US3871328A - Coating chamber - Google Patents

Coating chamber Download PDF

Info

Publication number
US3871328A
US3871328A US219222*[A US21922272A US3871328A US 3871328 A US3871328 A US 3871328A US 21922272 A US21922272 A US 21922272A US 3871328 A US3871328 A US 3871328A
Authority
US
United States
Prior art keywords
chamber
wall
powder
cylinder
numeral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US219222*[A
Inventor
William P English
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US219222*[A priority Critical patent/US3871328A/en
Application granted granted Critical
Publication of US3871328A publication Critical patent/US3871328A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/02Apparatus specially adapted for applying particulate materials to surfaces using fluidised-bed techniques
    • B05C19/025Combined with electrostatic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S118/00Coating apparatus
    • Y10S118/05Fluidized bed

Definitions

  • ABSTRACT 52 U.S. c1 118/629, 117/110. 6, 117/9342, A coating chamber having a drum shaped porous ll, 113 1310 5 11 30 113/ 33 rotatable to expose the wall alternately to pressure [51] Int. Cl. B05c 5/02 d Suction is p y to Create a POWder Cloud and [58] Field 61 Search 118/323, 629, 630, 631, Collect Powder not deposited on the article being ug 5 3 39 40 49 1 49 5 27 coated.
  • Powder so collected is re-blown into the 29 30 31 33 49 1 49 5 309 312 cloud, without going thru a conventional collector sys- 32 34 35; 117 6, 9342 107 1 tern.
  • the invention may be used without electrical charging of the wall, in the process wherein parts are [56] References Ci preheated, or the wall may be electrically charged for the leCIi0StatiC Coating prOCeSS. 3,628,50l l2/l97l Jackson et al. 118/630 5 Claims, 6 Drawing Figures 3 -l I 2 L 22 23 ⁇ l ?.0 i i 31 minimum 1 8 i9?5 SHEET 2 BF 4 FIG.
  • air is the means by which the powder cloud is formed, generally, it will be understood that wherever the term air is used herein any other suitable gas or fluid may be used.
  • the invention as shown and described, is intended to be used primarily in a production coating process wherein a conveyor moves the articles to be coated thru the chamber.
  • the normal coating chamber consists of a fluidized bed having a porous bottom thru which air may flow upward.
  • the upward flow causes powder covering the bottom to rise in a cloud.
  • An electrostatic charge may be imparted to the powder particles to cause them to adhere to the article being coated.
  • the article to be coated may be held in the cloud manually, it may be supported in a holding fixture moving it in desired ways, or a conveyor may be used to transport a quantity thru the cloud.
  • a hood having an opening to a fan or vacuum system. This is to carry away any powder not deposited on the article being coated, and carries away the pressurized air which has passed thru the porous bottom to convey the powder particles.
  • the hood may, or may not, have walls enclosing the region above the fluidized bed; but preferably will have to prevent excursion of powder outside of the coating area.
  • Openings are then provided to permit insertion of the articles to be coated, or for a conveyor to carry them thru the powder cloud.
  • the powder In the normal coating chamber the powder is formed into a cloud by forcing a flow of air from the bottom upwardnThe airborne particles are then caused to deposit on the article being coated either by electrostatic attraction or by heat fusing with pre-heating before entering the chamber. The coated parts are then conveyed thru a heating cycle of sufficient time and temperature to complete the curing and bonding process.
  • not all powders are manufactured with the desired uniformity of grain size.
  • the finer powder particles have a tendency to become airborne first leaving the coarser particles in the fluidizing bed.
  • a sensor is used to determine when the powder level falls below a specified level. Visual observation and manual gaging may also be used. When the sensor detects the need for more powder it is fed into the chamber; either manually, in response to the signal to theoperator; or automatically, in response to controls actuated in a mechanical feeder. If feeding is intermittent whenever the feeding cycle is operating there is a change in the cloud density causing a change in the coating thickness.
