US3871819A - Continuous liquid treatment of textile materials - Google Patents

Continuous liquid treatment of textile materials Download PDF

Info

Publication number
US3871819A
US3871819A US870825A US87082569A US3871819A US 3871819 A US3871819 A US 3871819A US 870825 A US870825 A US 870825A US 87082569 A US87082569 A US 87082569A US 3871819 A US3871819 A US 3871819A
Authority
US
United States
Prior art keywords
nylon
textile
fabric
percent
dyeing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US870825A
Inventor
James E Greer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US870825A priority Critical patent/US3871819A/en
Application granted granted Critical
Publication of US3871819A publication Critical patent/US3871819A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • D06C7/02Setting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B21/00Successive treatments of textile materials by liquids, gases or vapours
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/924Polyamide fiber

Definitions

  • ABSTRACT A process for decreasing the elongation, residual shrinkage and crocking of dyed nylon textile wherein the textile is drawn to stretch the will thereof about 2 to 5 percent and then contacted with a dye for the nylon textile, subsequently, the textile is alternately contacted with steam and liquid water maintained at temperatures between about 240F. and 300F. followed by cooling the textile and releasing the drawing tension.
  • the textile wil have an elongation not in excess of 15 percent, a shrinkage no greater than about 4 percent and improved crocking.
  • the present invention relates to a novel method and apparatus for continuously stabilizing textile materials, e.g., nylon, in conjunction with the scouring and- /or dyeing thereof.
  • textile materials e.g., nylon
  • the invention is of especial importance in connection with the treatment of narrowwoven nylon fabric,'notably nylon seat belting, where elongation and shrinkage must be carefully controlled within relatively narrow limits.
  • Crocking refers to the dyed textile having the property of allowing some of the dye to rub off during use and is determined by a standard test with a Crockmeter where a weighted projecting finger is rubbed over a surface of a dyed material and the amount of color transfer is compared with standards for evaluation.
  • nylon two responds with surprising improvement when treated with the present method as well as other synthetic thermoplastic textile materials, e.g., polyesters and acrylics such as Dacron and Acrilan.
  • stabilization as usedherein relates particularly to the shrinkage and elongation characteristics of the textile material undergoing treatment, the purpose being to so stabilize the textile that its shrinkage and elongation after processing fall within definite limits.
  • the finished textile should have an elongation'not in excess of about 15 percent and a shrinkage not greater than about 4 percent based on an individual filament or tow.
  • the elongation and shrinkage may be determined by dissecting the belt and testing an individual fiber or tow. Alternately a seat belt may be tested by pulling the belt to break and measuring the ultimate elongation.
  • shrinkage may be determined on'a complete belt by dividing the difference in the numberof picks per inch prior to boiling and the picks per inch after'boiling by the number of picks per inch after boiling. Thus, if the fabric has 18 picks per inch before boiling and 19 picks per inch after boiling the shrinkage is:
  • nylon fibers making up the tow or woven fabrics (e.g., seat belting) useful in the present invention are those fibers which are commercially available. These fibers will have had a previous stretching and stabilization treatment, e.g., 2X to 10X stretch at room temperature or above with heat setting in a relaxed or restrained condition at room temperature or aboveas is well known in the art, which results in fibers of l to 900 deniers with tenacities of 3.5 to 8 grams per denier, elongations of 18 to 60 percent and boil off shrinkages of about 6 to 15 percent. Moreoften, the fibers will have a denier of 15 to'840, an average tenacity of 4.1
  • the present invention is based on a number of important features.
  • the nylon or like textile is stabilized under wet conditions rather than in the dry state. This avoids degradation of the material and surprisingly gives faster stabilization than is possible in the dry state using the same temperature and time conditions.
  • Another unusual advantage of wet stabilizing in the manner proposed herein is that lower temperatures can be used. For example, stabilization with steam at 250F is equivalent to dry stabilization at 300F. This means that the wet stabilized yarn remains stable even if subjected to dry processing at temperatures up to 50F higher than the stabilizing temperature. This is a surprising result and an improvement. In normal methods of heat setting in hot air or contact with a hot roller, it is generally accepted that the heat setting temperature must be 30 to 50 higher than subsequent exposure temperatures.
  • Nylon that is heat set in normal methods of hot air or hot roll contact almost always turns yellow. This yellowing is most noticeable when heat setting unscoured greige yarns as received from the looms or yarn suppliers. This yellowing makes accurate shade matching quite difficult. For example, if a light blue shade of a nylon dye, e.g., percent Alizarine Lt. Blue 2GS is padded on and the belting then heat set in hot air (350F) for 5 minutes, a very greenish blue shade will develop while the next time these operations are carried out the shade will probably come up differently. Higher temperatures also make the nylon more yellow.
  • a nylon dye e.g., percent Alizarine Lt. Blue 2GS
  • the nylon does not turn yellow; it is stabilized against shrinkage; and acid or premetalized dyes are readily dyed into the nylon with good results, excellent fastness and fixation. These results are not possible with hot air heat setting methods.
  • Futhermore in carrying out the present process, it is important to have the nylon or other textile stretched out from its normal relaxed length after loom slack is removed (i.e., from about 2 to 5 percent elongation) and restrained from shrinkage during the wet stabilizing treatment. Rolls are used for this restraining action and it is another feature of the invention to utilize these rolls in such a way as to minimize the number of rolls and roll bearings which actually bear the strain imposed by the nylon being treated. This has the advantage of minimizing wear and replacement costs in the system used for stabilizing the nylon.
  • the principal object of the invention is to provide certain unique improvements in the stabilization of nylon, polyesters and polyacrylics, e.g., nylon tow and woven nylon such as belting.
  • a more specific object of the invention is the provision of a process and apparatus for continuously wet stabilizing nylon or like textile in conjunction with some other liquid treatment such as scouring and/r dyeing.
  • a more specific object is to provide woven nylon seat belting which has been so stabilized that it does not exceed the maximum permissible elongation and wet shrinkage limits referred to above.
  • FIGS. 1, 2, 3 and 4 are diagrammatic views of different types of apparatus for carrying out the invention.
  • the objects of the invention are realized by subjecting a continuously running length of the nylon textile, e.g., tow, yarn or fabric, to the action of steam or wet heat while being stretched out from 2 to 5 percent and restrained from shrinkage.
  • the time of treatment will vary from about I second to 20 minutes, e.g., l to 7 minutes.
  • this treatment is carried out simultaneously with scouring and/or dyeing or some other type of hotaqueous treatment at the desired temperature.
  • the nylon textile is cooled to less than 230F prior to release of the the tension.
  • the fabric is stretched at least about 2 percent, up to about 5 percent, in the warp direction after the loom slack is removed for the wet heat treatment described herein.
  • about the same degree of stretch should also be used in the case where nylon yarn, either multifilament 0r monofilament, is treated.
  • the 2 to 5 percent stretch is based upon the length of the fabric or belting after the loom slack has been removed.
  • the 2 to 5 percent stretch refers to a stretch of the fibers themselves in the warp direction in the case of a fabric.
  • the fibers themselves, as opposed to a woven fabric are being stretched, there is no loom slack.
  • the resulting elongation of the fabric or fibers or tow processed according to the invention is not in excess of 15 percent and shrinkage of not more than 4 percent. Furthermore, uneven dyeing, which results from the small variations in the orientation properties of the yarn constructing the seat belting, is'eliminated by the present process. This is especially important in automobiles where the manufacturer goes to great trouble and expense to provide pleasing and harmonious automobile interiors. Also, but not least, the present invention eliminates crocking altogether.
  • the seat belting of the present invention will not soil or stain white gloves and white dresses of ladies using these beltings.
  • the present process is far more economical than conventional dyeing processes where large quantities of water and many washings of the conventionally dyed seat beltings are necessary to reduce crocking to a tolerable level.
  • the present process requires an insignificant amount of water and only one washing.
  • the present process is carried outwith far less expensive equipment and the cost of processing is less than one-half that of conventional processing.
  • the seat belts produced by the present proce'ss have an elongation less than that heretofore obtainable with belts of comparable fiber deniers, width, and thickness and will prevent automobile passengers secured thereby from being bounced on such objects as steering wheels upon a collision impact, due to the greater elongation of comparable conventional belting.
  • FIG. 1 comprises a closed treating vessel 2 made of steel or other suitable material.
  • greige belting or other textile N e.g., tow, yarn, etc., as noted
  • greige belting or other textile N is fed into the entrance leg (4) of the vessel and withdrawn through the exit leg 6.
  • These legs are closed by means of appropriate pressure seals 8 which may be of any conventional type, e.g., as shown in U.S. Pat. Nos. 2,905,522 or 3,066,518.
  • the belting undergoing treatment in vessel (2) is elongated at least 2 percent and up to 5 percent of its normal length (after loom slack is removed) and maintained in this elongated condition and under complete restraint to preclude shrinkage therein.
