US3868004A - Synchronous self-shifting clutch - Google Patents

Synchronous self-shifting clutch Download PDF

Info

Publication number
US3868004A
US3868004A US410453A US41045373A US3868004A US 3868004 A US3868004 A US 3868004A US 410453 A US410453 A US 410453A US 41045373 A US41045373 A US 41045373A US 3868004 A US3868004 A US 3868004A
Authority
US
United States
Prior art keywords
clutch
baulking
teeth
locking
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US410453A
Other languages
English (en)
Inventor
Herbert Arthur Clements
Robert Howard Heybourne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SSS Patents Ltd
Original Assignee
SSS Patents Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SSS Patents Ltd filed Critical SSS Patents Ltd
Application granted granted Critical
Publication of US3868004A publication Critical patent/US3868004A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • F16D23/10Arrangements for synchronisation, also for power-operated clutches automatically producing the engagement of the clutch when the clutch members are moving at the same speed; Indicating synchronisation

Definitions

  • ABSTRACT In a synchronous self-shifting toothed clutchhaving an intermediate member movable relative to one of the clutch parts to effect at least partial interengagement of the clutch teeth, the said clutch part carries a ring of baulking teeth and the intermediate member carries a toothed locking ring which is rotatable about the clutch axis.
  • the locking teeth and the baulking teeth are interengaged when the clutch teeth attain at least partial in terengagement the locking teeth move axially out of engagement with the baulking teeth and the locking ring is rotated by springs to a position in which disen gagement of the clutch teeth is prevented due to the baulking teeth being in baulking relationship with'the locking teeth.
  • Fluid pressure acts automatically, when the clutch attains a predetermined rotational speed, to return the locking ring to a position in which the locking teeth can interengage with the baulking teeth to permit the clutch to disengage.
  • This invention relates to synchronous self-shifting toothed clutches of the type comprising first and second rotary clutch parts, with clutch actuating mechanism operative upon passage of the first and second rotary clutch parts through synchronism in one direction of relative rotation, the said mechanism including an intermediate member constrained for movement relative to one of said first and second rotary clutch parts to effect at least initial interengagement of the coacting clutch teeth.
  • Clutches of the type referred to above are normally provided with pawl and ratchet mechanism or equivalent means such that upon relative rotation of the first and second rotary clutch parts in one direction the clutch overruns, whereas upon passage of the first and second rotary clutch parts through synchronism in the other direction of relative rotation the pawl and ratchet mechanism or equivalent means operates to effect movement of the intermediate member to bring the coacting clutch teeth into precise initial interengagement.
  • the clutch should includemeans operable to prevent disengagement of the interengaged clutch teeth, such that the clutch is then capable of transmitting torque in both directions of rotation.
  • such means as have previously been provided for this purpose have certain disadvantages.
  • the said previously provided means have added to the overall length of the clutch, and moreover have generally required to be actuated by means of a servo mechanism through the intermediary of a control fork. thus adding to the complexity of the construction.
  • the object of the invention is to provide, in a clutch of the type referred to above, improved means for preventing disengagement of the interengaged clutch teeth, which means do not have the disadvantages of prior arrangements for this purpose.
  • a clutch of the type referred to above includes means operable to prevent disengagement of the interengaged clutch teeth, the said means comprising locking means carried by the intermediate member or by the said one rotary clutch part, and baulking means carried by the said one rotary clutch part or by the intermediate member, said locking means and said baulking means being capable, when the clutch teeth are at least partially interengaged, of relative rotational movement about the clutch axis between a baulking condition in which disengagement of the clutch teeth is prevented owing to the said baulking means being in axial baulking relationship with said locking means, and a non-baulking condition in which disengagement of the clutch teeth is permitted owing to the said baulking means being out of axial baulking relationship with said locking means.
  • the relative rotational movement of the baulking means and the locking means to provide a baulked condition may be arranged to take place under the action of one or more springs which take effect automatically when the clutch teeth are at least partially interengaged.
  • the relative rotational movement of the baulking means and the locking means to provide an unbaulked condition may be effected by the action of fluid pressure acting in opposition to the force of the spring or springs.
  • the force of the spring or springs 2 is arranged to be overcomeautomatically by fluid pressure when the clutch attains a predetermined rotational speed.
  • FIG. 1 is a view in side sectional elevation of a synchronous self-shifting toothed clutch embodying the invention, the upper half of FIG. ll showing the clutch in a disengaged condition and the lower half of the figure showing the clutch in an engaged condition,
  • FIG. 3 is a section on the line III-Ill of FIG. 1,
  • FIG. 4 is a section on the line IV-IV of FIG. 1, and
  • FIG. 5 is a section on the line V-V of FIG. 2.
  • a first rotary clutch part includes a sleeve 1 formed with a flange l which is drivably connected to a flange 2 on a shaft 3.
  • the sleeve 1 is formed with a ring of internal clutch teeth 4 and with a ring of internal ratchet teeth 5.
  • a second rotary clutch part includes a sleeve 6, formed with a flange 6' which at its outer periphery is formed with a sleeve 7.
