US3867664A - Electric discharge devices - Google Patents

Electric discharge devices Download PDF

Info

Publication number
US3867664A
US3867664A US434927A US43492774A US3867664A US 3867664 A US3867664 A US 3867664A US 434927 A US434927 A US 434927A US 43492774 A US43492774 A US 43492774A US 3867664 A US3867664 A US 3867664A
Authority
US
United States
Prior art keywords
aluminium
alkali metal
halide
vessel
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US434927A
Inventor
Alan George Chalmers
David Osborn Wharmby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thorn Electrical Industries Ltd
Original Assignee
Thorn Electrical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thorn Electrical Industries Ltd filed Critical Thorn Electrical Industries Ltd
Application granted granted Critical
Publication of US3867664A publication Critical patent/US3867664A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent

Definitions

  • the present invention relates to high-pressure metal halide electrical discharge devices.
  • the discharge takes place in a gas atmosphere comprising a rare gas, mercury vapour and the halide of one or more elements.
  • the rare gas is present to make the discharge easier to'start.
  • the mercury pressure is usually inthe range of to 30 atmospheres.
  • Metal halide discharges comprising aluminium chloride, mercury and a rare gas (as described for example in British Pat. Nos. 1 190 833 and l 253 948) are known to have high efficacies and spectral power distributions that are continuous or quasi-continuous. They therefore have desirable colour rendering properties.
  • Other aluminium halides afford similar spectra although with lower efficacies.
  • the aluminium halide discharges suffer from having undesirable colour appearance, being either on the green side of white or having too high a colour temperature. Their arcs also tend to be constricted and this causes instability.
  • halides of one or more alkali metals are added to aluminium halide discharges in the presence of mercury and a rare gas.
  • the alkali halides introduced into the discharge filling modify the colour appearance, notably by lowering the colour temperature, whilst maintaining and in some cases increasing the efficacy, increasing the stability and maintaining adequate colour rendering properties.
  • Typical practical embodiments of the present invention are metal halide discharge lamps having a discharge vessel, usually made of fused silica,the wall of which is power loaded at 1 0-100 Wcm which contains a low partial pressure of rare gas, from O to30 mg.cm of mercury, an aluminium halide and an alkali metal halide such that the ratio of the number of molecules of alkali metal halide to aluminium halide (assumed for this purpose to be in the form of trihalide) is in the range 0.1 to 1.5.
  • Such embodiments normally contain sufficient aluminium and alkali metal halide in the discharge vessel for unevaporated aluminium halide and alkali metal halide to be present in the vessel during the operation of the lamp so that the vapours of the halides in the discharge are saturated. It is sometimes advantageous to add additional aluminium metal to prolong electrode life (as described in British Pat. No. l 253 948).
  • FIG. 1 is an emission spectrum of one example of a lamp according to the invention containing sodium chloride and aluminium chloride;
  • FIG. 2 shows onetype of discharge tube embodying the invention
  • FIG. 3 shows a second type of discharge tube embodying the invention mounted in a suitable lamp form.
  • sodium chloride and aluminium chloride are used in the discharge lamp, which also contains mercury and rare gas.
  • the total number of atoms of aluminium and sodium is preferably larger than the total number of chlorine atoms, since where the total number of metal atoms (aluminium and alkali metal) is greater than the number of chlorine atoms electrode erosion is reduced.
  • the preferred ranges for the constituents are: mercury 1030 mg cm', aluminium trihalide 5-100 [.LmOl cm', alkali metal halide 0.5 p.mol cm, with the preferred range for the ratio of the number of molecules of alkali metal halide to the number of molecules of aluminium chloride is 0.1 to 1.5 (all molecules being regarded as in the monomeric form).
  • a silica discharge tube 11 is closed at either end by pinches 12 which make hermetic seals around current leads 13. These current leads are connected to tungsten electrodes 14 which may incorporate an emitter material. The discharge takes place between these electrodes.
  • the discharge vessel has a length of 35mm, an internal diameter of 10mm and a volume of 2cm. The electrode separation is 27mm.
  • a similar discharge tube shown in FIG. 3, has a volume 4.3 cm, internal diameter l5mm,'length 35 mm and electrode separation 20 mm, and is mounted in an outer envelope 15 made from hard glass with a frame of a type that is known to inhibit migration of alkali atoms through the silica.
  • An auxiliary electrode 16 is provided for ease of starting. In both cases the temperature of the discharge tube ends may be increased by coating with zirconia or by any other suitable means.
  • the dosingcomponents for the discharge tubes of this invention may be introduced into the tubes in any convenient form.
  • the halogen may be dosed as a compound of mercury, e.g., Hg Cl or directly as the metal salt, e.g., AlCl or separately as metal and halogen, or in any other convenient way.
  • Alkali metals may be dosed directly, as the metal, or as halogen compounds e.g. NaCl, Nal, Cal.
  • EXAMPLE 1 The discharge space of a lamp as shown in FIG. 2 was dosed with l 1.3 m g Hg 3.3 mg A1 2.3 mg NaCl and filled with 20 torr of argon at room temperature. This-lamp was operated at a power of 400W when the light efficacy was 106 lmW and the lamp had a warm colour appearance. The colour temperature of this lamp was 3100K and the colour rendering obtained therewith was satisfactory.
  • EXAMPLE 2 The discharge space of a lamp as shown in FIG. 2 was dosed with 38.6 mg I-Ig Cl 10.9 mg Hg 3.8 mg Al 10.2 mg Nal At a power of 350W, the efficacy was 100 lmW". The colour temperature of the lamp was 2,450K and the lamp had a warm colour appearance.
  • EXAMPLE 3 A discharge tube similar to that shown in FIG. 2 but having a 6 mm bore, an electrode separation of 27 mm and a volume of 1 cm was dosed with 17.2 mg Hg Cl 9.7 mg Hg 3.8 mg Al 0.7 mg NaCl and filled with argon to 50 torr at room temperature. The lamp at 200W gave a light efficacy of 90-100 lmW. The discharge was stable and had no perceptible flicker.
  • amd a gass fill in said vessel comprising mercury vapour, rare gas, aluminium halide and at least one alkali metal halide.
  • a high-pressure electrical discharge vessel comprising:
  • a light-transmitting discharge vessel having a wall power loaded at between l0 and I00 Wcm during operation;
  • a gass fill in said vessel comprising a rare gas, mercury in the range 0 to 30 mg cm', an alkali metal halide and an aluminium halide, the alkali metal and aluminium halides being present in such quantities that the molar ratio of alkali metal halide to aluminium halide is from 0.1 to 1.5 and unevaporated aluminium and alkali metal halides are present during operation of the lamp.
  • a discharge lamp according to claim 2 wherein said gas fill comprises mercry in the range 10 to 30 mg cnf aluminium chloride or iodide in the range 5 to pmol cm" and sodium chloride or iodide in the range 0.5 to ,umol cm.
  • a discharge lamp according to claim 4 in which the total number of aluminium and alkali metal atoms is greater than the total number of halogen atoms.