  • the vessel is provided with the inlet and exit restraining rolls 10 and 12, respectively, as shown. By operating rolls 12 at speeds greater than that of rolls the requisite degree of stretch including the removal of. loom slack is accomplished.
  • the textile N should be cooled while passing through pressure seal 8 and rolls l2 e.g., to room temperature to 230F before the tension is released. If desired forced air or cooling water may contact textile N before the tension is released.
  • treating liquid in vessel 2 may comprise water and anappropriate scouring detergent, e.g., Charlasol F68 (Charlotte Chemical Labs), at any appropriate stabilizing temperature, e.g., one in the range of 240 to 300F., typically 260F.
  • Charlasol F68 Charlotte Chemical Labs
  • the pressure in the vessel will naturally depend on the temperature utilized but usually falls in the neighborhood of 2 to 3 atmospheres.
  • the belting after being stretched 2 to 5 percent contacts steam (water vapor above the liquid water) in leg 4, hot water in the vicinity of rolls 14 and steam (vapor) again in leg 6.
  • the wet heat is a combination of a steam/water/steam.
  • the time of treatment in vessel 2 will necessarily vary depending on such other operating factors as the temperature and nature of the nylon fabric undergoing treatment.
  • conventional nylon seat belting comprising 18 picks and ends of 840 denier, 140 filament nylon can be scoured and stabilized at 260F in the arrangement of FIG. 1 in from 2 to 6 minutes, typically 5 minutes.
  • the water could be replaced by a dye solution and the stabilizing would therefore be accomplished in conjunction with a dyeing operation.
  • the arrangement in FIG. 1 provides a way for continuously scouring or dyeing while stabilizing a web or two comprising nylon or like synthetic thermoplastic heat-settable textile material.
  • the nylon or the like may be fed to a dyeing operation with or without an intermediate washing operation.
  • the water wash and drying step, if used, and the dyeing may also be set up for continuous operation so as to provide a continuous arrangement for scouring, stabilizing and dyeing.
  • the number of rolls in scouring vessel 2 may be appropriately selected to give the desired retention time in the vessel to facilitate scouring and provide for continuity in subsequent operations.
  • the dyeing may be carried out with the fabric in the relaxed condition provided the scouring temperature exceeds the dyeing temperature by from about 30F.
  • Conventional dyeing procedures may be used but one highly effective way of dyeing scoured and stabilized belting or other materials as 6 visualized herein involves using the system shown in FIG. 2.
  • the belt N after scouring and stabilizing by means of the apparatus and method illustrated in FIG. 1, is fed into the funnel shaped entrance end 15 of the dyeing tube 16 which, while referred to as a tube herein for convenience, may have any desired cross-section, e.g., circular, rectangular or square.
  • the tube 16 is filled with hot aqueous dyebath at the desired dyeing temperature, e.g., 210 220F. Temperatures above the normal boiling point may be obtained without cavitation by, for example, applying heat at the bottom of the tube and using a tube height which is sufficient to give an appropriate liquid head and pressure at the bottom of the tube sufficient to avoid boiling.
  • the inlet and outlet ends of the tube may be provided with pressure seals to permit operations above the normal boiling point while keeping the tube height at a minimum.
  • the textile material passes downwardly through the heated dyestuff solution in the entrance leg 17 and transverse intermediate section 18 and then upwardly through the exit leg 19, the latter being enlarged to provide a retention chamber 19' for the material being treated. Since the textile material has previously been stabilized, during the scouring operation, it it preferably in the relaxed condition as it is moved through the tube. Movement of the material through the tube is preferably accomplished by circulating the dye solution through the line 20, pump 21 and the annular spray pipe 22 at the inlet end of the tube. A heat exchanger 24 is also provided to maintain the desired temperature.
  • the treated material is withdrawn from the tube 16 by roll means 26 as it comes to the top of the retention chamber 19'.
  • the flow rate and other conditions are such as to give a total treatment time in the area of4 to 8 minutes in tube 16 although the time selected for any particular situation will depend upon the other operatingv conditions.
  • a treatment time of about 5 minutes at 240 to 270F. is satisfactory.
  • the rolls 26 or other means may be used to move the textile material through the tube although, as indicated, the liquid circulation preferably serves as the sole essential means for moving the material.
  • the dimensions of the treating tube 16 may be widely varied. As a typical example, however, the legs 17 and 19 may be 3 6 feet high or even higher, e.g., 20 feet, and the intermediate section 18 may be relatively short, 1 3 feet being illustrative, or quite long, e.g., l0 15 feet or more. If the tube has a circular crosssection, the
  • the - diameter of the legs 17 and 18 may be of the order of 2 6 inches with the enlarged leg 19 approximately double this diameter.
  • the tube dimensions should be sufficient to permit the fabric or other textile material to pass easily therethrough while providing the desired retention time and it will be recognized that in some circumstances, depending on the nature of the material undergoing treatment, etc., it may not be necessary to enlarge the exitleg 19 for retention purposes.
  • FIG. 2 shows the textile folded lightly over itself in the retention chamber 19', the rate of treatment or the nature of the textile in some cases may be such that there is no substantialfolding over of the material during treatment.
  • any conventional formulation for dyeing the particular textile involved may be used in practicing the present invention.
  • Such formulations will usually comprise an appropriate dyestuff dissolved or dispersed in water with a carrier such as aromatic alcohol mixtures as described in US. Pat. No. l,8l7,205, e.g., Charlasol SD, to accelerate the dyeing.
  • a carrier such as aromatic alcohol mixtures as described in US. Pat. No. l,8l7,205, e.g., Charlasol SD
  • Such dye formulation may be automatically metered into the tube 16, for example, at inlet end 15, to make up for dyestuff taken up by the material being dyed.
  • the dyeing technique illustrated in FIG. 2 has been found to be highly effective for continuously dyeing nylon belting or other narrow fabrics using any of the conventional nylon dyestuffs, e.g., the standard black acid dyestuffs.
  • the results are especially satisfactory in the case of Logwood Black which gives excellent fastness to crocking and a black shade which is much deeper, fuller and more attractive than those otherwise obtainable.
  • a typical formulation for dyeing automotive safety belting (comprising, for example, 18 picks and ends per inch of 840 denier, 140 filament nylon Type 6 or Type 66) according to the system shown in FIG. 2 may comprise the following on a liter basis:
  • the tube 16 may be filled with the above dyeing formulation at 210F and the seat belting dyed therein using-a dyeing time of minutes.
  • the thus treated fabric N may then be continuously fed from the rolls 26 into a second tube 28 as shown in FIG. 2.
  • This second tube is preferably identical with tube 16 and may be filled with an appropriate oxidizing solution, e.g., one having the following composition per liter:
  • the tube 28 is provided with appropriate liquid circulating means as in the case of tube 16 comprising the take off line 34, pump 36 heat exchanger 38 and spray pipe 40 in the inlet end 42 of tube 28.
  • Means (not shown) for rinsing the fabric N with water between rolls 26 and the inlet rolls 44 of tube 28 may also be provided if desired. 7
  • the system shown in FIG. 2 represents a highly effective way for dyeing conventionalnylon belting black or in some other color.
  • the dye solution may be.retained in the tube after each run so that the system is very economical.
  • the fabric may be padded with the dye formulation before it enters the tube 16 but this is not essential.
  • the fabric may be stabilized in conjunction with the dyeing operation by placing appropriate restraining rolls (not shown) at the inlet and outlet ends of the tube 16, the outlet set of rolls be adapted to have a-speed greater than the inlet set of rolls. With this arrangement, the textile may be stabilized in the dyeing operation while being elongated 2 to 5 percent and in a completely restrained condition.
  • the belting is stabilized by contacting a steam (vapor above the liquid in leg 16)/liquid combination.
  • nylon Type 66 can be dyed, just as well as vType 6 nylon, to give an extremly full, deep, jet black with excellent fastness using, for example, Logwood Black dyestuff, Durol Black 2B, or Cibalon Black BGL with Charlasol SD.
  • nylon Type 66 isnot generally as readily dyed as Type 6 nylon and does not usually give as deep a black shade using the same dye formula. It should, however, be clearly understood that the process is applicable to any of the conventional nylons, e.g., nylon 6; 66; 610; ll; and 12 and mixtures thereof.
  • FIGS. 1 and 2 While highly effective results are obtained by dyeing the nylon in the system of FIG. 2 after stabilizing by the method illustrated in FIG. 1, superior results are realized if the nylon is stabilized as a part of the dyeing operation in a manner noted above in connection with FIGS. 1 and 2.
  • FIGS. 1 and 2 may be used for continuously stabilizing and dyeing nylon, rather than scouring and stabilizing.
  • the scouring op eration may be carried out on the greige goods in any conventional fashion, including the relaxed state, and preferably in a continuous manner so that the scouring, stabilizing and dyeing may be effected in a continuous series of operations.
  • FIG. 3 a molten metal seal is disclosed but, in
  • the belting or other nylon textile is again stretched out at least about 2 percent and up to 5 percent and held in this stretched condition throughout the dyeing and stabilizing operations.
  • the treatment of woven nylon fabric F is referred to for descriptive purposes although, as noted heretofore, other textile forms and compositions may be used.
  • the fabric F after scouring the greige goods in any conventional fashion is fed through the first set of restraining rolls 46 into the treating vessel 48 which may be constructed of steel or other suitable material and may have any appropriate cross-section, e.g., circular or rectangular.
