US3869640A - Power supply arrangement for fluorescent tubes, thermionic devices and the like - Google Patents

Power supply arrangement for fluorescent tubes, thermionic devices and the like Download PDF

Info

Publication number
US3869640A
US3869640A US377835A US37783573A US3869640A US 3869640 A US3869640 A US 3869640A US 377835 A US377835 A US 377835A US 37783573 A US37783573 A US 37783573A US 3869640 A US3869640 A US 3869640A
Authority
US
United States
Prior art keywords
tube
filament
tubes
preheated
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US377835A
Inventor
Taras Avenir Kolomyjec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US377835A priority Critical patent/US3869640A/en
Application granted granted Critical
Publication of US3869640A publication Critical patent/US3869640A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • ABSTRACT A portable fluorescent lamp arrangement operated from a low voltage source by a DC. to AC. blocking oscillator inverter has switching means by which either one low-voltage tube, or two low-voltage tubes, can be used to give different levels of illumination. Difficulties in using a blocking oscillator inverter have been overcome by connecting one filament of one tube in series with the feedback winding of the oscillator whereby this filament is preheated by the collector current, and arranging the switching means so that 1.
  • the secondary winding when one tube only is to be energised the secondary winding is connected across the said preheated filament and the other filament of that tube, and 2. when both tubes are to be energised the ends of the secondary winding are connected one to the non-preheated filament of the said one tube, and the other end of the winding to one filament of the second tube, there being a series path for the lighting current through both tubes.
  • This invention relates to a power supply arrangement for'fluorescent lamps, thermionic devices and the like, the power being derived from a low voltage D.C. source.
  • FIG. 1 A typical circuit using a blocking oscillator type inverter is shown in FIG. 1, and it will be noted that it uses but one transistor and one transformer.
  • the D.C. source is typically 12 to 13.5 volts and the fluorescent tube has typically a 4 or 6 watt electrical power rating.
  • the inverter has an electrical power conversion efficiency in the range of 65% to 85%. It compensates for its 35% to power loss by producing relatively high illumination from the fluorescent tubes. Fluorescent tubes that are driven by inverter circuits give off brighter illumination than mains driven fluorescent tubes because of the very high fre-.
  • blocking oscillator inverters have to operate at a significantly higher frequency when two fluorescent tubes are to be powered than when one tube only is to be powered. This requirement is very significant in inverter circuits designed for rela tively low power outputs such as 6 to 12 watts where substantial power losses may occur during power conversion from D.C. to A.C. due to unstable circuit oscillation.
  • the object of this invention is to provide a blocking oscillator inverter which may power either one or two fluorescent tubes and in which the frequency of oscillation is automatically increased substantially when the second fluorescent tube is switched in. Further objects are to provide such an oscillator which doubles its power output and power input when the second tube is switched in without having to switch on or off any current limiting resistors in the converter circuit; in which the collector to emitter voltage is increased when the second tube is switched in without having to switch on or off any voltage regulating components connected to the transistor; and which increases the induced alternating secondary voltage in the secondary winding when the second tube is switched in without having to use extra inductance windings in the secondary coil of the transformer.
  • a third similar fluorescent tube may be switched in if desired.
  • a fluorescent lamp arrangement comprises a blocking oscillator transistor inverter having a primary winding, a feedback winding, and a secondary winding, there being a substantial step up ratio between primary and secondary windings, two fluorescent tubes, means connecting a filament of at least one tube in series with the feedback winding whereby the filament is preheated by the collector current of the transistor, and switching arrangements whereby 1. when one tube only is to be energised th secondary winding is connected across the said preheated filament and the other filament of that tube, and
  • both tubes are to be energised the ends of the secondary winding are connected one to the nonpreheated filament of the said one tube, and the other end of the winding to one filament of the second tube, there being a series path for the lighting current through both tubes.
  • FIG. 1 is a circuit diagram of a typical blocking oscillator fluorescent lamp operating circuit
  • FIG. 2 is a circuit diagram of a fluorescent lamp arrangement in accordance with this invention having two fluorescent tubes TLl and TL2, 7
  • FIG. 3 is a circuit diagram of a modification of FIG. 2
  • FIG. 5 is a circuit diagram of a still further modification of FIG. 2,
  • FIG. 6 is a circuit diagram of yet another modification of FIG. 2,
  • FIG. 7 is a circuit diagram of yet another modification of FIG. 3,
  • FIG. 8 is a circuit diagram of a further modification of FIG. 4,
  • FIG. 9 is a circuit diagram of another modification including three fluorescent tubes,
  • FIG. 10 is a circuit diagram of part only of FIG. 8 showing a modification thereof
  • FIG. 11 is a circuit diagram of a further modification of FIG. 9.
  • a D.C. voltage source say a 12 volt battery is connected in a one transformer-one transistor blocking oscillator in which O1 is the active component in the circuit which controls the oscillation of the converter circuit.