  • a drier might be provided in such a system. Its cost, like that of the air conditioned room, might also be unwarranted because of the large quantity of air that would be required to dehydrate in order to dry the powder.
  • FIG. 1 is a longitudinal view of a coating chamber embodying the features of the present invention therein;
  • FIG. 2 is a side view through the section defined by arrow 22 of FIG. 1;
  • FIG. 3 is a side view through the section defined by arrow 3-3 of FIG. 1',
  • FIG. 4 is a full length view through the section defined by arrows 4-4 of FIG. 3;
  • FIGS. 5 and 6 illustrate another version of the invention wherein the slip ring and brush are eliminated.
  • numeral 1 designates a base comprising the bottom of the coating chamber.
  • Numerals 2 and 3 are end walls matching, in FIG. 2, the outline defined by the outer line of walls 11, 12, 15 and 16 and the lower outer wall of tube 22.
  • walls 2,4,5,6,7,8,9 and 10 are of equal length and abut the inner faces of walls 2 and 3 of FIG. 1.
  • tube 13 projects thru wall 2 and ends in wall 3.
  • Tube 22 fits matching cutouts in the top of walls 2 and 3 as shown in FIG. 2.
  • walls 2, 3, 4, 5, 6, 7, 8, 9, 10, ll, l2, l5 and 16 and tubes 13 and 22 would be cemented or welded together to insure sealing and insulation of any high voltage.
  • Numerals l7, l8, 19, 20 and 21 define a double walled cylinder, numerals 20 and 21 being end rings connected by spacers l9. Said spacers are rigidly attached to rings 20 and 21 by cementing welding or mechanical fasteners.
  • Walls 17 and 18 are made of some porous material which may be metal, plastic or other material such as fine mesh screen. Wall 17 may be omitted with spacer l9 altered to suit.
  • wall 18 If the material of wall 18 is chosen to be some non-conductive material then it must have a conductive layer, such as metal screen on its inner surface. Wall 18 will, however be made of porous metal. Walls 17 and 18 should also be attached to spacer 19 along their entire length. This will preferably be done with cement or by heat fusing.
  • Slip ring 30 is inserted in ring 21 and connected to the conductive surface of wall 18 by connector 31.
  • Said cylinder is free to rotate inside of seals 45, which for the sake of simplicity are shown herein as conventional rings but may be any other suitable type such as inflatable tubes or lip seals, or close fitting of the related parts may provide sufficient sealing.
  • Walls 26 and 27 are attached to walls 2 and 3 respectively by screws 29, suitably spaced.
  • a suitable gasket or sealant may be installed between walls 27 and 2 and between walls 3 and 26.
  • FIG. 3 is a side view thru the section defined by arrow 3-3 of FIG. 1.
  • FIG. 4 is a full length view thru the section defined by arrows 4-4 of FIG. 3. This arrangement is duplicated in the same relative position on the opposite side of the vertical center section.
  • Numerals 54 and 53 are rollers rigidly affixed to shaft 43.
  • Shaft 43 is mounted in ball bearings 42 and 44, which are of the sealed type and supported in bosses 48 and 49 on walls 26 and 27 respectively.
  • Shaft 43 is driven by some outside power source, such as an electric motor turning thru a gear box to obtain the desired low rotational speed, perhaps I or'2 RPM (to be determined by testing for each application) of said cylinder.
  • Rollers 53 and 54 may also be, instead, gears meshing with teeth cut in or attached to ring 21. Cutouts are provided thru walls '7.
  • Shaft 43 and tube 66 must be made of some suitable insulating material of sufficient length to prevent high voltage electrical leakage from slip ring 30 and wall 18. In general parts are made of some insulating material, preferably plastic, unless obviously unsuitable for the intended purpose.
  • Numeral 36 is a tube extending thru wall 27 to convey powder into the rotatable cylinder.
  • Numeral 34 indicates a brush urged into contact with slip ring 30 by spring numeral 33.
  • Numeral is an insulating sleeve supporting and guiding brush 34 and spring 33.
  • High voltage in the range of perhaps 20,000 to lO0,000 volts is supplied to brush 34 from regulateable power source numeral 40.
  • Brush numeral 34 and spring numeral 33 shall be adequately insulated to their connection with the cable from power supply numeral 40. This may be with any commonly known method.