  • the fabric is first passed through dye solution 50 and then through the molten metal seal 52.
  • the fabric While passing through the seal, the fabric goes around restraining roll 54 and then passes from the seal into a steam chamber 56 provided within the vessel between the closed end 58 and the seal 52. Steam is fed into the chamber 56 by means of inlet 60 and condensate is withdrawn through outlet 62.
  • the nylon F is circulated back through the vessel by passing the textile material around an end roll 64, under another restraining roll 66 which is positioned opposite roll 54 and then out through the exit restraining rolls 68. From this point, the fabric may be fed continuously to appropriate washing and drying treatments and/or whatever other operations may be desired.
  • the nylon F will normally require only one washing to reduce the crocking to a very low or nil level, but if-desired two or more washings may be performed.
  • the temperature of the wash water is preferably close to the stabilization temperature used during dyeing and stabilizing, but if it is above 240F or slightly higher, the washings must be carried out with the nylon F in a re strained condition as in the dyeing and stabilization operations.
  • the steam chamber 56 should be operated at a temperature sufficient to complete the desired dyeing action and stabilize the fabric against subsequent treatments. As indicated heretofore, this temperature will usually be in the range of 240 to 300F., e.g., 250F., and the time of treatment will be in the neighborhood of 2 to 6 minutes. These time/temperature conditions may be used to give highly effective dyeing and stabilizing using saturated steam at to 25 psi.
  • the shape of the vessel 48 may be varied, e.g., the vessel may be V- or U-shaped, it is important to have at least the inlet end of the vessel sufficiently high to accommodate the liquid differential or head H created by the steam pressure and to otherwise maintain the desired liquid metal seal against this pressure.
  • any of the conventional liquid metal seals may be utilized herein.
  • One known as Alloy 15 having a melting point in the range of 195 200F., may be mentioned as an illustration for use with steam at 15 pounds pressure and 250F.
  • other molten metal seals may also be employed.
  • the roll 66 is smaller in diameter than the roll 54 in order to space the incoming and outseen that'the arrangement of FIG. 3 includes only three rolls within the vessel. This means that there areonly three roll bearings put under strain by the nylon undergoing treatment apart from theinlet and exit restraining rolls which must in any event be used. Thus, the arrangement of FIG. 3 requires a minimum number of coming sections of the fabric. Additionally, it will be rolls and bearings subjected to'strain. This strain is very substantial and necessitates frequent changing of roll bearings. Conventional agers and dye ranges may have as many as 44 roller bearings which must be frequently replaced because of the wear and strain thereon. Hence, reducing the numberof bearings under strain to three according to the invention represents a very important advantage.
  • the arrangement of FIG. 3 maybe used for dyeing nylon in all shades and colors conventionally em ployed, e.g., black, yellow, gold, etc. It will also be appreciated that the embodiment of FIG. 3 may be used for stabilizing nylon with a liquid and/or steam treatment other than dyeing, e.g., scouring or the like, as in the case of the arrangement shown in FIG. I.
  • the metal seal effectively serves as a pad for application of the dyes.
  • the fabric F will pick up dye as it passes through the dye solution.
  • the dye picked up will not be disturbed by the liquid metal seal.
  • the liquid metal seal is, of course, heated by a conventional means, as electrically, to a suitable temperature e.g., F.
  • F a suitable temperature
  • the fabric passes through the liquid metal seal it is preheated up to the temperature of the liquid metal seal, but to a temperature below its appropriate stabilization temperature.
  • the fabric After passing through the liquid metal seal, the fabric enters steam chamber 56 where the bulk of the dyeing and stabilization takes place while the fabric is stretches from 2 to percent.
  • the fabric passes again through the liquid metal seal and is cooled to the temperature thereof.
  • the fabric again passes through the dye solution, but little if any additional dyeing takes place during this second pass as the dye solution is not heated to the necessary temperature.
  • the fabric is dyed and stabilized with wet heat or steam only.
  • FIG. 4 illustrates another way of stabilizing a textile material simultaneously with a dyeing operation and is a preferred embodiment. In this case, a mechanical.
  • pressure seal acts as a combination pad for the dye and as a seal to contain the pressure.
  • a liquid level control (not shown) on the pad-pressure seal unit maintains the dye solution at a constant level to insure even dye padding.
  • the material to be treated according to the system of FIG. 4 may be either nylon tow, filaments, yarns or fabrics; or others such as polyester or acrylic fiber.
  • Material M to be treated stretched at least 2 percent and up to 5 percent and held by the restraining rolls 68, is fed continuously through a dye pad-pressure seal unit 69, the dye composition being shown at 69a.
  • the material then goes into the inlet leg 70 of tube T, under a substantial roller 71 in the intermediate section of the tube and around roller 72 at the closed end of a lateral, angularly disposed extension or steam chamber 73 of tube T.
  • the material M then returns to pass around roller 74 in the intermediate tube section 75, up the exit leg 76, out through pressure seal unit 77, around restraining device 78 which is adapted to operate at a greater speed than roll 68 to accomplish the required stretch, and onward to be rinsed, dried and tinished, or otherwise treated.
  • Steam may be fed into the tube T as shown.
  • the intermediate section 75 may be filled with water extending up into the tube legs 70 and 76 and extension 73.
  • the material M after being stretched and padded with dye rotation, first contacts steam in the upper part of leg 70, the water in the lower part of 75 and 73, then steam at the outer end of 73 near roll 72, then water again in 75, if the level of the water is high enough and steam again in leg 76.
  • the tube T may contain only steam, except for a small amount of condensate at the bottom of 75.
  • the dye picked up by the material M is partially set in leg 70 and further set in 75 and 73.
  • the material M Upon return around roll 74 and through leg 76, the material M is washed while in the restrained condition, and of course at the dyeing and stabilizing temperature, to the extent that no further rinse, or perhaps only one further rinse, is necessary, to effect a very low or nil level of cro king.
  • the tube, particularly steam chamber 73 is operated at a temperature sufficient to complete the dyeing action and to stabilize the material M being treated. This will usually be in the range of 240 to 300F for about 5 minutes.
  • an important feature of the invention is the stabilization of fibers or fabrics with wet heat at a temperature between about 240F and 300F while being stretched about 2 to 5 percent.
  • the wet heat is supplied by an operation, e.g., near or above 240F.'
  • nylon carpet strips or fabric may be treated according to the invention and instead of working with woven nylon fabric, it is possible as indicated heretofore, to use the invention to stabilize nylon yarns or tow before weaving.
  • warp yarns may be subjected to the present wet heat treatment in the stretched condition in order to obtain the desired stability.
  • Yarn as received from the manufacturer usually is non-uniformly heat set and, as a result, demonstrates varying dyeing characteristics.
  • Application of the stabilizing treatment of the invention to such yarns eliminates these variations and gives a substantially improved product.
  • nylon tire cord yarns are stabilized by stretching and continuous exposure to wet heat, steam or water at elevated temperature; example 240 to 300F. This exposure to wet heat, water or steam, at elevated temperature while restraining the nylon at the same time, gives far superior setting to the nylon.
  • Other areas of use for the present invention in the treatment of nylon, polyesterand/or acrylic textiles, including but not limited to yarns and tows and fabrics prepared therefrom will also be apparent.
  • nylon as used herein refers to synthetic linear polyamides, including the well known Types 6 and 66, but not limited thereto.
  • any of the conventional filaments or tows may be used, e.g., l denier or lower to 900 denier or higher with or without twists such as 0 to 6 V: 7 turns per inch or tows with 100,000 total denier or lower and up to 300,000 total denier or higher.
  • the nylon filaments or tows normally will be at least partially oriented by conventional drafting, e.g., 2 to 10 times at temperatures of from roomtemperature up to below the melting point of the particular nylon.
  • the drafted nylon filament or tows will have a tenacity of between about 3.5 to 8 grams per denier and an elongation of about 18 to 60 percent at room temperature.
  • the nylon filaments or tows will normally have had a further treatment to reduce shrinkage, e.g., .heat set or heat relaxed plus some lagging, whereby the residual shrinkage at boil-off is between about 6 and 15 percent.
  • Any of the conventional fibers or tows, as described above, either alone, or after being woven into textiles, such as seat belting, may be used in the process of the invention.
  • Seat belting refers to those standard items of commerce which are woven from conventional synthetic plastics such as the nylons described above.
  • -A conventional seat belt is constructed of 18 picks and ends of 840 denier, filament nylon although other constructions may be used, e.g., 14 to 24 picks and ends of 100 to 900 denier, to 300 filament nylon.
  • a process for decreasing the elongation, residual shrinkage and crocking of a dyed nylon textile containing nylon textile fibers comprising drawing the textile to stretch the fibers about 2 to 5 percent, contacting the textile with a dye and subsequently alternately contacting the textile with steam and liquid water maintained at temperatures between about 240F. and 300F. for 1 second to 20 minutes, cooling the said textile below 230F. and releasing the drawing tension thereon, whereby the said nylon textile has an elongation of not in excess of 15 percent, a shrinkage no greater than about 4 percent and improved crocking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Coloring (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