  • Primary winding N1 is connected between the emitter and the negative terminalof the D.C. source.
  • N2 is the feed back winding wound to facilitate positive feedback from the collector to the base of the transistor.
  • Diode Q2, resistor R2 and capacitor C2 function as a transistor anti-saturation device.
  • the diode Q2 functions to discharge electricity from the emitter to neutralize the stored charge in the collector and shortens the storage time for collector saturation.
  • capacitor C2 and resistorRZ function to discharge electricity from the emitter to neutralize the stored charge in the collector and thereby minimizes the storage time for positive charging of collector.
  • the significance of having diode O2 in parallel with capacitor C2 and resistor R2 is that the anti-saturation efficiency of C2 and R2 in parallel ceases to be effective when collector to emitter voltage frequency reaches some figure, typically 4 kilohertz. This voltage frequency is satisfactory FIG.
  • FIG. 4 is a circuit diagram of a further modification I for efficient lighting of only one 6 WATT fluorescent tube.
  • the collector to emitter voltage frequency must be substantially greater than, and preferably at least double, thatrequired to light one 6 WATT fluorescent tube.
  • the insertion of diode O2 in parallel to the capacitor C2 and resistor R2 facilitates the production of higher frequency voltage between the collector and emitter.
  • diode Q2 When two 6 WATT fluorescent tubes are lighted diode Q2 efficiently switches on and increases the collector to emitter voltage frequency to 10 kilohertz. This permits the circuit to light up two 6 WATT fluorescent light tubes.
  • Primary winding N1 functions as a voltage reservoir which supplies negative voltage to the diode Q2, capacitor C2 and resistor R2 to carry out their transistor antisaturation functions.
  • Electrolytic capacitor C3 functions'to stabilize the oscillation frequencies in the inverter circuit.
  • Capacitor C1 functions to regulate the oscillating frequency in N1 to prevent the production of higher har monics in the transformer T which may cause radio interference.
  • Feedback winding N2 is connected in series with one parallel set F1, F2 of the filaments of fluorescent tubes TLl and TL2. This facilitates the heating of the electrodes in the two fluorescent tubes and also dissipates excess electrical heat energy that may be generated between the collector and the base of the transistor. This contributes'to preventing the transistor and resistor R1 from generating unwanted heat during circuit operatrons.
  • Resistor R1 controls the current flow from the collector to the base of the transistor and limits the current drain from the direct current power supply.
  • Secondary transformer winding N3 functions to raise the collector voltage to approximately its peak value and. to provide alternating current electricity for lighting the fluorescent light tubes TLl and TL2.
  • the switch S having the two parts SA,SB in the circuit, when in position.ON1 functions to (i) connect the oscillator circuit to the direct current power supply and (ii) switch the secondary coil to connect the ends of the secondary coil N3 to the ends of fluorescent tube TLl.
  • the fluorescent tube TLl regulates and sets the oscillating frequency of the circuit at comparatively low frequency, typically 3, 4 kilohertz.
  • the transformer N3 increases typically from 124 volts A.C. to 250 volts A.C.
  • the frequency of the induced A.C. voltage in the secondary winding of the transformer N3 increases typically from 3.4 kilohertz to 10 kilohertz.
  • connection of lead 5 of the secondary to the metal ionization (ignition strip) M increases the ionization field strength inside the two fluorescent tubes T'Ll and TL2 and enables the fluorescent tubes to ignite (strike) immediately the circuit commences to oscillate.
  • this strip need not be connected to lead 5 if the strip is disposed within half an inch of the tube.
  • this strip is a metal sheet light reflector on which the tubes are mounted.
  • the most significant functional feature of this circuit is the method used to control circuit'operation for lighting either TLl or TL2.
  • the circuit is characterized by the complete absence of switching in or switching out of circuit components connected to the transistor to increase or decrease its operating characteristics to enable the circuit to cope with a 100% load variation requirement.
  • the loads TLl and TL2 are connected into the secondary winding N3 by means of switch S in such a way that the loads TLl and TL2 control the transistor functions to fulfil the requirements of fluorescent tubes TLl and TL2 to facilitate their efficient lighting.
  • the voltage in the heater electrodes of the two tubes TLl and TL2 was measured in a typical case to be 7 to 7.5 volts and the current to be 0.05 amp when the two tubes are alight.
  • the electrodes dissipate 0.35 WATT electrical power from their filaments in each of the tubes TLl and TL2.
  • the heating of the tube filaments results in two things:
  • Electrons are released into the inside of the fluorescent tubes by thermal emission into a vacuum.
  • leads 5 and 6 of the secondary coil of the transformer are connected to the cold electrodes of fluorescent tubes TLl andTL2 respectively.
  • These cold electrodes of TLl and TL2 change their electrical charge polarity at a frequency of 10 kilohertz which is the frequency of the induced A.C. voltage in the secondary N3.
  • the heated electrodes function as a cathode by emitting electrons into the fluorescent tubes.
  • the metal strip M which runs parallel and close to the lamps TLl and TL2 and may be connected to lead 5 of secondary N3, facilitates the increase of ionization inside the fluorescent tubes TM and TL2 by increasing the electrical field strength inside the tubes.