  • Air, or other fluid, is supplied by pressure source numeral 39 to tube numeral 13, from which it flows thru holes numeral 25 into chamber numeral 56, which is defined by walls numerals 4, 5, 6 and 17.
  • the pressure shall be as determined necessary to flow thru porous walls numerals l7 and 18 with sufficient velocity to cause a suitable powder cloud to be formed.
  • the powder particles are then electrostatically charged from the conductive surface of wall numeral 18 and attached to the grounded article being coated, to which the powder adheres due to electrostatic attraction.
  • Pressure source numeral 39 and suction source numeral 41 may and preferably will be, a single unit with constant recycling and conditioning for temperature and humidity. They may be regulatable, as required.
  • Vibrator numeral 52 may be attached to hopper 28 to facilitate powder flow therethru to opening numeral 50 from where it is conveyed along the path indicated by arrow numeral 51, thru drier numeral 32, which may be optional, to powder feeder numeral 38 and back to tube numeral 36. Vibrator numeral 52 may also be attached to tube 36, or to any other place where the powder may have a tendency to stick.
  • the powder conveyor may be any suitable commercial type such as screw, bucket chain or air.
  • Openings 37 are to permit insertion and removal of the article to be coated.
  • a conveyor will pass therethru.
  • Said openings, as well as the entire mechanism including the conveyor may be designed to the optimum size and related characteristics, as required by the articles to be coated.
  • Walls numerals 7 and 8 fit the outer surface of wall numeral 17 as closely as possible to seal against leakage of air from chamber numeral 56 to chamber numeral 57.
  • Other sealing means may be provided such as longitudinal slots forming a labyrinth seal, or other sealing means such as an O-ring numeral 67 or a lip seal may be provided.
  • the spacing of spacers numeral 19 shall be such that there are always at least two in the region overlapped by walls numerals 7 and 8.
  • Passage numeral 58 conveys pressure air, to the space between seals numeral 45, wall numeral 3 and ring numeral 21, to prevent entrance of powder to the slip ring and brush.
  • FIGS. 5 and 6 depict a simpler version of the invention wherein the slip ring and brush are eliminated.
  • the wall 18, need not be of conductive material or have a conductive surface applied.
  • a fixed screen or grid, which may or may not conform to the curvature of wall 18, as shown, is supported on walls 26 and 27 by pins numerals 60 and 62.
  • Pin 60 projects thru wall 26 to connector 61, which is connected to regulatable high voltage power supply and suitably insulated by any well known means.
  • Grid numeral 64 is supported by frames numeral 59 which are supported on walls 26 and 27.
  • the wall 3, as shown in FIG. 1 is replaced by the simpler design in FIG. 6 as numeral 63.
  • With the slip ring and brush omitted ring 21 is replaced by the simpler design numeral 65.
  • Other parts, in general except for obvious reasons, remain as shown in FIGS. 1' thru 4.
  • tion fluids and said end rings means to provide pressurized fluid to said chamber for pressurized fluid and means to provide suction to said chamber for suction of fluid, means for feeding powder into said cylinder, means for removing excess powder from said cylinder, means for conditioning excess powder and recirculating it back into said cylinder, walls enclosing said cylinder and chambers, said walls having openings for means to convey articles being coated into and out of said cylinder, and means for rotating said cylinder.
  • a coating chamber in accordance with claim 2 having a slip ring on one of said end rings, said slip ring connected to said conductive wall, a brush contacting said slip ring, said sealing means surrounding said slip ring and brush, a source of high voltage connected to said brush.
  • a coating chamber in accordance with claim 3 having means to provide pressurized fluid in the space confined by said sealing means.
  • a coating chamber in accordance with claim ll having a grid spaced within the area enclosed by said circumferential wall, said grid being located so powder fluidized by said pressurized chamber will flow therethrough and being connected -to a high voltage electric current.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