A process for decreasing the elongation, residual shrinkage and crocking of dyed nylon textile wherein the textile is drawn to stretch the will thereof about 2 to 5 percent and then contacted with a dye for the nylon textile, subsequently, the textile is alternately contacted with steam and liquid water maintained at temperatures between about 240*F. and 300*F. followed by cooling the textile and releasing the drawing tension. The textile wil have an elongation not in excess of 15 percent, a shrinkage no greater than about 4 percent and improved crocking.

Description

United States Patent [191 Greer [111 I 3,871,819 [451 Mar 18, 1975 CONTINUOUS LIQUID TREATMENTOF TEXTILE MATERIALS [76] lnventor: James E. Greer, PO. Box B2,
Greensboro, N.C.
[22] Filed: Oct. 31, 1969 [21] App]. No.: 870,825
Related 1.1.8. Application Data [60] Division of Ser. No. 716,256, March 6, 1968,
abandoned, which is a continuation-in-part of Ser.
No. 292,389, July 2, 1963, abandoned.
52 u.s.c|. 8/13071, 8/178 511 mu ..D06m3/42 [58] Field ofSearch s/130.1, 178, 1310.21
[56] References Cited UNITED STATES PATENTS 2,307,846 l/l943 Miles 8/130.l
2,405,669 8/1946 Platt et al. 8/DIG. 16 2,447,993 8/1948 Vieira 2,641,120 6/1953 Bailey 2,669,502 2/1954 ,Walmsley 8/D1G. 21
5/1959 Mautner 8/178 OTHER PUBLICATIONS Dupont Customer Service, Nylon Technical Manual, Jan. 1954, pages 2-201, 2-202.
Primary Examiner-Thomas J Herbert, Jr. Attorney, Agent, or Firm-Cushman, Darby & Cushman [57] ABSTRACT A process for decreasing the elongation, residual shrinkage and crocking of dyed nylon textile wherein the textile is drawn to stretch the will thereof about 2 to 5 percent and then contacted with a dye for the nylon textile, subsequently, the textile is alternately contacted with steam and liquid water maintained at temperatures between about 240F. and 300F. followed by cooling the textile and releasing the drawing tension. The textile wil have an elongation not in excess of 15 percent, a shrinkage no greater than about 4 percent and improved crocking.
7 Claims, 3 Drawing Figures SHEET 1 0f 2 I /a l INVENT OR ATTORNEYS PMENTED MAR] 8l975 snmaofz INVENTOR Jfl/VEJ E @955 BY 2 Cmhrmn ATTORNEYS CONTINUOUS LIQUID TREATMENT OF TEXTILE MATERIALS This is a divisional application of Ser. No. 716,256 filed in the U.S. Pat. Office on Mar. 6, 1968, now abandoned which is a continuation-in-part of US. application Ser. No. 292,389, filed on July 2, 1963 now abandoned. The present invention'relates to a novel method and apparatus for continuously stabilizing textile materials, e.g., nylon, in conjunction with the scouring and- /or dyeing thereof. The invention is of especial importance in connection with the treatment of narrowwoven nylon fabric,'notably nylon seat belting, where elongation and shrinkage must be carefully controlled within relatively narrow limits.
As is well known, many synthetic textile materials have undesirably high elongations when placed under mechanical loading, and, consequently, require stabilization when such an application is intended. Particularly critical is the stabilization of textiles used inthe manufacture of tire cords and seat belting. Tire cord and seat belt textiles are standard items of commerce and in both cases have been stabilized by the manufacturer to have an elongation under mechanical loading in the art to provide economical and effective pro-.
cesses whereby these textiles may beboth further stabilized and fluid treated without lessening the effect of the stabilization or largely destroying it altogether.
Accordingly, the inventor sought a process whereby fluid treatment such as dyeing or scouring could be carried out in conjunction with stabilization and which would produce a product of low elongation and'minimum shrinkage, and, in the case of dyed seat belting, have a pleasing appearance and no crocking. This latter consideration of crocking is especially important in seat belting. Crocking (rubbing) refers to the dyed textile having the property of allowing some of the dye to rub off during use and is determined by a standard test with a Crockmeter where a weighted projecting finger is rubbed over a surface of a dyed material and the amount of color transfer is compared with standards for evaluation. As will be appreciated, a black dyed seat belt with unsuitable crocking properties could leave a dark smudge on a ladys white dress. Heretofore, it has been necessary to use complicated and very expensive processes to render the seat belting of acceptable crocking. The prior art processes required very large machines which performed numerous washings of the dyed seat belting with large quantities of water.
As noted above, the invention is particularly useful for seat belting but other types of nylon textiles in yarn and fabric form or the equivalent may also be advantageously processed according to the invention. Thus, nylon two responds with surprising improvement when treated with the present method as well as other synthetic thermoplastic textile materials, e.g., polyesters and acrylics such as Dacron and Acrilan.
The term stabilization as usedherein relates particularly to the shrinkage and elongation characteristics of the textile material undergoing treatment, the purpose being to so stabilize the textile that its shrinkage and elongation after processing fall within definite limits. The finished textile should have an elongation'not in excess of about 15 percent and a shrinkage not greater than about 4 percent based on an individual filament or tow. In the case of woven seat belts, the elongation and shrinkage may be determined by dissecting the belt and testing an individual fiber or tow. Alternately a seat belt may be tested by pulling the belt to break and measuring the ultimate elongation. Similarly, shrinkage may be determined on'a complete belt by dividing the difference in the numberof picks per inch prior to boiling and the picks per inch after'boiling by the number of picks per inch after boiling. Thus, if the fabric has 18 picks per inch before boiling and 19 picks per inch after boiling the shrinkage is:
1/19 5.2 percent The nylon fibers making up the tow or woven fabrics (e.g., seat belting) useful in the present invention are those fibers which are commercially available. These fibers will have had a previous stretching and stabilization treatment, e.g., 2X to 10X stretch at room temperature or above with heat setting in a relaxed or restrained condition at room temperature or aboveas is well known in the art, which results in fibers of l to 900 deniers with tenacities of 3.5 to 8 grams per denier, elongations of 18 to 60 percent and boil off shrinkages of about 6 to 15 percent. Moreoften, the fibers will have a denier of 15 to'840, an average tenacity of 4.1
to 7.5, an elongation of 18 to 53 percent and a shrinkage of about 8 to 12 percent.
The present invention is based on a number of important features. For one thing, the nylon or like textile is stabilized under wet conditions rather than in the dry state. This avoids degradation of the material and surprisingly gives faster stabilization than is possible in the dry state using the same temperature and time conditions. Another unusual advantage of wet stabilizing in the manner proposed herein is that lower temperatures can be used. For example, stabilization with steam at 250F is equivalent to dry stabilization at 300F. This means that the wet stabilized yarn remains stable even if subjected to dry processing at temperatures up to 50F higher than the stabilizing temperature. This is a surprising result and an improvement. In normal methods of heat setting in hot air or contact with a hot roller, it is generally accepted that the heat setting temperature must be 30 to 50 higher than subsequent exposure temperatures. Nylon that is heat set in normal methods of hot air or hot roll contact almost always turns yellow. This yellowing is most noticeable when heat setting unscoured greige yarns as received from the looms or yarn suppliers. This yellowing makes accurate shade matching quite difficult. For example, if a light blue shade of a nylon dye, e.g., percent Alizarine Lt. Blue 2GS is padded on and the belting then heat set in hot air (350F) for 5 minutes, a very greenish blue shade will develop while the next time these operations are carried out the shade will probably come up differently. Higher temperatures also make the nylon more yellow.
Besides yellowing, as mentioned, shade development of acid dyes or premetalized acid dyes by heat or thermosol dry hot air methods is often poor and unpredictable. Nylon simply does not readily accept acid dyes by thermosol methods.
The method and apparatus described herein overcome the above faults. Thus, the nylon does not turn yellow; it is stabilized against shrinkage; and acid or premetalized dyes are readily dyed into the nylon with good results, excellent fastness and fixation. These results are not possible with hot air heat setting methods.
Futhermore, in carrying out the present process, it is important to have the nylon or other textile stretched out from its normal relaxed length after loom slack is removed (i.e., from about 2 to 5 percent elongation) and restrained from shrinkage during the wet stabilizing treatment. Rolls are used for this restraining action and it is another feature of the invention to utilize these rolls in such a way as to minimize the number of rolls and roll bearings which actually bear the strain imposed by the nylon being treated. This has the advantage of minimizing wear and replacement costs in the system used for stabilizing the nylon.
As will be apparent from the foregoing, the principal object of the invention is to provide certain unique improvements in the stabilization of nylon, polyesters and polyacrylics, e.g., nylon tow and woven nylon such as belting. A more specific object of the invention is the provision of a process and apparatus for continuously wet stabilizing nylon or like textile in conjunction with some other liquid treatment such as scouring and/r dyeing. A more specific object is to provide woven nylon seat belting which has been so stabilized that it does not exceed the maximum permissible elongation and wet shrinkage limits referred to above.
Other objects will also be apparent from the follow- 1 ing description of the invention and the accompanying drawings wherein:
FIGS. 1, 2, 3 and 4 are diagrammatic views of different types of apparatus for carrying out the invention.