  • the heater filament causes partial ionization inside the tube.
  • the tube reaches its conductive state and the circuit is completed between the two ends 5 and 6 of the secondary coilN3 through the movement of electrons between the two filaments of TLl.
  • Visible light production TLl is achieved by the collision of electrons with mercury vapour inside the tube with resultant ultra violet light production which causes the phosphorescent powder coating the inside of TLl to emit light radiation.
  • Q1 was a silicon NPN power transistor and Q2 was a silicon low power diode.
  • Transformer T is typically constructed as a 2B core from type 3E1 ferroxcube core material.
  • Nl consisted of 25 turns, N2 of 13 to 25 turns, and N3 of 250 turns.
  • a core gap of 0.95 mm to 1.0 mm was provided in each of the three legs of the E cores. Winding N1 and N2 are wound side by side on a former with a gap between them of 0.5 mm.
  • N3 is wound over the top of N1 and N2.
  • the circuit of FIG. 3 differs from that of FIG. 2 by the inclusion of capacitor C4 between the switch position 0N1 of switch SB and the connection of terminal 4 of secondary N2 to filament Fl.
  • Capacitor C4 has an influence on the frequency of the induced A.C. current between the two filaments of tube TLl when switch SB is in position 0N1. It also prevents undesirable R.F.
  • FIG. 4 differs from FIG. 2 in providing a capacitor C5 between the filaments F1 and F2 so that only filament F1 is preheated by the collector-base current.
  • the capacitor C4 of. FIG. 3. can also be included in this arrangement.
  • FIG. 5 also shows an arrangement in which only the filament F1 of the tube TLl is preheated, the filament F2 of tube TL2 being connected directly to the DC. source, capacitor C3, and collector of Q1.
  • circuit is thought to be: Terminal 5, cold filament of TLl, F1, base of Q1, collector of Q1, F2, F3, 0N2, terminal 6.
  • HF. circuit may be termina] 5, cold filament of TLl, F1, feedback winding N2, R1, F2, F3, 0N2, terminal 6.
  • capacitor C4 of FIG. 2 can be included between terminal 0N1 of switch SB and the junction of lead 4 and filament Fl.
  • FIG. 6 shows a modification of FIG. 2 in which feedback winding N2 is centre-tapped with filament F1 connected to the centre-tap 4 and filament F2 across the upper half of the secondary.
  • the purpose of the centre-tapping is to reduce the feedback electrical current going into filament F1 when tube TLl only is lit up.
  • both TLl and TL2 are lit up it is postulated that the passage of feedback electrical current from N2 takes the path of a series circuit between lead 5 of N2 and the base of Q1 through filaments F1 and F2 in series.
  • the capacitor C4 of FIG. 2 may be included.
  • filaments F1 and F2 may be connected in series, and this is shown in FIG. 7.
  • the capacitor C4 of FIG. 2 has been shown in this FIG. 7, but it may be omitted.
  • FIG. 8 is the presently preferred form of the invention. It differs from FIG. 4 by including a capacitor C6 between the lead 6 of secondary N3 and the switchSB.
  • the capacitor C5 may have a value of 0.002 uF.
  • FIG. 9 shows a modification of FIG. 5 where either one tube can be lit when switch S is lame ONl position, or three tubes TLl, TL2, TL3 when the switch S is in the 0N2 position. In effect two tubes TL2, TL3 are connected in series in place of the single tube TL2 of FIG. 5.
  • FIG. 11 shows a variant of FIG, 10 in which the filament F5, that is the filament of TL3 not connected to the filament F2 of TL2, is connected to the preheated filament F1 of tube 111 instead of to the capacitor C3 and collector of Q2.
  • the capacitor C4 can be omitted as in FIG. 2.
  • FIG. 10 shows portion of the circuit of FIG. 9 modi fied to permit either one, two, or three tubes to'be lit.
  • switch S3 When one or two tubes are to be lit switch S3 is open, as shown, and switch S4 is closed giving the circuit of FIG. 3.
  • switch S4 When all three lamps are to be lit switch SB is left in the 0N2 position, switch S4 is opened, and simultaneously switch S3 is closed, giving the circuit of FIG. 9. All three switches can be combined so as to be operable by a single control.
  • a fluorescent lamp arrangment comprising a blocking oscillator transistor inverter having a primary winding, a feedback winding, and a secondary winding, there beinga substantial step up ratio between primary and secondary windings, two fluorescent tubes, means connecting a filament ofat least one tube in series with the feedback winding whereby the filament is preheated by the collector current of the transistor, a conductive connection between the preheated filament of the said one tube and one filament of the second tube, a connection between one end of the secondary winding and the other filament of said one tube, and a switch connected to the other end of the secondary winding, said switch in one position connecting the said other end to the said preheated filament of said one tube and in another position connecting the said other end of the secondary winding to the other filament of said second tube.
  • a fluorescent lamp arrangement as claimed in claim 1 comprising a capacitor connected between the one filament of the second tube and the preheated filament of the said one tube.
  • a fluorescent lamp arrangement as claimed in claim 1 including a capacitor, said capacitor being connected between the other end of the secondary winding and said switch.
  • a fluorescent lamp arrangement as claimed in claim 1 including a capacitor connected between the one filament of the second tube and the preheated filament of the said one tube.
  • a fluorescent lamp arrangement as claimed in claim 1 including a capacitor connected-to said switch so as to be in series between the secondary winding and the said one tube when said one tube only is energised.

