationship, and wherein said connecting means comprise spacers disposed in circumferentially spaced relationship between the overlapping end portions of said components.
Landscapes
- Insulated Conductors (AREA)
- Laying Of Electric Cables Or Lines Outside (AREA)
- Discharge Heating (AREA)
- Cable Accessories (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US432431A US3872232A (en) | 1974-01-11 | 1974-01-11 | Water-cooled flexible riser tube cable terminal |
| CA214,487A CA976631A (en) | 1974-01-11 | 1974-11-22 | Water-cooled flexible riser tube cable terminal |
| GB5217574A GB1448039A (en) | 1974-01-11 | 1974-12-03 | Water cooled flexiblre riser tube cable terminal |
| DE19752500570 DE2500570A1 (de) | 1974-01-11 | 1975-01-09 | Kabelanschluss fuer ein fluessigkeitsgekuehltes hochstromkabel |
| ES433718A ES433718A1 (es) | 1974-01-11 | 1975-01-10 | Perfeccionamientos en terminales de cables. |
| JP50005037A JPS50101885A (cs) | 1974-01-11 | 1975-01-10 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US432431A US3872232A (en) | 1974-01-11 | 1974-01-11 | Water-cooled flexible riser tube cable terminal |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3872232A true US3872232A (en) | 1975-03-18 |
Family
ID=23716130
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US432431A Expired - Lifetime US3872232A (en) | 1974-01-11 | 1974-01-11 | Water-cooled flexible riser tube cable terminal |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3872232A (cs) |
| JP (1) | JPS50101885A (cs) |
| CA (1) | CA976631A (cs) |
| DE (1) | DE2500570A1 (cs) |
| ES (1) | ES433718A1 (cs) |
| GB (1) | GB1448039A (cs) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4101730A (en) * | 1977-02-25 | 1978-07-18 | Gould Inc. | Termination for stranded cable |
| US4442312A (en) * | 1981-01-28 | 1984-04-10 | Oshkin Anatoly I | End piece of bipolar water-cooled cable |
| US4647712A (en) * | 1984-02-10 | 1987-03-03 | Les Cables De Lyon | Electric cable for transportation very high current at low voltage, and methods of manufacturing such a cable |
| DE19740912C1 (de) * | 1997-09-17 | 1999-04-01 | Karlsruhe Forschzent | Flexibles, mit Kühlmittel durchströmbares Kabelstück |
| US10766374B2 (en) * | 2018-09-17 | 2020-09-08 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Motor vehicle charging cable |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5521546U (cs) * | 1978-07-28 | 1980-02-12 | ||
| JPS5526819U (cs) * | 1978-08-10 | 1980-02-21 | ||
| JPS5651222U (cs) * | 1979-09-28 | 1981-05-07 | ||
| US4479029A (en) * | 1982-09-07 | 1984-10-23 | Toliyattinsky Politekhnichesky Institut | Bipolar flexible water-cooled cable |
| US5125004A (en) * | 1991-01-30 | 1992-06-23 | Consarc Composition | Vacuum induction melting assembly having simultaneously activated cooling and power connections |
| CN107887730B (zh) * | 2017-09-29 | 2023-10-10 | 深圳市沃尔新能源电气科技股份有限公司 | 液冷式线缆插接组件及连接器 |
| CN110829350A (zh) * | 2019-11-25 | 2020-02-21 | 淮北市平祥感应炉有限公司 | 一种感应炉水冷电缆接头 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2879317A (en) * | 1957-10-24 | 1959-03-24 | John S Wreford | Liquid-cooled obstruction-bypassing welding cable |
| US2985708A (en) * | 1960-03-16 | 1961-05-23 | Northern Electric Co | Electrical cable terminating and supporting means |
| US3244792A (en) * | 1962-04-06 | 1966-04-05 | Gar Wood Ind Inc | Water cooled connecting cable for spot welding machines |
| US3265803A (en) * | 1964-01-14 | 1966-08-09 | Gar Wood Ind Inc | Flexible electrical cable |
| US3551581A (en) * | 1968-06-20 | 1970-12-29 | Gar Wood Ind Inc | Water cooled electric cable |
| US3604831A (en) * | 1969-10-21 | 1971-09-14 | Daniel J Goodman | Fluted core |
-
1974