Broadly stated, the objects of the invention are realized by subjecting a continuously running length of the nylon textile, e.g., tow, yarn or fabric, to the action of steam or wet heat while being stretched out from 2 to 5 percent and restrained from shrinkage. The time of treatment will vary from about I second to 20 minutes, e.g., l to 7 minutes. Preferably, this treatment is carried out simultaneously with scouring and/or dyeing or some other type of hotaqueous treatment at the desired temperature. After the treatment the nylon textile is cooled to less than 230F prior to release of the the tension. In the case of woven nylon seat belting or the like, the fabric is stretched at least about 2 percent, up to about 5 percent, in the warp direction after the loom slack is removed for the wet heat treatment described herein. About the same degree of stretch should also be used in the case where nylon yarn, either multifilament 0r monofilament, is treated. As noted above, the 2 to 5 percent stretch is based upon the length of the fabric or belting after the loom slack has been removed. In other words, the 2 to 5 percent stretch refers to a stretch of the fibers themselves in the warp direction in the case of a fabric. Of course, when fibers themselves, as opposed to a woven fabric, are being stretched, there is no loom slack. As will be appreciated by those skilled in the art, a 2-5 percent stretch of nylon fibers results in a strain within the elastic limit of nylon. That is to say that when the stress (stretch) is removed the fibers will return to their original length prior to stretching. This is, of course, directly opposite to the normal stabilization and stretching processes where the fibers must be stretched beyond their elastic limit, i.e., beyond the region where the fibers will return to their original length prior to stretching, e.g., about 8 percent or greater. It
. is indeed surprising that the present process is able to substantially alter the resulting properties of the fibers, as the art heretofore believed that such a process would not effect properties. The reasons for this surprising resultis not understood. However, some readjustment'of the orientation must take place, since minor variations of the orientation normally present in commercially available fibers is substantially removed by the present process. Accordingly it has beennoted that slight uneven dyeing normal with commercially available fibers is substantially eliminated with yarn processed according to the present invention. i i
The resulting elongation of the fabric or fibers or tow processed according to the invention is not in excess of 15 percent and shrinkage of not more than 4 percent. Furthermore, uneven dyeing, which results from the small variations in the orientation properties of the yarn constructing the seat belting, is'eliminated by the present process. This is especially important in automobiles where the manufacturer goes to great trouble and expense to provide pleasing and harmonious automobile interiors. Also, but not least, the present invention eliminates crocking altogether. The seat belting of the present invention will not soil or stain white gloves and white dresses of ladies using these beltings. The present process is far more economical than conventional dyeing processes where large quantities of water and many washings of the conventionally dyed seat beltings are necessary to reduce crocking to a tolerable level. The present process requires an insignificant amount of water and only one washing. The present process is carried outwith far less expensive equipment and the cost of processing is less than one-half that of conventional processing. The seat belts produced by the present proce'ss have an elongation less than that heretofore obtainable with belts of comparable fiber deniers, width, and thickness and will prevent automobile passengers secured thereby from being bounced on such objects as steering wheels upon a collision impact, due to the greater elongation of comparable conventional belting.
For convenience, the invention is described in detail below using the accompanying drawings with particular reference to woven nylon seat belting although as noted, other materials such as polyesters or acrylics or other textile forms such as filament, tow, yarn and various different knitted or woven goods may also be treated in the manner described herein.
The embodiment shown in FIG. 1 comprises a closed treating vessel 2 made of steel or other suitable material. As shown, greige belting or other textile N (e.g., tow, yarn, etc., as noted) is fed into the entrance leg (4) of the vessel and withdrawn through the exit leg 6. These legs are closed by means of appropriate pressure seals 8 which may be of any conventional type, e.g., as shown in U.S. Pat. Nos. 2,905,522 or 3,066,518.
The belting undergoing treatment in vessel (2) is elongated at least 2 percent and up to 5 percent of its normal length (after loom slack is removed) and maintained in this elongated condition and under complete restraint to preclude shrinkage therein. To this end, the vessel is provided with the inlet and exit restraining rolls 10 and 12, respectively, as shown. By operating rolls 12 at speeds greater than that of rolls the requisite degree of stretch including the removal of. loom slack is accomplished. The textile N should be cooled while passing through pressure seal 8 and rolls l2 e.g., to room temperature to 230F before the tension is released. If desired forced air or cooling water may contact textile N before the tension is released. In addition, a number of rolls 14 are provided in the vessel itself, the fabric being threaded through the vessel rolls 14 in such a way, as shown, that the strain in restraining the fabric from shrinkage occurs essentially on the two end bottom rolls designated by the arrows. Wear is thus centered on the support bearings for these two rolls. The other rolls 14 offset each other. Hence, it will be seen that the arrangement of FIG. 1 provides means for,
treating liquid in vessel 2 may comprise water and anappropriate scouring detergent, e.g., Charlasol F68 (Charlotte Chemical Labs), at any appropriate stabilizing temperature, e.g., one in the range of 240 to 300F., typically 260F. This means that the space above the liquid level (L) is filled with steam which serves to stabilize the fabric in the scouring operation. The pressure in the vessel will naturally depend on the temperature utilized but usually falls in the neighborhood of 2 to 3 atmospheres. As will be appreciated, the belting after being stretched 2 to 5 percent contacts steam (water vapor above the liquid water) in leg 4, hot water in the vicinity of rolls 14 and steam (vapor) again in leg 6. Hence, in this embodiment the wet heat is a combination of a steam/water/steam.
The time of treatment in vessel 2 will necessarily vary depending on such other operating factors as the temperature and nature of the nylon fabric undergoing treatment. As an example, however, it can be stated that conventional nylon seat belting comprising 18 picks and ends of 840 denier, 140 filament nylon can be scoured and stabilized at 260F in the arrangement of FIG. 1 in from 2 to 6 minutes, typically 5 minutes. Of course, the water could be replaced by a dye solution and the stabilizing would therefore be accomplished in conjunction with a dyeing operation.
It will be appreciated that the arrangement in FIG. 1 provides a way for continuously scouring or dyeing while stabilizing a web or two comprising nylon or like synthetic thermoplastic heat-settable textile material. In the case where scouring is performed, the nylon or the like may be fed to a dyeing operation with or without an intermediate washing operation. Generally, however, it is advisable to dry the material under low tension before dyeing. The water wash and drying step, if used, and the dyeing may also be set up for continuous operation so as to provide a continuous arrangement for scouring, stabilizing and dyeing. The number of rolls in scouring vessel 2 may be appropriately selected to give the desired retention time in the vessel to facilitate scouring and provide for continuity in subsequent operations. v
If the dyeing operation follows scouring and stabilizing according to FIG. 1, the dyeing may be carried out with the fabric in the relaxed condition provided the scouring temperature exceeds the dyeing temperature by from about 30F. Conventional dyeing procedures may be used but one highly effective way of dyeing scoured and stabilized belting or other materials as 6 visualized herein involves using the system shown in FIG. 2.
Thus, as shown in FIG. 2, the belt N, after scouring and stabilizing by means of the apparatus and method illustrated in FIG. 1, is fed into the funnel shaped entrance end 15 of the dyeing tube 16 which, while referred to as a tube herein for convenience, may have any desired cross-section, e.g., circular, rectangular or square.
The tube 16 is filled with hot aqueous dyebath at the desired dyeing temperature, e.g., 210 220F. Temperatures above the normal boiling point may be obtained without cavitation by, for example, applying heat at the bottom of the tube and using a tube height which is sufficient to give an appropriate liquid head and pressure at the bottom of the tube sufficient to avoid boiling. As an alternative, the inlet and outlet ends of the tube may be provided with pressure seals to permit operations above the normal boiling point while keeping the tube height at a minimum.
As shown in FIG. 2, the textile material passes downwardly through the heated dyestuff solution in the entrance leg 17 and transverse intermediate section 18 and then upwardly through the exit leg 19, the latter being enlarged to provide a retention chamber 19' for the material being treated. Since the textile material has previously been stabilized, during the scouring operation, it it preferably in the relaxed condition as it is moved through the tube. Movement of the material through the tube is preferably accomplished by circulating the dye solution through the line 20, pump 21 and the annular spray pipe 22 at the inlet end of the tube. A heat exchanger 24 is also provided to maintain the desired temperature.
The treated material is withdrawn from the tube 16 by roll means 26 as it comes to the top of the retention chamber 19'. Usually, the flow rate and other conditions are such as to give a total treatment time in the area of4 to 8 minutes in tube 16 although the time selected for any particular situation will depend upon the other operatingv conditions. However, for dyeing conventional woven nylon seat belting having the construction indicated heretofore, a treatment time of about 5 minutes at 240 to 270F., is satisfactory. If desired, the rolls 26 or other means may be used to move the textile material through the tube although, as indicated, the liquid circulation preferably serves as the sole essential means for moving the material.