  • the sleeve 6 is formed with external righthand helical splines 8;
  • the flange 6 is drivably con nected to a flange 10 which is provided on a shaft 11 and which is formed to provide an oil catcher ring 12, to which oil can be fed from an external source through a jet 13.
  • the intermediate member of the clutch includes a sleeve 14 formed with internal helical splines 15 which are engaged with the external helical splines 8 on the sleeve 6.
  • the sleeve 14 is formed with a ring of external clutch teeth 16, and carries pawl pins 17 on which are mounted pawls 18, which are provided with control springs (not shown).
  • the noses of the pawls 18 point in anti-clockwise direction when viewed from the left-hand end of FIG. 1.
  • the sleeve 14 is also formed with a radially outwardly projecting annular flange 19, which at its outer periphery carries a locking ring carrier 20 to which is fixed a control ring 21 a surface 21' of which is in sliding contact with the outer surface of the sleeve 7.
  • the locking ring carrier 20 is formed with radially inward projections 22 which project intoarcuate recesses 23 in the outer surface of a locking ring 26.
  • the locking ring 26 is capable of angular sliding movement relative to the locking ring carrier 20, the said movement being limited by rotational stops 27 carried by the locking ring carrier, the stops 27 projecting radially inwardly into arcuate recesses 28 in the locking ring 26 and being in sliding contact with the locking ring.
  • the locking ring 26 is formed] with a ring of internal locking teeth 29.
  • the sleeve 7 carried by the second rotary clutch part 6 is formed with a ring of external baulking teeth 30. It is also formed with radial oil feed ducts 31 which communicate via ducts 32, 33 and 34 in the secondary rotary clutch part with ducts 36 in the flange 10, the ducts 36 opening into the annular oil chamber ofthe oil catcher ring 12.
  • the control ring 21 is formed with ducts 37 each of which communicates at its radially outer end with one of the recesses 28 in the locking ring 26, and at its radially inner end with an annular chamber 38 formed in the control ring .21.
  • Each of the arcuate recesses 23 in the locking ring 26 accommodates in compression spring 39, one end of which bears against the associated projection 22 and the other end of which bears against an end wall of the recess 23.
  • the projections 27 are adapted to serve as pistons, and the recesses 28 are adapted to serve as piston chambers.
  • the pawls 18 are axially positioned for ratcheting relative to the ratchet teeth 5.
  • the locking teeth 29 are interengaged with the baulking teeth 30 (see FIG. 3).
  • the ducts 31 are blanked by the surface 21' of the control ring 20.
  • shaft 3 is the shaft of a generator
  • shaft 11 is the shaft of a gas turbine
  • a starting motor connected to shaft 3 is to be used for starting the gas turbine from rest.
  • the shaft 3 of the generator is rotated in the direction shown by the arrow in FIG. 1, thereby causing pawls 18 to engage ratchet teeth 5, whereby under the action of the interengaged helical splines 8 and the intermediate member 14 is shifted helically relative to the second rotary clutch part 6 (to the right in the upper half of FIG. 1) so as to bring the external clutch teeth 16 carried by the intermediate member into precise initial interengagement with the internal clutch teeth 4 carried by the first rotary clutch part 1.
  • the locking ring carrier moves helically relative to the sleeve 7 (in clockwise direction in FIG. 3) and since the locking teeth 29 and the baulking teeth are interengaged the locking ring.
  • the oil pressure in the piston chambers 28 is sufficient to overcome the force of the springs 39 and to rotate the locking ring 26 (anti-clockwise in FIG. 4) to the position in which projections 27 abut the end walls of the recesses 28.
  • the clutch is able to disengage since the locking teeth 29 can interengage with the baulking teeth 30 (see FIG. 5).
  • the ducts 31 become blanked by the surface 21' of the control ring 21 so that the supply ofoil to the piston chambers 28 is shut off.
  • the oil in the piston chambers drains away through restricted orifices 38, this draining action being assisted by the action of the springs 39, by the disengaging motion of the intermediate member 14 and by centrifugal force acting on the oil in the piston chambers 28.
  • a synchronous self-shifting toothed clutch comprising first and second rotary clutch parts, coacting clutch teeth with clutch actuating mechanism operative upon passage of said first and second rotary clutch parts through synchronism in one direction of relative rotation, the said mechanism including an intermediate member constrained for movement relative to one of said first and second rotary clutch parts to effect at least partial interengagement of the coacting clutch teeth, the clutch including means operable to prevent disengagement of the clutch teeth when interengaged, characterised in that the said means comprise locking means carried by the intermediate member or by the said one rotary clutch part and baulking means carried by the said one rotary clutch part or by the intermediate member, with means mounting said locking means and said baulking means whereby said locking means and said baulking means are capable, when the coacting clutch teeth are at least partially interengaged, of relative rotational movement about the clutch axis between a baulking condition in which disengagement of the clutch teeth is prevented owing to the said baulking means being in axial baulking relationship with said locking means and a non-bau
  • a synchronous self-shifting toothed clutch according to claim 1 including fluid pressure means that operate automatically to produce relative rotational movement of said locking means and said baulking means to a non-baulking condition when, with the coacting clutch teeth at least partially interengaged, the clutch attains a predetermined rotational speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)
US410453A 1972-10-31 1973-10-29 Synchronous self-shifting clutch Expired - Lifetime US3868004A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB5020372A GB1409810A (en) 1972-10-31 1972-10-31 Synchronous self-shifting clutch