A coating chamber having a drum shaped porous wall, rotatable to expose the wall alternately to pressure and suction is employed to create a powder cloud and collect powder not deposited on the article being coated. Powder so collected is re-blown into the cloud, without going thru a conventional collector system. The invention may be used without electrical charging of the wall, in the process wherein parts are preheated, or the wall may be electrically charged for the electrostatic coating process.

Description

United States Patent 1191 English 1 5] Mar. 18, 1975 COATING CHAMBER 3,640,246 2/1972 .IfiIOmin et al. .1 ll8/629 Inventor: William P. g 17 Strong 3,678,894 7/1972 Walsh ll8/3l2 X plamvmelconn' 06062 Primary Examiner-Mervin Stein [22] Filed: -Apr. 13, 1972 Assistant Examiner-Leo Millstein [21] Appl. N0.: 219,222
[57] ABSTRACT 52 U.S. c1 118/629, 117/110. 6, 117/9342, A coating chamber having a drum shaped porous ll, 113 1310 5 11 30 113/ 33 rotatable to expose the wall alternately to pressure [51] Int. Cl. B05c 5/02 d Suction is p y to Create a POWder Cloud and [58] Field 61 Search 118/323, 629, 630, 631, Collect Powder not deposited on the article being ug 5 3 39 40 49 1 49 5 27 coated. Powder so collected is re-blown into the 29 30 31 33 49 1 49 5 309 312 cloud, without going thru a conventional collector sys- 32 34 35; 117 6, 9342 107 1 tern. The invention may be used without electrical charging of the wall, in the process wherein parts are [56] References Ci preheated, or the wall may be electrically charged for the leCIi0StatiC Coating prOCeSS. 3,628,50l l2/l97l Jackson et al. 118/630 5 Claims, 6 Drawing Figures 3 -l I 2 L 22 23 \l ?.0 i i 31 minimum 1 8 i9?5 SHEET 2 BF 4 FIG.
of powdered plastic to an article onto which the plastic is subsequently caused to adhere by heating, thereby fusing the plastic thereto. It is preferably utilized with the electrostatic process but may be used, as readily, in a process using air only as a means of dispersing and directing the flow of powder particles.
While air is the means by which the powder cloud is formed, generally, it will be understood that wherever the term air is used herein any other suitable gas or fluid may be used.
The invention, as shown and described, is intended to be used primarily in a production coating process wherein a conveyor moves the articles to be coated thru the chamber.
The normal coating chamber consists of a fluidized bed having a porous bottom thru which air may flow upward. The upward flow causes powder covering the bottom to rise in a cloud. An electrostatic charge may be imparted to the powder particles to cause them to adhere to the article being coated. The article to be coated may be held in the cloud manually, it may be supported in a holding fixture moving it in desired ways, or a conveyor may be used to transport a quantity thru the cloud.
Above the bed is usually a hood, having an opening to a fan or vacuum system. This is to carry away any powder not deposited on the article being coated, and carries away the pressurized air which has passed thru the porous bottom to convey the powder particles. The hood may, or may not, have walls enclosing the region above the fluidized bed; but preferably will have to prevent excursion of powder outside of the coating area.
Openings are then provided to permit insertion of the articles to be coated, or for a conveyor to carry them thru the powder cloud.
It will be understood throughout that whenever the invention described is to be used without the electrostatic process those features required only for that process may be omitted.
In the normal coating chamber the powder is formed into a cloud by forcing a flow of air from the bottom upwardnThe airborne particles are then caused to deposit on the article being coated either by electrostatic attraction or by heat fusing with pre-heating before entering the chamber. The coated parts are then conveyed thru a heating cycle of sufficient time and temperature to complete the curing and bonding process.
In some applications accurate control of the coating thickness is not essential. Lack of control can be wasteful of material. In many applications very accurate control of coating thickness is required for mechanical, electrical, durability,or other reasons. The present designs of production coating chambers have been found to have certain inherent deficiencies which are overcome by the present invention.
Not all powders are manufactured with the desired uniformity of grain size. During the coating process the finer powder particles have a tendency to become airborne first leaving the coarser particles in the fluidizing bed. A sensor is used to determine when the powder level falls below a specified level. Visual observation and manual gaging may also be used. When the sensor detects the need for more powder it is fed into the chamber; either manually, in response to the signal to theoperator; or automatically, in response to controls actuated in a mechanical feeder. If feeding is intermittent whenever the feeding cycle is operating there is a change in the cloud density causing a change in the coating thickness. With the accumulation of coarse particles in the coating chamber, due to initial dispersion of the finer particles, the cloud density again changes, due to lesser effectiveness of the air stream in causing the powder particles to rise and circulate. Thia accumulation of coarse particles also causes a change in the coating thickness.
Most, if not all, powders are sensitive to moisture content. This is especially true in the electrostatic process. If the coater is not in an air conditioned room, the requirement for which may be an unwarranted expense, any change in atmospheric humidity affects the moisture content of the powder; again causing a variation in uniformity of thickness. In the case of high atmospheric humidity, this condition may have a cumulative affect causing a constant variation in performance of the coater and having an extremely adverse affect upon its ability to take an electrostatic charge.