Abstract

A portable fluorescent lamp arrangement operated from a low voltage source by a D.C. to A.C. blocking oscillator inverter has switching means by which either one low-voltage tube, or two lowvoltage tubes, can be used to give different levels of illumination. Difficulties in using a blocking oscillator inverter have been overcome by connecting one filament of one tube in series with the feedback winding of the oscillator whereby this filament is preheated by the collector current, and arranging the switching means so that 1. WHEN ONE TUBE ONLY IS TO BE ENERGISED THE SECONDARY WINDING IS CONNECTED ACROSS THE SAID PREHEATED FILAMENT AND THE OTHER FILAMENT OF THAT TUBE, AND 2. WHEN BOTH TUBES ARE TO BE ENERGISED THE ENDS OF THE SECONDARY WINDING ARE CONNECTED ONE TO THE NON-PREHEATED FILAMENT OF THE SAID ONE TUBE, AND THE OTHER END OF THE WINDING TO ONE FILAMENT OF THE SECOND TUBE, THERE BEING A SERIES PATH FOR THE LIGHTING CURRENT THROUGH BOTH TUBES.

Description

United States Patent [191 Kolomyjec 51 Mar. 4, 1975 POWER SUPPLY ARRANGEMENT FOR FLUORESCENT TUBES, THERMIONIC DEVICES AND THE LIKE [76] Inventor: Taras Avenir Kolomyjec, l5
Camelot Ct., Carlingford, N. S. W., Australia [22] Filed: July 9, 1973 21 Appl. No.: 377,835
Primary E.\'aminerRudolph V. Rolinec Assistant E.\'anzinerE. R. LaRoche Attorney, Agent, or Firm-Ladas, Parry, Von Gehr, Goldsmith & Deschamps [57] ABSTRACT A portable fluorescent lamp arrangement operated from a low voltage source by a DC. to AC. blocking oscillator inverter has switching means by which either one low-voltage tube, or two low-voltage tubes, can be used to give different levels of illumination. Difficulties in using a blocking oscillator inverter have been overcome by connecting one filament of one tube in series with the feedback winding of the oscillator whereby this filament is preheated by the collector current, and arranging the switching means so that 1. when one tube only is to be energised the secondary winding is connected across the said preheated filament and the other filament of that tube, and 2. when both tubes are to be energised the ends of the secondary winding are connected one to the non-preheated filament of the said one tube, and the other end of the winding to one filament of the second tube, there being a series path for the lighting current through both tubes.
10 Claims, 11 Drawing Figures I o-- L PATENTEDHAR 41% 3,869,640
SHLEI 1 [1f 6 PATENTED MAR 5 sum 2 p; 9
FIGA PATENTED MAR 4 I975 sum u 95 g '0 A m mi] FIGJO T 1 4 f 1 w m L ONI TO BASE PATENTEU 4 I975 TOCS A POWER SUPPLY ARRANGEMENT FOR FLUORESCENT TUBES, THERMIONIC DEVICES AND THE LIKE This invention relates to a power supply arrangement for'fluorescent lamps, thermionic devices and the like, the power being derived from a low voltage D.C. source.
It is at present known to operate a fluorescent lamp from a low voltage D.C. source by interposing a D.C. to AC. inverter between the D.C. source and the fluorescent lamp, the voltage across the lamp being stepped up, in a typical case, to 175 volts. A typical circuit using a blocking oscillator type inverter is shown in FIG. 1, and it will be noted that it uses but one transistor and one transformer. The D.C. source is typically 12 to 13.5 volts and the fluorescent tube has typically a 4 or 6 watt electrical power rating. The inverter has an electrical power conversion efficiency in the range of 65% to 85%. It compensates for its 35% to power loss by producing relatively high illumination from the fluorescent tubes. Fluorescent tubes that are driven by inverter circuits give off brighter illumination than mains driven fluorescent tubes because of the very high fre-.
sign leads to the construction of blocking oscillator type inverters that oscillate within a fixed narrow range, and this places a significant limitation on their use in powering and lighting two fluorescent lamps or one fluorescent lamp at will.
I have found out that blocking oscillator inverters have to operate at a significantly higher frequency when two fluorescent tubes are to be powered than when one tube only is to be powered. This requirement is very significant in inverter circuits designed for rela tively low power outputs such as 6 to 12 watts where substantial power losses may occur during power conversion from D.C. to A.C. due to unstable circuit oscillation.
The object of this invention is to provide a blocking oscillator inverter which may power either one or two fluorescent tubes and in which the frequency of oscillation is automatically increased substantially when the second fluorescent tube is switched in. Further objects are to provide such an oscillator which doubles its power output and power input when the second tube is switched in without having to switch on or off any current limiting resistors in the converter circuit; in which the collector to emitter voltage is increased when the second tube is switched in without having to switch on or off any voltage regulating components connected to the transistor; and which increases the induced alternating secondary voltage in the secondary winding when the second tube is switched in without having to use extra inductance windings in the secondary coil of the transformer. In a modification a third similar fluorescent tube may be switched in if desired.
According to this invention a fluorescent lamp arrangement comprises a blocking oscillator transistor inverter having a primary winding, a feedback winding, and a secondary winding, there being a substantial step up ratio between primary and secondary windings, two fluorescent tubes, means connecting a filament of at least one tube in series with the feedback winding whereby the filament is preheated by the collector current of the transistor, and switching arrangements whereby 1. when one tube only is to be energised th secondary winding is connected across the said preheated filament and the other filament of that tube, and
2. when both tubes are to be energised the ends of the secondary winding are connected one to the nonpreheated filament of the said one tube, and the other end of the winding to one filament of the second tube, there being a series path for the lighting current through both tubes.
Reference will now be made to the accompanying drawings in which FIG. 1 is a circuit diagram of a typical blocking oscillator fluorescent lamp operating circuit,
FIG. 2 is a circuit diagram of a fluorescent lamp arrangement in accordance with this invention having two fluorescent tubes TLl and TL2, 7
FIG. 3 is a circuit diagram of a modification of FIG. 2
of FIG. 2,
FIG. 5 is a circuit diagram of a still further modification of FIG. 2,
FIG. 6 is a circuit diagram of yet another modification of FIG. 2,
FIG. 7 is a circuit diagram of yet another modification of FIG. 3,
FIG. 8 is a circuit diagram of a further modification of FIG. 4,
FIG. 9 is a circuit diagram of another modification including three fluorescent tubes,
FIG. 10 is a circuit diagram of part only of FIG. 8 showing a modification thereof,
FIG. 11 is a circuit diagram of a further modification of FIG. 9.
Referring first to FIG. 2 of the drawings, a D.C. voltage source, say a 12 volt battery is connected in a one transformer-one transistor blocking oscillator in which O1 is the active component in the circuit which controls the oscillation of the converter circuit. Primary winding N1 is connected between the emitter and the negative terminalof the D.C. source. N2 is the feed back winding wound to facilitate positive feedback from the collector to the base of the transistor.