The dimensions of the treating tube 16 may be widely varied. As a typical example, however, the legs 17 and 19 may be 3 6 feet high or even higher, e.g., 20 feet, and the intermediate section 18 may be relatively short, 1 3 feet being illustrative, or quite long, e.g., l0 15 feet or more. If the tube has a circular crosssection, the
- diameter of the legs 17 and 18 may be of the order of 2 6 inches with the enlarged leg 19 approximately double this diameter. Obviously, the tube dimensions should be sufficient to permit the fabric or other textile material to pass easily therethrough while providing the desired retention time and it will be recognized that in some circumstances, depending on the nature of the material undergoing treatment, etc., it may not be necessary to enlarge the exitleg 19 for retention purposes. Thus, while FIG. 2 shows the textile folded lightly over itself in the retention chamber 19', the rate of treatment or the nature of the textile in some cases may be such that there is no substantialfolding over of the material during treatment.
Any conventional formulation for dyeing the particular textile involved may be used in practicing the present invention. Such formulations will usually comprise an appropriate dyestuff dissolved or dispersed in water with a carrier such as aromatic alcohol mixtures as described in US. Pat. No. l,8l7,205, e.g., Charlasol SD, to accelerate the dyeing. Such dye formulation may be automatically metered into the tube 16, for example, at inlet end 15, to make up for dyestuff taken up by the material being dyed.
' Black is the leading, most important, shade for dyeing nylon such as tow, flocked goods, automotive seat belting and other fabrics and it is common practice to dye the nylon black with the use of black acid dyestuffs, such as: Cibalon Black BGL, color index No. 107; Gycolan Black WAG, color index No. 52; or acid black mixtures such as Durol Black 2B, color index No. 24. However, with prior procedures these dyestuffs do not give a really full, jet black color that is so desirable. It is also well known that Logwood Black can give an extremely attractive, deep, full, bloomy black on nylon, but attempts to dye Logwood Black onto nylon belting or tapes by prior continuous methods pad/steam) have not been successful. Often the fastness is poor, especially the fastness to crocking which must be extremely good to meet the requirements on, for example, safety belting and tapes. Attempts to dye Logwood Black onto nylon in batch methods also have not been completely successful because of premature oxidation of the Logwood Dye itself, in any type of machine where the nylon is exposed to the air, such as a rotary machine, or a Buhlman machine, or a tub or beck and, from the very nature of the narrow fabrics and tapes, it has been practical to dye these in closed machines, such as a beam machine, or a cheese or package machine.
In contrast to the above noted prior art practices, the dyeing technique illustrated in FIG. 2 has been found to be highly effective for continuously dyeing nylon belting or other narrow fabrics using any of the conventional nylon dyestuffs, e.g., the standard black acid dyestuffs. The results are especially satisfactory in the case of Logwood Black which gives excellent fastness to crocking and a black shade which is much deeper, fuller and more attractive than those otherwise obtainable.
A typical formulation for dyeing automotive safety belting (comprising, for example, 18 picks and ends per inch of 840 denier, 140 filament nylon Type 6 or Type 66) according to the system shown in FIG. 2 may comprise the following on a liter basis:
50 grams/liter Logwood Paste 55 (American Dyewood Co.) 1
0.4 cc acetic acid 30.0 cc Charlasol SD (Charlotte Chemical Labs.)
Balance: water In use, the tube 16 may be filled with the above dyeing formulation at 210F and the seat belting dyed therein using-a dyeing time of minutes. The thus treated fabric N may then be continuously fed from the rolls 26 into a second tube 28 as shown in FIG. 2. This second tube is preferably identical with tube 16 and may be filled with an appropriate oxidizing solution, e.g., one having the following composition per liter:
1.5 grams/liter sodium bichromate 0.4 cc acetic acid Balance: water This oxidizing treatment may be carried out at 200F for the same time period as thedyeing in tube 16, i.e., about 5 minutes. The'thus treated fabric is withdrawn from the exit end 30 of tube 28 by rolls 32,and may then be rinsed, soaped off lightly and dried to give a highly desirable black dyeing. The product has an extremely low level of crocking or no crocking at all after only one scaping and rinsing.
As shown in FIG. 2, the tube 28 is provided with appropriate liquid circulating means as in the case of tube 16 comprising the take off line 34, pump 36 heat exchanger 38 and spray pipe 40 in the inlet end 42 of tube 28. Means (not shown) for rinsing the fabric N with water between rolls 26 and the inlet rolls 44 of tube 28 may also be provided if desired. 7
The system shown in FIG. 2 represents a highly effective way for dyeing conventionalnylon belting black or in some other color. The dye solution may be.retained in the tube after each run so that the system is very economical. If desired, the fabric may be padded with the dye formulation before it enters the tube 16 but this is not essential. It will also be appreciated that the fabric may be stabilized in conjunction with the dyeing operation by placing appropriate restraining rolls (not shown) at the inlet and outlet ends of the tube 16, the outlet set of rolls be adapted to have a-speed greater than the inlet set of rolls. With this arrangement, the textile may be stabilized in the dyeing operation while being elongated 2 to 5 percent and in a completely restrained condition. In this case, it is preferable to close the ends of the tube by means of appropriate pressure seals to facilitate the use of stabilizing temperatures above the normal boiling point. Thus, as it will be appreciated, the belting is stabilized by contacting a steam (vapor above the liquid in leg 16)/liquid combination.
The significance of the present process for dyeing nylon seat belting is stressed by the fact that belting woven with nylon Type 66 can be dyed, just as well as vType 6 nylon, to give an extremly full, deep, jet black with excellent fastness using, for example, Logwood Black dyestuff, Durol Black 2B, or Cibalon Black BGL with Charlasol SD. This is highly unusual because nylon Type 66 isnot generally as readily dyed as Type 6 nylon and does not usually give as deep a black shade using the same dye formula. It should, however, be clearly understood that the process is applicable to any of the conventional nylons, e.g., nylon 6; 66; 610; ll; and 12 and mixtures thereof.
While highly effective results are obtained by dyeing the nylon in the system of FIG. 2 after stabilizing by the method illustrated in FIG. 1, superior results are realized if the nylon is stabilized as a part of the dyeing operation in a manner noted above in connection with FIGS. 1 and 2. To this end, it will be appreciated that that arrangement of FIGS. 1 and 2 may be used for continuously stabilizing and dyeing nylon, rather than scouring and stabilizing. In this event, the scouring op eration may be carried out on the greige goods in any conventional fashion, including the relaxed state, and preferably in a continuous manner so that the scouring, stabilizing and dyeing may be effected in a continuous series of operations.
Since, it has been found that stabilizing nylon simultaneously with the dyeing operation produces superior results, an apparatus especially designed with this thought in mind is shown in FIG. 3. In this particular embodiment, a molten metal seal is disclosed but, in
lieu of this, pressure seals of the type referred to heretofore (US. Pat. Nos. 2,905,522 and 3,066,518) may also be used as shown in FIG. 4.
In the system of FIG. 3, the belting or other nylon textile is again stretched out at least about 2 percent and up to 5 percent and held in this stretched condition throughout the dyeing and stabilizing operations. Here again, for convenience, the treatment of woven nylon fabric F is referred to for descriptive purposes although, as noted heretofore, other textile forms and compositions may be used. As shown, the fabric F, after scouring the greige goods in any conventional fashion is fed through the first set of restraining rolls 46 into the treating vessel 48 which may be constructed of steel or other suitable material and may have any appropriate cross-section, e.g., circular or rectangular. Within the vessel 48, the fabric is first passed through dye solution 50 and then through the molten metal seal 52. While passing through the seal, the fabric goes around restraining roll 54 and then passes from the seal into a steam chamber 56 provided within the vessel between the closed end 58 and the seal 52. Steam is fed into the chamber 56 by means of inlet 60 and condensate is withdrawn through outlet 62.
The nylon F is circulated back through the vessel by passing the textile material around an end roll 64, under another restraining roll 66 which is positioned opposite roll 54 and then out through the exit restraining rolls 68. From this point, the fabric may be fed continuously to appropriate washing and drying treatments and/or whatever other operations may be desired. The nylon F will normally require only one washing to reduce the crocking to a very low or nil level, but if-desired two or more washings may be performed. The temperature of the wash water is preferably close to the stabilization temperature used during dyeing and stabilizing, but if it is above 240F or slightly higher, the washings must be carried out with the nylon F in a re strained condition as in the dyeing and stabilization operations.
The steam chamber 56 should be operated at a temperature sufficient to complete the desired dyeing action and stabilize the fabric against subsequent treatments. As indicated heretofore, this temperature will usually be in the range of 240 to 300F., e.g., 250F., and the time of treatment will be in the neighborhood of 2 to 6 minutes. These time/temperature conditions may be used to give highly effective dyeing and stabilizing using saturated steam at to 25 psi.
While the shape of the vessel 48 may be varied, e.g., the vessel may be V- or U-shaped, it is important to have at least the inlet end of the vessel sufficiently high to accommodate the liquid differential or head H created by the steam pressure and to otherwise maintain the desired liquid metal seal against this pressure.