A drier might be provided in such a system. Its cost, like that of the air conditioned room, might also be unwarranted because of the large quantity of air that would be required to dehydrate in order to dry the powder.
In the present invention the above conditions are eliminated, as will be seen in referring to the drawings and description which follows:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal view of a coating chamber embodying the features of the present invention therein;
FIG. 2 is a side view through the section defined by arrow 22 of FIG. 1;
FIG. 3 is a side view through the section defined by arrow 3-3 of FIG. 1',
FIG. 4 is a full length view through the section defined by arrows 4-4 of FIG. 3; and
FIGS. 5 and 6 illustrate another version of the invention wherein the slip ring and brush are eliminated.
Referring to FIG. 1, which is a longitudinal view thru the chamber, numeral 1 designates a base comprising the bottom of the coating chamber. Numerals 2 and 3 are end walls matching, in FIG. 2, the outline defined by the outer line of walls 11, 12, 15 and 16 and the lower outer wall of tube 22. In FIG. 2 walls 2,4,5,6,7,8,9 and 10 are of equal length and abut the inner faces of walls 2 and 3 of FIG. 1. In FIG. 1 tube 13 projects thru wall 2 and ends in wall 3. Tube 22 fits matching cutouts in the top of walls 2 and 3 as shown in FIG. 2. In a preferred construction walls 2, 3, 4, 5, 6, 7, 8, 9, 10, ll, l2, l5 and 16 and tubes 13 and 22 would be cemented or welded together to insure sealing and insulation of any high voltage. However other fastening and sealing means may be utilized. Numerals l7, l8, 19, 20 and 21 define a double walled cylinder, numerals 20 and 21 being end rings connected by spacers l9. Said spacers are rigidly attached to rings 20 and 21 by cementing welding or mechanical fasteners. Walls 17 and 18 are made of some porous material which may be metal, plastic or other material such as fine mesh screen. Wall 17 may be omitted with spacer l9 altered to suit. If the material of wall 18 is chosen to be some non-conductive material then it must have a conductive layer, such as metal screen on its inner surface. Wall 18 will, however be made of porous metal. Walls 17 and 18 should also be attached to spacer 19 along their entire length. This will preferably be done with cement or by heat fusing.
Slip ring 30 is inserted in ring 21 and connected to the conductive surface of wall 18 by connector 31.
Said cylinder is free to rotate inside of seals 45, which for the sake of simplicity are shown herein as conventional rings but may be any other suitable type such as inflatable tubes or lip seals, or close fitting of the related parts may provide sufficient sealing.
Walls 26 and 27 are attached to walls 2 and 3 respectively by screws 29, suitably spaced. A suitable gasket or sealant may be installed between walls 27 and 2 and between walls 3 and 26.
FIG. 3 is a side view thru the section defined by arrow 3-3 of FIG. 1.
FIG. 4 is a full length view thru the section defined by arrows 4-4 of FIG. 3. This arrangement is duplicated in the same relative position on the opposite side of the vertical center section. Numerals 54 and 53 are rollers rigidly affixed to shaft 43. Shaft 43 is mounted in ball bearings 42 and 44, which are of the sealed type and supported in bosses 48 and 49 on walls 26 and 27 respectively. Shaft 43 is driven by some outside power source, such as an electric motor turning thru a gear box to obtain the desired low rotational speed, perhaps I or'2 RPM (to be determined by testing for each application) of said cylinder. Rollers 53 and 54 may also be, instead, gears meshing with teeth cut in or attached to ring 21. Cutouts are provided thru walls '7. and 8 for clearance with rollers or gears '53 and 54. Shaft 43 and tube 66 must be made of some suitable insulating material of sufficient length to prevent high voltage electrical leakage from slip ring 30 and wall 18. In general parts are made of some insulating material, preferably plastic, unless obviously unsuitable for the intended purpose.
Numeral 36 is a tube extending thru wall 27 to convey powder into the rotatable cylinder.
Numeral 34, FIG. 1, indicates a brush urged into contact with slip ring 30 by spring numeral 33. Numeral is an insulating sleeve supporting and guiding brush 34 and spring 33. High voltage, in the range of perhaps 20,000 to lO0,000 volts is supplied to brush 34 from regulateable power source numeral 40. Brush numeral 34 and spring numeral 33 shall be adequately insulated to their connection with the cable from power supply numeral 40. This may be with any commonly known method.
Air, or other fluid, is supplied by pressure source numeral 39 to tube numeral 13, from which it flows thru holes numeral 25 into chamber numeral 56, which is defined by walls numerals 4, 5, 6 and 17. The pressure shall be as determined necessary to flow thru porous walls numerals l7 and 18 with sufficient velocity to cause a suitable powder cloud to be formed. The powder particles are then electrostatically charged from the conductive surface of wall numeral 18 and attached to the grounded article being coated, to which the powder adheres due to electrostatic attraction. The air, flowing from chamber 56 thru walls 17 and 18 follows the general path indicated by arrows numeral 14, inside of the rotating cylinder, and out thru walls 17 and 18 into chamber numeral 57, thence thru holes numeral 24 to the inside of tube numeral 22 and to a suction or vacuum source numeral 41. Pressure source numeral 39 and suction source numeral 41, may and preferably will be, a single unit with constant recycling and conditioning for temperature and humidity. They may be regulatable, as required.