Diode Q2, resistor R2 and capacitor C2 function as a transistor anti-saturation device. The diode Q2 functions to discharge electricity from the emitter to neutralize the stored charge in the collector and shortens the storage time for collector saturation. Similarly capacitor C2 and resistorRZ function to discharge electricity from the emitter to neutralize the stored charge in the collector and thereby minimizes the storage time for positive charging of collector. The significance of having diode O2 in parallel with capacitor C2 and resistor R2 is that the anti-saturation efficiency of C2 and R2 in parallel ceases to be effective when collector to emitter voltage frequency reaches some figure, typically 4 kilohertz. This voltage frequency is satisfactory FIG. 4 is a circuit diagram of a further modification I for efficient lighting of only one 6 WATT fluorescent tube. However, in order to light up two 6 WATT fluorescent tubes the collector to emitter voltage frequency must be substantially greater than, and preferably at least double, thatrequired to light one 6 WATT fluorescent tube. The insertion of diode O2 in parallel to the capacitor C2 and resistor R2 facilitates the production of higher frequency voltage between the collector and emitter. When two 6 WATT fluorescent tubes are lighted diode Q2 efficiently switches on and increases the collector to emitter voltage frequency to 10 kilohertz. This permits the circuit to light up two 6 WATT fluorescent light tubes.
Primary winding N1 functions as a voltage reservoir which supplies negative voltage to the diode Q2, capacitor C2 and resistor R2 to carry out their transistor antisaturation functions.
Electrolytic capacitor C3 functions'to stabilize the oscillation frequencies in the inverter circuit.
Capacitor C1 functions to regulate the oscillating frequency in N1 to prevent the production of higher har monics in the transformer T which may cause radio interference.
Feedback winding N2 is connected in series with one parallel set F1, F2 of the filaments of fluorescent tubes TLl and TL2. This facilitates the heating of the electrodes in the two fluorescent tubes and also dissipates excess electrical heat energy that may be generated between the collector and the base of the transistor. This contributes'to preventing the transistor and resistor R1 from generating unwanted heat during circuit operatrons.
Resistor R1 controls the current flow from the collector to the base of the transistor and limits the current drain from the direct current power supply.
Secondary transformer winding N3 functions to raise the collector voltage to approximately its peak value and. to provide alternating current electricity for lighting the fluorescent light tubes TLl and TL2.
The switch S, having the two parts SA,SB in the circuit, when in position.ON1 functions to (i) connect the oscillator circuit to the direct current power supply and (ii) switch the secondary coil to connect the ends of the secondary coil N3 to the ends of fluorescent tube TLl.
When the switch is in this position, where one 'end of the secondary coil N3 (lead 6) is connected to that lead 4 of feedback winding N2 which is connected to the heated filament terminal in TL], and secondary coil lead 5 is connected to the cold terminal end of TLl, the fluorescent tube TLl regulates and sets the oscillating frequency of the circuit at comparatively low frequency, typically 3, 4 kilohertz.
When the switch is moved into position N2 the secondary lead 6 is connected to the cold terminal end of TL2 and the other end remains connected to the cold terminal end of TLl.
The results of this switching where leads 5 and 6 of N3 become connected to the cold terminals of TLl and -TL2 are:
the transformer N3 increases typically from 124 volts A.C. to 250 volts A.C.
v. The frequency of the induced A.C. voltage in the secondary winding of the transformer N3 increases typically from 3.4 kilohertz to 10 kilohertz.
The connection of lead 5 of the secondary to the metal ionization (ignition strip) M increases the ionization field strength inside the two fluorescent tubes T'Ll and TL2 and enables the fluorescent tubes to ignite (strike) immediately the circuit commences to oscillate. However, this strip need not be connected to lead 5 if the strip is disposed within half an inch of the tube. Typically this strip is a metal sheet light reflector on which the tubes are mounted.
The most significant functional feature of this circuit is the method used to control circuit'operation for lighting either TLl or TL2. The circuit is characterized by the complete absence of switching in or switching out of circuit components connected to the transistor to increase or decrease its operating characteristics to enable the circuit to cope with a 100% load variation requirement. The loads TLl and TL2 are connected into the secondary winding N3 by means of switch S in such a way that the loads TLl and TL2 control the transistor functions to fulfil the requirements of fluorescent tubes TLl and TL2 to facilitate their efficient lighting.
The way the fluorescent tubes TLl and TL2 behave in this'circuit has not yet been clearly established for the operating period when two 6 WATT fluorescent light tubes TLl and TL2 are alight. It is postulated that the ionization process inside the two tubes is achieved by the heating of the tube filaments with electrical current flowing from the collector through the feedback coil then through the tube filaments on one end of each of the two fluorescent tubes TLl and TL2 into the base of the transistor.
The voltage in the heater electrodes of the two tubes TLl and TL2 was measured in a typical case to be 7 to 7.5 volts and the current to be 0.05 amp when the two tubes are alight. Thus the electrodes dissipate 0.35 WATT electrical power from their filaments in each of the tubes TLl and TL2. The heating of the tube filaments results in two things:
i. Electrons are released into the inside of the fluorescent tubes by thermal emission into a vacuum.
ii. Facilitates the vapourization of mercury near the electrodes.
When the switch S is switched to position 0N2, leads 5 and 6 of the secondary coil of the transformer are connected to the cold electrodes of fluorescent tubes TLl andTL2 respectively. These cold electrodes of TLl and TL2 change their electrical charge polarity at a frequency of 10 kilohertz which is the frequency of the induced A.C. voltage in the secondary N3. The heated electrodes function as a cathode by emitting electrons into the fluorescent tubes. The metal strip M, which runs parallel and close to the lamps TLl and TL2 and may be connected to lead 5 of secondary N3, facilitates the increase of ionization inside the fluorescent tubes TM and TL2 by increasing the electrical field strength inside the tubes.
The resultant movement of electrons inside the tubes TL 1 and TL2 would bring the tubes into a conductivef state which would result in the electrons colliding with mercury vapour inside the tubes. These collisions between electrons and mercury vapour would lead to the production of ultra violet light radiation. This ultra violet radiation in turn would lead to the excitation of phosphorescent powder which is coated on the inside of the tubes TLl and TL2, which would produce visible light radiation.
In the lighting of one 6 WATT fluorescent tube, TLl, the heater filament causes partial ionization inside the tube. Once the electrons emitted by the hot filament commence colliding with mercury vapour inside TLl the tube reaches its conductive state and the circuit is completed between the two ends 5 and 6 of the secondary coilN3 through the movement of electrons between the two filaments of TLl. Visible light production TLl is achieved by the collision of electrons with mercury vapour inside the tube with resultant ultra violet light production which causes the phosphorescent powder coating the inside of TLl to emit light radiation.