Publications (1)

Publication Number Publication Date
US3868004A true US3868004A (en) 1975-02-25

Family

ID=10455060

Family Applications (1)

Application Number Title Priority Date Filing Date
US410453A Expired - Lifetime US3868004A (en) 1972-10-31 1973-10-29 Synchronous self-shifting clutch

Country Status (8)

Country Link
US (1) US3868004A (fr)
AU (1) AU466815B2 (fr)
BE (1) BE806656A (fr)
DE (1) DE2354332A1 (fr)
FR (1) FR2212885A5 (fr)
GB (1) GB1409810A (fr)
IT (1) IT999107B (fr)
NL (1) NL7314918A (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474275A (en) * 1981-07-10 1984-10-02 Maag Gear-Wheel & Machine Co. Ltd. Automatically engageable jaw clutch
CN101131186B (zh) * 2006-08-22 2012-02-15 通用汽车环球科技运作公司 具有牙嵌式离合器和同步器的单向离合器
CN105781621A (zh) * 2016-03-08 2016-07-20 陈名碧 双涡轮内燃发动机
US20180142741A1 (en) * 2016-11-18 2018-05-24 General Electric Company System and method for synchronous condenser clutch
US10125628B2 (en) 2017-04-13 2018-11-13 General Electric Company Systems and methods for power generation synchronous condensing
US10468944B2 (en) 2017-01-25 2019-11-05 General Electric Company System and method for synchronous condensing
US11473495B2 (en) 2020-04-09 2022-10-18 General Electric Company System and method for retrofitting a power generation system to incorporate clutchless synchronous condensing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2580591C1 (ru) * 2014-11-28 2016-04-10 Сергей Сергеевич Ершов Центробежное сцепление
DE102017119327B3 (de) 2017-08-24 2018-09-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Schaltvorrichtung für ein Getriebe
EP3682132B1 (fr) 2017-09-12 2021-03-03 Gkn Automotive Ltd. Embrayage à roue libre présentant une force de réglage induite par frottement
WO2019052635A1 (fr) 2017-09-12 2019-03-21 Gkn Automotive Ltd. Embrayage à roue libre