Any of the conventional liquid metal seals may be utilized herein. One known as Alloy 15 having a melting point in the range of 195 200F., may be mentioned as an illustration for use with steam at 15 pounds pressure and 250F. However, other molten metal seals may also be employed.
It will be noted that the roll 66 is smaller in diameter than the roll 54 in order to space the incoming and outseen that'the arrangement of FIG. 3 includes only three rolls within the vessel. This means that there areonly three roll bearings put under strain by the nylon undergoing treatment apart from theinlet and exit restraining rolls which must in any event be used. Thus, the arrangement of FIG. 3 requires a minimum number of coming sections of the fabric. Additionally, it will be rolls and bearings subjected to'strain. This strain is very substantial and necessitates frequent changing of roll bearings. Conventional agers and dye ranges may have as many as 44 roller bearings which must be frequently replaced because of the wear and strain thereon. Hence, reducing the numberof bearings under strain to three according to the invention represents a very important advantage.
As in the other specific embodiments described herein, the arrangement of FIG. 3 maybe used for dyeing nylon in all shades and colors conventionally em ployed, e.g., black, yellow, gold, etc. It will also be appreciated that the embodiment of FIG. 3 may be used for stabilizing nylon with a liquid and/or steam treatment other than dyeing, e.g., scouring or the like, as in the case of the arrangement shown in FIG. I.
The following conditions may be given as illustrative when using the arrangement of FIG. 3 for continuously dyeing and stabilizing nylon seat belt fabric (2 inches wide and comprising 18 picks and ends per inch of 840 denier, nylon Type 6 or 66), the fabric having been previously scoured in greige form at 140F., in a soda ash, Varsol, Sterox SK mixture (proportions 1:5:1 by
weight):
Dye Solution (per Liter) 50 grams Durol Black (acid dye) 28 (Allied Chemical) 20 cc Charlasol SD 2 cc acetic acid Balance: water This forms a thickened solution quite suitable for padding.
Time of treatment: 5 minutes Metal seal*: Allo 15 at 196F. Elongation: 2% abric stretch during Stearn cham beri Steaming time: Subsequent treatment:
The metal seal effectively serves as a pad for application of the dyes. The same IS true if a pressure seal IS used.
As can be seen from FIG. 3 the fabric F will pick up dye as it passes through the dye solution. The dye picked up will not be disturbed by the liquid metal seal. The liquid metal seal is, of course, heated by a conventional means, as electrically, to a suitable temperature e.g., F. As the fabric passes through the liquid metal seal it is preheated up to the temperature of the liquid metal seal, but to a temperature below its appropriate stabilization temperature. After passing through the liquid metal seal, the fabric enters steam chamber 56 where the bulk of the dyeing and stabilization takes place while the fabric is stretches from 2 to percent. The fabric then passes again through the liquid metal seal and is cooled to the temperature thereof. The fabric again passes through the dye solution, but little if any additional dyeing takes place during this second pass as the dye solution is not heated to the necessary temperature. As can be appreciated, in this embodiment, the fabric is dyed and stabilized with wet heat or steam only.
FIG. 4 illustrates another way of stabilizing a textile material simultaneously with a dyeing operation and is a preferred embodiment. In this case, a mechanical.
pressure seal acts as a combination pad for the dye and as a seal to contain the pressure. A liquid level control (not shown) on the pad-pressure seal unit maintains the dye solution at a constant level to insure even dye padding.
As before, the material to be treated according to the system of FIG. 4 may be either nylon tow, filaments, yarns or fabrics; or others such as polyester or acrylic fiber. Material M to be treated stretched at least 2 percent and up to 5 percent and held by the restraining rolls 68, is fed continuously through a dye pad-pressure seal unit 69, the dye composition being shown at 69a. The material then goes into the inlet leg 70 of tube T, under a substantial roller 71 in the intermediate section of the tube and around roller 72 at the closed end of a lateral, angularly disposed extension or steam chamber 73 of tube T. The material M then returns to pass around roller 74 in the intermediate tube section 75, up the exit leg 76, out through pressure seal unit 77, around restraining device 78 which is adapted to operate at a greater speed than roll 68 to accomplish the required stretch, and onward to be rinsed, dried and tinished, or otherwise treated. Steam may be fed into the tube T as shown. If desired, the intermediate section 75 may be filled with water extending up into the tube legs 70 and 76 and extension 73. In such a case the material M, after being stretched and padded with dye rotation, first contacts steam in the upper part of leg 70, the water in the lower part of 75 and 73, then steam at the outer end of 73 near roll 72, then water again in 75, if the level of the water is high enough and steam again in leg 76. Or, as noted above, the tube T may contain only steam, except for a small amount of condensate at the bottom of 75. However, when the tube T contains water at the bottom of 75 and optionally up into legs 70 and 76, the dye picked up by the material M is partially set in leg 70 and further set in 75 and 73. Upon return around roll 74 and through leg 76, the material M is washed while in the restrained condition, and of course at the dyeing and stabilizing temperature, to the extent that no further rinse, or perhaps only one further rinse, is necessary, to effect a very low or nil level of cro king. Of course, in this embodiment it would be necessary to occassionally change the water in 75 or continually replace the' water in 75 with fresh make-up water. The tube, particularly steam chamber 73 is operated at a temperature sufficient to complete the dyeing action and to stabilize the material M being treated. This will usually be in the range of 240 to 300F for about 5 minutes.
As can be seen from the above disclosure, an important feature of the invention is the stabilization of fibers or fabrics with wet heat at a temperature between about 240F and 300F while being stretched about 2 to 5 percent. Ideally, the wet heat is supplied by an operation, e.g., near or above 240F.'
Various different applications and modifications of the inventive concepts described above are contem plated herein. For example, nylon carpet strips or fabric may be treated according to the invention and instead of working with woven nylon fabric, it is possible as indicated heretofore, to use the invention to stabilize nylon yarns or tow before weaving. Thus, for example, warp yarns may be subjected to the present wet heat treatment in the stretched condition in order to obtain the desired stability. Yarn as received from the manufacturer usually is non-uniformly heat set and, as a result, demonstrates varying dyeing characteristics. Application of the stabilizing treatment of the invention to such yarns eliminates these variations and gives a substantially improved product. Another advantageous area of use is in the stabilizing of tire cord to eliminate so-called flat spotting." The nylon tire cord yarns are stabilized by stretching and continuous exposure to wet heat, steam or water at elevated temperature; example 240 to 300F. This exposure to wet heat, water or steam, at elevated temperature while restraining the nylon at the same time, gives far superior setting to the nylon. Other areas of use for the present invention in the treatment of nylon, polyesterand/or acrylic textiles, including but not limited to yarns and tows and fabrics prepared therefrom will also be apparent. It will also be understood that the term nylon as used herein refers to synthetic linear polyamides, including the well known Types 6 and 66, but not limited thereto.
Further, any of the conventional filaments or tows may be used, e.g., l denier or lower to 900 denier or higher with or without twists such as 0 to 6 V: 7 turns per inch or tows with 100,000 total denier or lower and up to 300,000 total denier or higher. The nylon filaments or tows normally will be at least partially oriented by conventional drafting, e.g., 2 to 10 times at temperatures of from roomtemperature up to below the melting point of the particular nylon. The drafted nylon filament or tows will have a tenacity of between about 3.5 to 8 grams per denier and an elongation of about 18 to 60 percent at room temperature. Further, the nylon filaments or tows will normally have had a further treatment to reduce shrinkage, e.g., .heat set or heat relaxed plus some lagging, whereby the residual shrinkage at boil-off is between about 6 and 15 percent. Any of the conventional fibers or tows, as described above, either alone, or after being woven into textiles, such as seat belting, may be used in the process of the invention. Seat belting refers to those standard items of commerce which are woven from conventional synthetic plastics such as the nylons described above. -A conventional seat belt is constructed of 18 picks and ends of 840 denier, filament nylon although other constructions may be used, e.g., 14 to 24 picks and ends of 100 to 900 denier, to 300 filament nylon.
What is claimed is:
l. A process for decreasing the elongation, residual shrinkage and crocking of a dyed nylon textile containing nylon textile fibers comprising drawing the textile to stretch the fibers about 2 to 5 percent, contacting the textile with a dye and subsequently alternately contacting the textile with steam and liquid water maintained at temperatures between about 240F. and 300F. for 1 second to 20 minutes, cooling the said textile below 230F. and releasing the drawing tension thereon, whereby the said nylon textile has an elongation of not in excess of 15 percent, a shrinkage no greater than about 4 percent and improved crocking.
2. The process of claim 1 wherein the fabric is pad- Q UNITED STATES PATENT OFFICE CERTHTCATE 0F CORRECTION P t N 3,871,819 Dated March 18, 1975 Inventor(s) JAMES E. GREER It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Please add the followlng to the front page format after the inventor's name and address:
--[73] Assignee: Burlington Industries, Inc., C
Greensboro, North Carolina-- ngncd and Sealed this ninth [SEAL] Day Of September1975 Attest.
RUTH C. MASON C MARSHALL) ANN a Anemng 0111C ('ummissimu'r nj'larenrs and Trademarks ORM O-1050 (10-69) V uscoMM-Dc wan-pas