In a particular arrangement Q1 was a silicon NPN power transistor and Q2 was a silicon low power diode. Transformer T is typically constructed as a 2B core from type 3E1 ferroxcube core material. Nl consisted of 25 turns, N2 of 13 to 25 turns, and N3 of 250 turns. A core gap of 0.95 mm to 1.0 mm was provided in each of the three legs of the E cores. Winding N1 and N2 are wound side by side on a former with a gap between them of 0.5 mm. N3 is wound over the top of N1 and N2.
The circuit of FIG. 3 differs from that of FIG. 2 by the inclusion of capacitor C4 between the switch position 0N1 of switch SB and the connection of terminal 4 of secondary N2 to filament Fl. Capacitor C4 has an influence on the frequency of the induced A.C. current between the two filaments of tube TLl when switch SB is in position 0N1. It also prevents undesirable R.F.
wave generation in filament F2 in instances where poor quality core materials are encountered in the transformer. Values which have been used successfully for this capacitor are 00025 to 0.003 mfd.
FIG. 4 differs from FIG. 2 in providing a capacitor C5 between the filaments F1 and F2 so that only filament F1 is preheated by the collector-base current. The capacitor C4 of. FIG. 3. can also be included in this arrangement.
FIG. 5 also shows an arrangement in which only the filament F1 of the tube TLl is preheated, the filament F2 of tube TL2 being connected directly to the DC. source, capacitor C3, and collector of Q1.
It is postulated that when both TLl and TL2 are lit up the collector of transistor Q1 and the electrolytic capacitor C3, by being charged, will have an affinity for electrons. When switch S is in position 0N2, so that lead 6 of secondary N3 is connected to the filament F3 of tube TL2 which is some 22 cms from the positively charged filament F2, it is feasible to expect the electrons will jump from the filament'F3 to the positive filament F2. Since the filament electrode F3 is a reverse charge electrode, reciprocal movement of electrons between F1 and F2 will result. This will lead to collisions between electrons and mercury vapour inside the tube TL2 to produce fluorescent light in the usual way. The H.F. circuit is thought to be: Terminal 5, cold filament of TLl, F1, base of Q1, collector of Q1, F2, F3, 0N2, terminal 6. Alternatively the HF. circuit may be termina] 5, cold filament of TLl, F1, feedback winding N2, R1, F2, F3, 0N2, terminal 6. As before the capacitor C4 of FIG. 2 can be included between terminal 0N1 of switch SB and the junction of lead 4 and filament Fl.
FIG. 6 shows a modification of FIG. 2 in which feedback winding N2 is centre-tapped with filament F1 connected to the centre-tap 4 and filament F2 across the upper half of the secondary. The purpose of the centre-tapping is to reduce the feedback electrical current going into filament F1 when tube TLl only is lit up. When both TLl and TL2 are lit up it is postulated that the passage of feedback electrical current from N2 takes the path of a series circuit between lead 5 of N2 and the base of Q1 through filaments F1 and F2 in series. The capacitor C4 of FIG. 2 may be included.
Instead of the filaments F1 and F2 being connected in parallel as in FIG. 2 they may be connected in series, and this is shown in FIG. 7. The capacitor C4 of FIG. 2 has been shown in this FIG. 7, but it may be omitted.
FIG. 8 is the presently preferred form of the invention. It differs from FIG. 4 by including a capacitor C6 between the lead 6 of secondary N3 and the switchSB. The capacitor C5 may have a value of 0.002 uF.
FIG. 9 shows a modification of FIG. 5 where either one tube can be lit when switch S is lame ONl position, or three tubes TLl, TL2, TL3 when the switch S is in the 0N2 position. In effect two tubes TL2, TL3 are connected in series in place of the single tube TL2 of FIG. 5. FIG. 11 shows a variant of FIG, 10 in which the filament F5, that is the filament of TL3 not connected to the filament F2 of TL2, is connected to the preheated filament F1 of tube 111 instead of to the capacitor C3 and collector of Q2. The capacitor C4 can be omitted as in FIG. 2.
FIG. 10 shows portion of the circuit of FIG. 9 modi fied to permit either one, two, or three tubes to'be lit. When one or two tubes are to be lit switch S3 is open, as shown, and switch S4 is closed giving the circuit of FIG. 3. When all three lamps are to be lit switch SB is left in the 0N2 position, switch S4 is opened, and simultaneously switch S3 is closed, giving the circuit of FIG. 9. All three switches can be combined so as to be operable by a single control.
What I claim is:
l. A fluorescent lamp arrangment comprising a blocking oscillator transistor inverter having a primary winding, a feedback winding, and a secondary winding, there beinga substantial step up ratio between primary and secondary windings, two fluorescent tubes, means connecting a filament ofat least one tube in series with the feedback winding whereby the filament is preheated by the collector current of the transistor, a conductive connection between the preheated filament of the said one tube and one filament of the second tube, a connection between one end of the secondary winding and the other filament of said one tube, and a switch connected to the other end of the secondary winding, said switch in one position connecting the said other end to the said preheated filament of said one tube and in another position connecting the said other end of the secondary winding to the other filament of said second tube. whereby I. when one tube only is to be energized the secondary winding is connected across the said preheated filament and the other filament of that tube, and
2. when both tubes are to be energized the ends of the secondary winding are connected one to the nonpreheated filament of the said one tube, and
the other end of the winding to the other filament of the second tube, there being a series path for the lighting current through both tubes.
2. A fluorescent lamp arrangement as claimed in claim 1 wherein the one filament of the second tube is connected in parallel with the preheated filament of the said one tube.
3. A fluorescent lamp arrangement as claimed in claim 1 wherein the one filament of the second tube is connected in series with the preheated filament of the said one tube.
4. A fluorescent lamp arrangement as claimed in claim 1 comprising a capacitor connected between the one filament of the second tube and the preheated filament of the said one tube.
5. A fluorescent lamp arrangement as claimed in claim 1 wherein the feedback winding is centre-tapped, the preheated filament of said one tube is connected across one half of the feedback winding, and the one filament of the other tube is connected across the other half of the feedback winding.
6. A fluorescent lamp arrangement as claimed in claim 1 wherein the one filament of the second tube is connected to the collector of the transistor, and to a capacitor connected to the collector and to the emitter circuit.
7. A fluorescent lamp arrangement as claimed in claim 1 including a capacitor, said capacitor being connected between the other end of the secondary winding and said switch. 1
8. A fluorescent lamp arrangement as claimed in claim 1 including a capacitor connected between the one filament of the second tube and the preheated filament of the said one tube.
9. A fluorescent lamp arrangement as claimed in claim 1 including a capacitor connected-to said switch so as to be in series between the secondary winding and the said one tube when said one tube only is energised.
10. A fluorescent lar'np arrangement as claimed in claim 9 wherein the one filament of the second tube is connected in series with the preheated filament of the said one tube.