Some of the powder following the arrows 14 will tend to flow to the inner surface of wall 18 from which a portion of it will be repelled by the highly charged conductive surface. The remainder, which will get to the wall and tend to restrict the air flow will be constantly blown off as the cylinder rotates to the pressurized chamber numeral 56. It will be seen therefor that this invention has no need for an external vacuum system including powder recovery. It needs only relatively low capacity in the air circulating system.
Powder supplied into tube numeral 36 falls to the inside surface of wall numeral 18, where it carried by rotation to the region above chamber numeral 56. Due to the air fluidization powder spreads evenly along the length of said rotating cylinder and any surplus falls off the ends into passages numerals 46 and 47, where it falls thru holes numeral into hopper numeral 28. Vibrator numeral 52, of any suitable commercially available type, may be attached to hopper 28 to facilitate powder flow therethru to opening numeral 50 from where it is conveyed along the path indicated by arrow numeral 51, thru drier numeral 32, which may be optional, to powder feeder numeral 38 and back to tube numeral 36. Vibrator numeral 52 may also be attached to tube 36, or to any other place where the powder may have a tendency to stick.
The powder conveyor may be any suitable commercial type such as screw, bucket chain or air.
Openings 37 are to permit insertion and removal of the article to be coated. Preferably a conveyor will pass therethru. Said openings, as well as the entire mechanism including the conveyor may be designed to the optimum size and related characteristics, as required by the articles to be coated.
Walls numerals 7 and 8 fit the outer surface of wall numeral 17 as closely as possible to seal against leakage of air from chamber numeral 56 to chamber numeral 57. Other sealing means may be provided such as longitudinal slots forming a labyrinth seal, or other sealing means such as an O-ring numeral 67 or a lip seal may be provided. The spacing of spacers numeral 19 shall be such that there are always at least two in the region overlapped by walls numerals 7 and 8.
Passage numeral 58 conveys pressure air, to the space between seals numeral 45, wall numeral 3 and ring numeral 21, to prevent entrance of powder to the slip ring and brush.
FIGS. 5 and 6 depict a simpler version of the invention wherein the slip ring and brush are eliminated. The wall 18, need not be of conductive material or have a conductive surface applied. A fixed screen or grid, which may or may not conform to the curvature of wall 18, as shown, is supported on walls 26 and 27 by pins numerals 60 and 62. Pin 60 projects thru wall 26 to connector 61, which is connected to regulatable high voltage power supply and suitably insulated by any well known means. Grid numeral 64 is supported by frames numeral 59 which are supported on walls 26 and 27. The wall 3, as shown in FIG. 1 is replaced by the simpler design in FIG. 6 as numeral 63. With the slip ring and brush omitted ring 21 is replaced by the simpler design numeral 65. Other parts, in general except for obvious reasons, remain as shown in FIGS. 1' thru 4.
It will be evident that in either of the foregoing designs with powder being fed into the rotating cylinder thru tube 36 at a constant rate, and being evenly distributed over the length of said cylinder the fluidizing action of the pressurized air from chamber 56 a constant level will be maintained resulting in a uniform cloud; thus insuring consistency in the coating process. The coarser, or heavier particles of powder will be constantly spilled over the ends of the rotating cylinder preventing buildup in the coating chamber. Since all of the powder entering the rotating cylinder is either attached to the part being coated, or spills off the ends to be recirculated in the powder system a high velocity air stream, with attendant high volume is not required to convey powder thru a vacuum recovery system. Relatively little air from the room in which the coater is operated will enter into the coating air system thus negating, to a large degree, the affect of atmospheric humidity, which may be considerable, on the consistency of the coating process.
I claim:
1. In a chamber for coating articles with powder, a
rotatable cylinder having a porous circumferential wall,
tion fluids, and said end rings means to provide pressurized fluid to said chamber for pressurized fluid and means to provide suction to said chamber for suction of fluid, means for feeding powder into said cylinder, means for removing excess powder from said cylinder, means for conditioning excess powder and recirculating it back into said cylinder, walls enclosing said cylinder and chambers, said walls having openings for means to convey articles being coated into and out of said cylinder, and means for rotating said cylinder.
2. A coating chamber in accordance with claim 1 in which the wall is a conductive surface, and means for providing a high voltage electric current to said surface.
3. A coating chamber in accordance with claim 2 having a slip ring on one of said end rings, said slip ring connected to said conductive wall, a brush contacting said slip ring, said sealing means surrounding said slip ring and brush, a source of high voltage connected to said brush.
4. A coating chamber in accordance with claim 3 having means to provide pressurized fluid in the space confined by said sealing means.
5. A coating chamber in accordance with claim ll having a grid spaced within the area enclosed by said circumferential wall, said grid being located so powder fluidized by said pressurized chamber will flow therethrough and being connected -to a high voltage electric current.