Claims (7)

1. A PROCESS FOR DECREASING THE ELONGATION, RESIDUAL SHRINKAGE AND CROCKING OF A DYED NYLON TEXTILE CONTAINING NYLON TEXTILE FIBERS COMPRISING DRAWING THE TEXTILE TO STRETCH THE FIBERS ABOUT 2 TO 5 PERCENT, CONTACTING THE TEXTILE WITH A DYE AND SUBSEQUENTLY ALTERNATELY CONTACTING THE TEXTILE WITH STEAM AND LIQUID WATER MAINTAINED AT TEMPERATURES BETWEEN ABOUT 24O*F. AND 300*F. FOR 1 SECOND TO 20 MINUTES, COOLING THE SAID TEXTILE BELOW 230*F. AND REALEASING THE DRAWING TENSION THEREON, WHEREBY THE SAID NYLON TEXTILE HAS AN ELONGATION OF NOT IN EXCESS OF 15 PERCENT, A SHRINKAGE NO GREATER THAN ABOUT 4 PERCENT AND IMPROVED CROCKING.
2. The process of claim 1 wherein the fabric is padded with a dye.
3. The process of claim 1 wherein the aqueous liquid water contains a dye.
4. The process of claim 1 wherein the fabric is rinsed prior to release of the drawing tension.
5. The process of claim 1 wherein the fabric is rinsed subsequent to release of the drawing tension.
6. The process of claim 1 wherein the fabric first contacts steam.
7. The process of claim 1 wherein the fabric is a seat belt.
US870825A 1968-03-06 1969-10-31 Continuous liquid treatment of textile materials Expired - Lifetime US3871819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US870825A US3871819A (en) 1968-03-06 1969-10-31 Continuous liquid treatment of textile materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71625668A 1968-03-06 1968-03-06
US870825A US3871819A (en) 1968-03-06 1969-10-31 Continuous liquid treatment of textile materials

Publications (1)

Publication Number Publication Date
US3871819A true US3871819A (en) 1975-03-18

Family

ID=27109497

Family Applications (1)

Application Number Title Priority Date Filing Date
US870825A Expired - Lifetime US3871819A (en) 1968-03-06 1969-10-31 Continuous liquid treatment of textile materials

Country Status (1)

Country Link
US (1) US3871819A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2412642A1 (en) * 1977-12-22 1979-07-20 Eltz H U Von Der PROCESS FOR DYING AND PRINTING PLANNED TEXTILE MATERIALS CONTAINING SYNTHETIC FIBERS
US5613986A (en) * 1993-05-17 1997-03-25 Hoechst Celanese Corporation Synthetic fiber dyeing process
GB2328956A (en) * 1997-09-05 1999-03-10 Scapa Group Plc Heat setting apparatus
US20060096073A1 (en) * 2004-11-10 2006-05-11 Invista North America S.A R.L. Method to make elastic shirting fabric comprising spandex and hard yarn
US20070056122A1 (en) * 2005-09-14 2007-03-15 Zzakey Technologies Ltd. Dyeing apparatus and method therefor
US20070259583A1 (en) * 2004-11-10 2007-11-08 Invista North America S.A R.L. Elastic fabric including elastic fiber and hard yarn and methods for making
GB2467014A (en) * 2009-01-20 2010-07-21 Toray Textiles Europ Ltd Process for making woven fabrics
US11591748B2 (en) 2020-01-14 2023-02-28 Shadow Works, Llc Heat treated multilayer knitted textile of liquid crystal polymer fibers and modified polyacrylonitrile fibers, and process for making same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2307846A (en) * 1939-05-06 1943-01-12 Du Pont Production of synthetic structures
US2405669A (en) * 1938-06-14 1946-08-13 Celanese Corp Coloration of textile materials
US2447993A (en) * 1945-02-22 1948-08-24 Du Pont Process for dyeing textile fibers with vat dyes
US2641120A (en) * 1948-05-21 1953-06-09 Bailey Dye Works Apparatus for finishing hosiery
US2669502A (en) * 1951-07-16 1954-02-16 American Viscose Corp Method for dyeing and presetting tricot fabrics
US2888313A (en) * 1956-07-23 1959-05-26 Gen Aniline & Film Corp Continuous dyeing process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2405669A (en) * 1938-06-14 1946-08-13 Celanese Corp Coloration of textile materials
US2307846A (en) * 1939-05-06 1943-01-12 Du Pont Production of synthetic structures
US2447993A (en) * 1945-02-22 1948-08-24 Du Pont Process for dyeing textile fibers with vat dyes
US2641120A (en) * 1948-05-21 1953-06-09 Bailey Dye Works Apparatus for finishing hosiery
US2669502A (en) * 1951-07-16 1954-02-16 American Viscose Corp Method for dyeing and presetting tricot fabrics
US2888313A (en) * 1956-07-23 1959-05-26 Gen Aniline & Film Corp Continuous dyeing process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2412642A1 (en) * 1977-12-22 1979-07-20 Eltz H U Von Der PROCESS FOR DYING AND PRINTING PLANNED TEXTILE MATERIALS CONTAINING SYNTHETIC FIBERS
US5613986A (en) * 1993-05-17 1997-03-25 Hoechst Celanese Corporation Synthetic fiber dyeing process
GB2328956A (en) * 1997-09-05 1999-03-10 Scapa Group Plc Heat setting apparatus
US20060096073A1 (en) * 2004-11-10 2006-05-11 Invista North America S.A R.L. Method to make elastic shirting fabric comprising spandex and hard yarn
US20070259583A1 (en) * 2004-11-10 2007-11-08 Invista North America S.A R.L. Elastic fabric including elastic fiber and hard yarn and methods for making
US20070056122A1 (en) * 2005-09-14 2007-03-15 Zzakey Technologies Ltd. Dyeing apparatus and method therefor
US7398660B2 (en) * 2005-09-14 2008-07-15 Zzakey Technologies Ltd Dyeing apparatus and method therefor
GB2467014A (en) * 2009-01-20 2010-07-21 Toray Textiles Europ Ltd Process for making woven fabrics
US11591748B2 (en) 2020-01-14 2023-02-28 Shadow Works, Llc Heat treated multilayer knitted textile of liquid crystal polymer fibers and modified polyacrylonitrile fibers, and process for making same

Similar Documents

Publication Publication Date Title
US3986824A (en) Process for the manufacture of a dyed sheet-like textile structure
US6613103B2 (en) Method for dyeing fabric comprising elastomeric fiber
US3871819A (en) Continuous liquid treatment of textile materials
US4342565A (en) Brushed stretch denim fabric and process therefor
US3290752A (en) Woven cotton-polyester blend fabrics having recoverable stretch characteristics
US2685120A (en) Fabric having contoured decorative surface
US4283194A (en) Brushed stretch denim fabric and process therefor: indigo dyeing
CN112195666A (en) Dyeing and finishing processing technology of novel ultra-high elastic fabric based on PBT composite yarn
US3247569A (en) Woven fabric and method of making same
US3538563A (en) Apparatus for imparting elasticity to woven textile fabrics
US3621679A (en) Continuous liquid treatment of textile materials
US6752840B1 (en) Denim-like article of clothing and method of producing the same
US3153838A (en) Worsted/synthetic stretch fabric and process for manufacturing same
US2750250A (en) Method for dyeing polyacrylonitrile fabrics
US6544300B1 (en) Process for making dyed textile materials having high colorfastness, and materials made therefrom
JP2023524791A (en) spunbond cellulose fiber
US3531237A (en) Process for heat-setting and dyeing synthetic fibers
US2474890A (en) Dyeing of nylon fabrics with insoluble acetate dyes and a subsequent steaming step
US3530510A (en) Durable press process
US3573858A (en) Permanent press process
Ashworth et al. The Influence of Consumer Requirements on the Dyeing and Finishing of Celon (Nylon 6)
Schipholt Dyeing, Printing and Finishing of Fabrics Containing Lycra Elastomeric Fibre
US4102640A (en) Process for the processing of organic textile materials
JPH04214484A (en) Method for dyeing polyamide fiber structured article
KR890002180B1 (en) Manufactured method of wrinkled fabric