Claims (11)

1. A fluorescent lamp arrangment comprising a blocking oscillator transistor inverter having a primary winding, a feedback winding, and a secondary winding, there being a substantial step up ratio between primary and secondary windings, two fluorescent tubes, means connecting a filament of at least one tube in series with the feedback winding whereby the filament is preheated by the collector current of the transistor, a conductive connection between the preheated filament of the said one tube and one filament of the second tube, a connection between one end of the secondary winding and the other filament of said one tube, and a switch connected to the other end of the secondary winding, said switch in one position connecting the said other end to the said preheated filament of said one tube and in another position connecting the said other end of the secondary winding to the other filament of said second tube, whereby 1. when one tube only is to be energized the secondary winding is connected across the said preheated filament and the other filament of that tube, and 2. when both tubes are to be energized the ends of the secondary winding are connected one to the nonpreheated filament of the said one tube, and the other end of the winding to the other filament of the second tube, there being a series path for the lighting current through both tubes.
2. when both tubes are to be energized the ends of the secondary winding are connected one to the nonpreheated filament of the said one tube, and the other end of the winding to the other filament of the second tube, there being a series path for the lighting current through both tubes.
2. A fluorescent lamp arrangement as claimed in claim 1 wherein the one filament of the second tube is connected in parallel with the preheated filament of the said one tube.
3. A fluorescent lamp arrangement as claimed in claim 1 wherein the one filament of the second tube is connected in series with the preheated filament of the said one tube.
4. A fluorescent lamp arrangement as claimed in claim 1 comprising a capacitor connected between the one filament of the second tube and the preheated filament of the said one tube.
5. A fluorescent lamp arrangement as claimed in claim 1 wherein the feedback winding is centre-tapped, the preheated filament of said one tube is connected across one half of the feedback winding, and the one filament of the other tube is connected across the other half of the feedback winding.
6. A fluorescent lamp arrangement as claimed in claim 1 wherein the one filament of the second tube is connected to the collector of the transistor, and to a capacitor connected to the collector and to the emitter circuit.
7. A fluorescent lamp arrangement as claimed in claim 1 including a capacitor, said capacitor being connected between the other end of the secondary winding and said switch.
8. A fluorescent lamp arrangement as claimed in claim 1 including a capacitor connected between the one filament of the second tube and the preheated filament of the said one tube.
9. A fluorescent lamp arrangement as claimed in claim 1 including a capacitor connected to said switch so as to be in series between the secondary winding and the said one tube when said one tube only is energised.
10. A fluorescent lamp arrangement as claimed in claim 9 wherein the one filament of the second tube is connected in series with the preheated filament of the said one tube.
US377835A 1973-07-09 1973-07-09 Power supply arrangement for fluorescent tubes, thermionic devices and the like Expired - Lifetime US3869640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US377835A US3869640A (en) 1973-07-09 1973-07-09 Power supply arrangement for fluorescent tubes, thermionic devices and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US377835A US3869640A (en) 1973-07-09 1973-07-09 Power supply arrangement for fluorescent tubes, thermionic devices and the like