Claims (5)

1. In a chamber for coating articles With powder, a rotatable cylinder having a porous circumferential wall, end rings attached to said wall, spacers separating said end rings and supporting said circumferential wall, a chamber for pressurized fluid external to and exposed to a sector of said wall, a chamber for suction of fluid external to and exposed to a sector of said wall, sealing means between said chambers for pressurized and suction fluids, and said end rings means to provide pressurized fluid to said chamber for pressurized fluid and means to provide suction to said chamber for suction of fluid, means for feeding powder into said cylinder, means for removing excess powder from said cylinder, means for conditioning excess powder and recirculating it back into said cylinder, walls enclosing said cylinder and chambers, said walls having openings for means to convey articles being coated into and out of said cylinder, and means for rotating said cylinder.
2. A coating chamber in accordance with claim 1 in which the wall is a conductive surface, and means for providing a high voltage electric current to said surface.
3. A coating chamber in accordance with claim 2 having a slip ring on one of said end rings, said slip ring connected to said conductive wall, a brush contacting said slip ring, said sealing means surrounding said slip ring and brush, a source of high voltage connected to said brush.
4. A coating chamber in accordance with claim 3 having means to provide pressurized fluid in the space confined by said sealing means.
5. A coating chamber in accordance with claim 1 having a grid spaced within the area enclosed by said circumferential wall, said grid being located so powder fluidized by said pressurized chamber will flow therethrough and being connected to a high voltage electric current.
US219222*[A 1972-04-13 1972-04-13 Coating chamber Expired - Lifetime US3871328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US219222*[A US3871328A (en) 1972-04-13 1972-04-13 Coating chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US219222*[A US3871328A (en) 1972-04-13 1972-04-13 Coating chamber

Publications (1)

Publication Number Publication Date
US3871328A true US3871328A (en) 1975-03-18

Family

ID=22818383

Family Applications (1)

Application Number Title Priority Date Filing Date
US219222*[A Expired - Lifetime US3871328A (en) 1972-04-13 1972-04-13 Coating chamber

Country Status (1)

Country Link
US (1) US3871328A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4073265A (en) * 1976-04-15 1978-02-14 Northern Telecom Limited Electrostatic powder coating apparatus
US4078519A (en) * 1977-02-02 1978-03-14 Poly-Clad Equipment Corporation Electrostatically charged fluidized bed
US4117445A (en) * 1977-05-16 1978-09-26 National Electric Corporation Power regulator
US4808432A (en) * 1986-08-18 1989-02-28 Electrostatic Technology Incorporated Electrostatic coating apparatus and method
US5296031A (en) * 1991-08-14 1994-03-22 Gema Volstatic Ag Electrostatic powder spray coating system for car bodies
US5552012A (en) * 1994-09-09 1996-09-03 Kimberly-Clark Corporation Placement of electric-field-responsive material onto a substrate
US6280798B1 (en) * 1997-12-17 2001-08-28 International Coatings Limited Fluidized bed powder coating process utilizing tribostatic charging
US6620243B1 (en) * 1998-05-29 2003-09-16 Nordson Corporation Fluidized bed powder handling and coating apparatus and methods
US6725911B2 (en) * 2001-09-28 2004-04-27 Gas Research Institute Corrosion resistance treatment of condensing heat exchanger steel structures exposed to a combustion environment
US20040126487A1 (en) * 2001-06-06 2004-07-01 Kittle Kevin Jeffrey Powder coating process with electrostatically charged fluidised bed
US20060062929A1 (en) * 2002-12-12 2006-03-23 Akzo Nobel Coatings International B.V. Powder coating process
US7384671B2 (en) 2002-12-12 2008-06-10 Akzo Nobel Coatings International B.V. Apparatus and process for forming a powder coating on a substrate using a fluidised bed and tribostatic charging of the powder coating composition
US20090001198A1 (en) * 2007-06-29 2009-01-01 Brother Kogyo Kabushiki Kaisha Aerosol-generting apparatus, film-forming apparatus, and aerosol-generating method
US10334867B2 (en) 2014-03-03 2019-07-02 Intercontinental Great Brands Llc Method for manufacturing a comestible
US10973238B2 (en) 2011-03-11 2021-04-13 Intercontinental Great Brands Llc System and method of forming multilayer confectionery
US11122815B2 (en) 2011-07-21 2021-09-21 Intercontinental Great Brands Llc System and method for forming and cooling chewing gum

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628501A (en) * 1967-12-15 1971-12-21 Summers & Sons Ltd John Apparatus for coating a surface of a substrate with powdered material
US3640246A (en) * 1969-11-07 1972-02-08 Xerox Corp Development apparatus for latent electrostatic images
US3678894A (en) * 1969-12-24 1972-07-25 Indev Inc Flocking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628501A (en) * 1967-12-15 1971-12-21 Summers & Sons Ltd John Apparatus for coating a surface of a substrate with powdered material
US3640246A (en) * 1969-11-07 1972-02-08 Xerox Corp Development apparatus for latent electrostatic images
US3678894A (en) * 1969-12-24 1972-07-25 Indev Inc Flocking