- 1974-01-11 US US432431A patent/US3872232A/en not_active Expired - Lifetime
- 1974-11-22 CA CA214,487A patent/CA976631A/en not_active Expired
- 1974-12-03 GB GB5217574A patent/GB1448039A/en not_active Expired
-
1975
- 1975-01-09 DE DE19752500570 patent/DE2500570A1/de not_active Ceased
- 1975-01-10 JP JP50005037A patent/JPS50101885A/ja active Pending
- 1975-01-10 ES ES433718A patent/ES433718A1/es not_active Expired
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2879317A (en) * | 1957-10-24 | 1959-03-24 | John S Wreford | Liquid-cooled obstruction-bypassing welding cable |
| US2985708A (en) * | 1960-03-16 | 1961-05-23 | Northern Electric Co | Electrical cable terminating and supporting means |
| US3244792A (en) * | 1962-04-06 | 1966-04-05 | Gar Wood Ind Inc | Water cooled connecting cable for spot welding machines |
| US3265803A (en) * | 1964-01-14 | 1966-08-09 | Gar Wood Ind Inc | Flexible electrical cable |
| US3551581A (en) * | 1968-06-20 | 1970-12-29 | Gar Wood Ind Inc | Water cooled electric cable |
| US3604831A (en) * | 1969-10-21 | 1971-09-14 | Daniel J Goodman | Fluted core |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4101730A (en) * | 1977-02-25 | 1978-07-18 | Gould Inc. | Termination for stranded cable |
| US4442312A (en) * | 1981-01-28 | 1984-04-10 | Oshkin Anatoly I | End piece of bipolar water-cooled cable |
| US4647712A (en) * | 1984-02-10 | 1987-03-03 | Les Cables De Lyon | Electric cable for transportation very high current at low voltage, and methods of manufacturing such a cable |
| US4731134A (en) * | 1984-02-10 | 1988-03-15 | Les Cables De Lyon | Methods of manufacturing electric cable for transporting very high current at low voltage |
| DE19740912C1 (de) * | 1997-09-17 | 1999-04-01 | Karlsruhe Forschzent | Flexibles, mit Kühlmittel durchströmbares Kabelstück |
| US10766374B2 (en) * | 2018-09-17 | 2020-09-08 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Motor vehicle charging cable |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1448039A (en) | 1976-09-02 |
| CA976631A (en) | 1975-10-21 |
| JPS50101885A (cs) | 1975-08-12 |
| DE2500570A1 (de) | 1975-07-17 |
| ES433718A1 (es) | 1977-01-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3872232A (en) | Water-cooled flexible riser tube cable terminal | |
| US3992565A (en) | Composite welding cable having gas ducts and switch wires therein | |
| EP0012573B1 (en) | Electric arc furnace electrodes | |
| US3359734A (en) | Electrothermal propulsion unit of the electric arc type | |
| US3808350A (en) | Liquid cooled heavy current cable | |
| US3098892A (en) | Welding cable | |
| GB1481806A (en) | Welding gun assembly | |
| US4018976A (en) | Kickless resistance welding cable and method of making the same | |
| US4346279A (en) | Narrow gap welding torch with replacement tip | |
| US2504777A (en) | Welding cable | |
| US2691691A (en) | Welding cable assembly | |
| US3127467A (en) | Welding cable assembly | |
| US2768280A (en) | Gas shielded arc welding gun with consumable electrode wire | |
| GB997262A (en) | Water-cooled connecting cable for spot welding machines | |
| JP2942354B2 (ja) | 液体により冷却される移送式アーク放電形プラズマトーチ | |
| US3315116A (en) | High intensity short-arc lamp having bi-metallic electrode leads | |
| US2879317A (en) | Liquid-cooled obstruction-bypassing welding cable | |
| US3163704A (en) | Welding cable with pressed lugs | |
| US4198111A (en) | Means and method of securing welding cable conductors to their terminal components | |
| US3501665A (en) | Plasma torch | |
| US4146773A (en) | Welding torch for plasma-mig-welding | |
| JPS6068585A (ja) | ア−ク炉用電極装置 | |
| CN107695492B (zh) | Tig焊枪 | |
| GB1042673A (en) | Arc welding gun | |
| SU1063559A1 (ru) | Кабель дл сварочной горелки |