Publications (1)

Publication Number Publication Date
US3869640A true US3869640A (en) 1975-03-04

Family

ID=23490698

Family Applications (1)

Application Number Title Priority Date Filing Date
US377835A Expired - Lifetime US3869640A (en) 1973-07-09 1973-07-09 Power supply arrangement for fluorescent tubes, thermionic devices and the like

Country Status (1)

Country Link
US (1) US3869640A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008414A (en) * 1975-07-28 1977-02-15 Power Saver Corporation Circuit for powering fluorescent lamps
US4023067A (en) * 1973-09-20 1977-05-10 Lighting Systems, Inc. Inverter ballast circuit
US4071807A (en) * 1976-08-13 1978-01-31 Yoshinobu Ichinose Fluorescent lamp lighting device
US4757238A (en) * 1986-11-05 1988-07-12 Thin-Lite Corporation Low voltage fluorescent lighting system
EP0427042A2 (en) * 1989-11-04 1991-05-15 Ruhrkohle Aktiengesellschaft System for operating a portable lamp
US5461286A (en) * 1993-11-25 1995-10-24 Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh Circuit arrangement for operating a low-pressure discharge lamp, typically a fluorescent lamp, from a low-voltage source
EP0746965A4 (en) * 1992-03-31 1996-10-16 Motorola Lighting Inc Circuit for driving a gas discharge lamp load
EP0707437A3 (en) * 1994-10-12 1997-12-03 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit for operating one or more low pressure discharge lamps
EP0845927A2 (en) * 1996-11-27 1998-06-03 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit for operating low pressure discharge lamps with a low voltage source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463964A (en) * 1967-11-28 1969-08-26 British Lighting Ind Ltd Fluorescent lamp-dimming circuit
US3629648A (en) * 1969-07-31 1971-12-21 Brent W Brown Transistorized fluorescent tube operating circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463964A (en) * 1967-11-28 1969-08-26 British Lighting Ind Ltd Fluorescent lamp-dimming circuit
US3629648A (en) * 1969-07-31 1971-12-21 Brent W Brown Transistorized fluorescent tube operating circuit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023067A (en) * 1973-09-20 1977-05-10 Lighting Systems, Inc. Inverter ballast circuit
US4008414A (en) * 1975-07-28 1977-02-15 Power Saver Corporation Circuit for powering fluorescent lamps
US4071807A (en) * 1976-08-13 1978-01-31 Yoshinobu Ichinose Fluorescent lamp lighting device
US4757238A (en) * 1986-11-05 1988-07-12 Thin-Lite Corporation Low voltage fluorescent lighting system
EP0427042A2 (en) * 1989-11-04 1991-05-15 Ruhrkohle Aktiengesellschaft System for operating a portable lamp
EP0427042A3 (en) * 1989-11-04 1992-05-27 Ruhrkohle Aktiengesellschaft System for operating a portable lamp
EP0746965A4 (en) * 1992-03-31 1996-10-16 Motorola Lighting Inc Circuit for driving a gas discharge lamp load
EP0746965A1 (en) * 1992-03-31 1996-12-11 Motorola Lighting Inc. Circuit for driving a gas discharge lamp load
US5461286A (en) * 1993-11-25 1995-10-24 Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh Circuit arrangement for operating a low-pressure discharge lamp, typically a fluorescent lamp, from a low-voltage source
EP0707437A3 (en) * 1994-10-12 1997-12-03 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit for operating one or more low pressure discharge lamps
EP0845927A2 (en) * 1996-11-27 1998-06-03 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit for operating low pressure discharge lamps with a low voltage source
EP0845927A3 (en) * 1996-11-27 1999-06-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Circuit for operating low pressure discharge lamps with a low voltage source

Similar Documents

Publication Publication Date Title
US4463286A (en) Lightweight electronic ballast for fluorescent lamps
US4286194A (en) Generator for use with loads having changing impedance characteristics
US4215292A (en) Apparatus for operating a gaseous discharge lamp
US3869640A (en) Power supply arrangement for fluorescent tubes, thermionic devices and the like
JPH01149338A (en) Magnetron driving device
US4004185A (en) Electric lighting systems
US4042852A (en) Fluorescent lamps with high frequency power supply with inductive coupling and SCR starter
US2337992A (en) High power factor high intensity lamp circuit
US5166578A (en) Inverter power supply circuit
US3308342A (en) Power supply for negative-resistance arc-discharge lamps
US5164637A (en) Power supply for gas discharge lamps
JPH0821473B2 (en) stabilizer
US3096464A (en) Starting and operating circuit for discharge lamps
US2122436A (en) Lighting system including electrical discharge tubes
JPS5918631Y2 (en) discharge lamp lighting device
JP3206498B2 (en) High frequency heating equipment
JPS5818236Y2 (en) discharge lamp lighting device
KR810001101Y1 (en) Lighting device of fluorescent lamp
JPH0634397B2 (en) Fluorescent lamp lighting device
JPS5821115Y2 (en) discharge lamp lighting device
JPH0113360Y2 (en)
JPS5810396A (en) Device for firint discharge lamp
JPH08298193A (en) Stabilizer for fluorescent lamp
CN103428977B (en) Low voltage energy saving lamp
JPH0511680Y2 (en)