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122212A (en) * 1976-04-15 1978-10-24 Northern Telecom Limited Electrostatic powder coating
US4073265A (en) * 1976-04-15 1978-02-14 Northern Telecom Limited Electrostatic powder coating apparatus
US4078519A (en) * 1977-02-02 1978-03-14 Poly-Clad Equipment Corporation Electrostatically charged fluidized bed
US4117445A (en) * 1977-05-16 1978-09-26 National Electric Corporation Power regulator
US4808432A (en) * 1986-08-18 1989-02-28 Electrostatic Technology Incorporated Electrostatic coating apparatus and method
US5296031A (en) * 1991-08-14 1994-03-22 Gema Volstatic Ag Electrostatic powder spray coating system for car bodies
US5552012A (en) * 1994-09-09 1996-09-03 Kimberly-Clark Corporation Placement of electric-field-responsive material onto a substrate
US5585170A (en) * 1994-09-09 1996-12-17 Kimberly-Clark Corporation Placement of electric-field-responsive material onto a substrate
US6280798B1 (en) * 1997-12-17 2001-08-28 International Coatings Limited Fluidized bed powder coating process utilizing tribostatic charging
US6620243B1 (en) * 1998-05-29 2003-09-16 Nordson Corporation Fluidized bed powder handling and coating apparatus and methods
US7041340B2 (en) 2001-06-06 2006-05-09 International Coatings Limited Powder coating process with tribostatically charged fluidized bed
US20040126487A1 (en) * 2001-06-06 2004-07-01 Kittle Kevin Jeffrey Powder coating process with electrostatically charged fluidised bed
US6725911B2 (en) * 2001-09-28 2004-04-27 Gas Research Institute Corrosion resistance treatment of condensing heat exchanger steel structures exposed to a combustion environment
US20060062929A1 (en) * 2002-12-12 2006-03-23 Akzo Nobel Coatings International B.V. Powder coating process
US7323226B2 (en) 2002-12-12 2008-01-29 Akzo Nobel Coatings International B.V. Tribostatic fluidised bed powder coating process
US7384671B2 (en) 2002-12-12 2008-06-10 Akzo Nobel Coatings International B.V. Apparatus and process for forming a powder coating on a substrate using a fluidised bed and tribostatic charging of the powder coating composition
US20090001198A1 (en) * 2007-06-29 2009-01-01 Brother Kogyo Kabushiki Kaisha Aerosol-generting apparatus, film-forming apparatus, and aerosol-generating method
US8636846B2 (en) * 2007-06-29 2014-01-28 Brother Kogyo Kabushiki Kaisha Aerosol-generating apparatus, film-forming apparatus, and aerosol-generating method
US10973238B2 (en) 2011-03-11 2021-04-13 Intercontinental Great Brands Llc System and method of forming multilayer confectionery
US11930830B2 (en) 2011-03-11 2024-03-19 Intercontinental Great Brands Llc System and method of forming multilayer confectionery
US11122815B2 (en) 2011-07-21 2021-09-21 Intercontinental Great Brands Llc System and method for forming and cooling chewing gum
US10334867B2 (en) 2014-03-03 2019-07-02 Intercontinental Great Brands Llc Method for manufacturing a comestible

Similar Documents

Publication Publication Date Title
US3871328A (en) Coating chamber
US5656409A (en) Method of applying non-magnetic toner
US3493109A (en) Process and apparatus for electrostatically separating ores with charging of the particles by triboelectricity
JPH07172575A (en) Feeding and carrying method for powder/grain
CA2454320A1 (en) Pipe coating apparatus and method
GB2154475A (en) Electrokinetic charging of particulate material
KR19990073001A (en) Powder cross-feed auger and method
US4093369A (en) Cleaning system
US4808432A (en) Electrostatic coating apparatus and method
GB2126926A (en) Electrostatically coating light bulbs
CA1039125A (en) Electrostatic deposition of powder or liquid droplets in air by triboelectric or corona discharge means
JP3581518B2 (en) Equipment for manufacturing ceramic filter elements
AU546948B2 (en) Improvements in high tension electrostatic separators
GB1361463A (en) Manufacture of sheet materials
CN215313454U (en) Automatic powder supplementing mechanism of electrostatic spraying device
SU1212605A1 (en) Arrangement for static application of pulverulent materials
US2935234A (en) Powder cloud generating apparatus
US3797457A (en) Coating of surfaces with powder
US3094248A (en) Xerographic developing apparatus
US3129850A (en) Powder cloud generating apparatus
US2992758A (en) Powder cloud generating apparatus
US1859771A (en) Joint seal
SU565717A1 (en) Apparatus for applying electrically charged powder-like materials
GB1599846A (en) Apparatus for the dosaging of bulk material in a pneumatically conveyed stream
KR100313292B1 (en) Material feeder and material transport method