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2556678A (en) * 1945-03-01 1951-06-12 Goss Printing Press Co Ltd Positive clutch and lock
US2733791A (en) * 1956-02-07 short
US3272295A (en) * 1963-09-30 1966-09-13 Sss Patents Ltd Rotary clutches
US3715019A (en) * 1970-03-11 1973-02-06 Sss Patents Ltd Synchronous self-shifting clutches

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733791A (en) * 1956-02-07 short
US2556678A (en) * 1945-03-01 1951-06-12 Goss Printing Press Co Ltd Positive clutch and lock
US3272295A (en) * 1963-09-30 1966-09-13 Sss Patents Ltd Rotary clutches
US3715019A (en) * 1970-03-11 1973-02-06 Sss Patents Ltd Synchronous self-shifting clutches

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474275A (en) * 1981-07-10 1984-10-02 Maag Gear-Wheel & Machine Co. Ltd. Automatically engageable jaw clutch
CN101131186B (zh) * 2006-08-22 2012-02-15 通用汽车环球科技运作公司 具有牙嵌式离合器和同步器的单向离合器
CN105781621A (zh) * 2016-03-08 2016-07-20 陈名碧 双涡轮内燃发动机
CN105781621B (zh) * 2016-03-08 2018-01-02 陈名碧 双涡轮内燃发动机
US20180142741A1 (en) * 2016-11-18 2018-05-24 General Electric Company System and method for synchronous condenser clutch
US10787926B2 (en) * 2016-11-18 2020-09-29 General Electric Company System and method for synchronous condenser clutch
US10468944B2 (en) 2017-01-25 2019-11-05 General Electric Company System and method for synchronous condensing
US10125628B2 (en) 2017-04-13 2018-11-13 General Electric Company Systems and methods for power generation synchronous condensing
US11473495B2 (en) 2020-04-09 2022-10-18 General Electric Company System and method for retrofitting a power generation system to incorporate clutchless synchronous condensing

Also Published As

Publication number Publication date
DE2354332A1 (de) 1974-05-09
AU6204173A (en) 1975-05-01
AU466815B2 (en) 1975-11-13
GB1409810A (en) 1975-10-15
FR2212885A5 (fr) 1974-07-26
IT999107B (it) 1976-02-20
BE806656A (fr) 1974-02-15
NL7314918A (fr) 1974-05-02

Similar Documents

Publication Publication Date Title
US3868004A (en) Synchronous self-shifting clutch
US3563354A (en) Automatically engaging and disengaging dog clutch
US2395459A (en) Automatic transmission
US3943374A (en) Electrical power generating plant
US4042088A (en) Low speed disconnect
US2906383A (en) Clutch coupling
US3270843A (en) Synchronizer clutch assembly
US3362244A (en) Multiple ratio power transmission system with a manually operated synchronizer
GB1145950A (en) Coupling mechanism
US2865481A (en) Fluid operated friction clutch with cushion
US3306409A (en) Centrifugally-controlled, helicallysplined dentil overrunning clutch
US3770088A (en) Friction-engaging device
US3715019A (en) Synchronous self-shifting clutches
US4566569A (en) Synchronizing mechanism in a vehicle gearbox
US3904006A (en) Synchronous self-shifting clutch
US1924875A (en) Shrouded synchronizer
US3395782A (en) Synchronous self-shifting clutches
US2382088A (en) Clutch
GB2134193A (en) Coupling arrangement of synchronous clutches particularly for marine propulsion
US2913084A (en) Clutches for transmitting rotary motion
US3090242A (en) Starter drive
US2504481A (en) Overrunning clutch release means
US3313181A (en) Transmission control
US3534843A (en) Lubricated synchronous positive clutch
US3333663A (en) Synchronous self-shifting clutches