Abstract

The inclusion of an alkali metal halide in the gas fill of a high pressure mercury and aluminium halide discharge lamp improves the colour appearance of the lamp; notably by lowering the colour temperature, while maintaining or even increasing the efficacy and stability of the discharge. Preferred contents are 10 to 30 mg cm 3 mercury, 5 to 100 Mu mol cm 3 aluminium halide and 0.5 to 150 Mu mol cm 3 alkali metal halide, with the molar ratio of alkali metal halide to aluminium halide in the range 0.1 to 1.5 and the total number of aluminium and alkali metal atoms preferably greater than the total number of halogen atoms.

Description

United States Patent 1191 Chalmers et al.
I 1111' "3,867,664 1451 Feb. 18, 1975 ELECTRIC DISCHARGE DEVICES [75] Inventors: Alan George Chalmers; David I Osborn Wharmby, both of London, England 73] Assignee:
21 Appl, No.: 434,927
[ 30] Foreign Application Priority Data Primary ExaminerRudolph V. Rolinec Assistant Examiner-Darwin R. Hostetter Attorney, Agent, or Firm-Dike, Bronstein, Roberts, Cushman & Pfund 1 [57] ABSTRACT The inclusion of an alkali metal halide in the gas fill of a high pressure mercury and aluminium-halide discharge lamp improves the colour appearance of the lamp; notably by lowering the colour temperature, while maintaining or even increasing the, efficacy and Jan. 23, 1973 Great Britain... 3469/73 Stability of'the discharga Pmferred Contents are 10 to 30 mg cm mercury, 5 to 100 umol cm. aluminium gbi g ig halide and 0.5 to lSO umol cm alkali metal halide, [58] Field g with the molar ratio of alkali. metal halide to alumina ium halide in the range 0.1 to 1.5 and the total number of aluminium and alkali metal atoms preferably [56] UN TE S SEZ I-FES SZEFENTS greater than the total number of halogen atoms. 3,771,009 11 /1973 sin/era al 313/229 5 Claims, 3 Drawing Figures 0% SOD/UM D L/NES X I\ 2 m 1 l I. 1 a
\ WAVELENGTH 17771 1 ELECTRIC DISCHARGE DEVICES The present invention relates to high-pressure metal halide electrical discharge devices. In metal halide lamps the discharge takes place in a gas atmosphere comprising a rare gas, mercury vapour and the halide of one or more elements. The rare gas is present to make the discharge easier to'start. At the operating temperature of the lamp, the mercury pressure is usually inthe range of to 30 atmospheres.
Metal halide discharges comprising aluminium chloride, mercury and a rare gas (as described for example in British Pat. Nos. 1 190 833 and l 253 948) are known to have high efficacies and spectral power distributions that are continuous or quasi-continuous. They therefore have desirable colour rendering properties. Other aluminium halides afford similar spectra although with lower efficacies. The aluminium halide discharges suffer from having undesirable colour appearance, being either on the green side of white or having too high a colour temperature. Their arcs also tend to be constricted and this causes instability.
According to the present invention, halides of one or more alkali metals (Li, Na, K, Rb, Ca) are added to aluminium halide discharges in the presence of mercury and a rare gas. The alkali halides introduced into the discharge filling modify the colour appearance, notably by lowering the colour temperature, whilst maintaining and in some cases increasing the efficacy, increasing the stability and maintaining adequate colour rendering properties.
Typical practical embodiments of the present invention are metal halide discharge lamps having a discharge vessel, usually made of fused silica,the wall of which is power loaded at 1 0-100 Wcm which contains a low partial pressure of rare gas, from O to30 mg.cm of mercury, an aluminium halide and an alkali metal halide such that the ratio of the number of molecules of alkali metal halide to aluminium halide (assumed for this purpose to be in the form of trihalide) is in the range 0.1 to 1.5. Such embodiments normally contain sufficient aluminium and alkali metal halide in the discharge vessel for unevaporated aluminium halide and alkali metal halide to be present in the vessel during the operation of the lamp so that the vapours of the halides in the discharge are saturated. It is sometimes advantageous to add additional aluminium metal to prolong electrode life (as described in British Pat. No. l 253 948). g
The invention will be further described, by way of example with reference to the accompanying drawings, in which:
FIG. 1 is an emission spectrum of one example of a lamp according to the invention containing sodium chloride and aluminium chloride;
FIG. 2 shows onetype of discharge tube embodying the invention; and
FIG. 3 shows a second type of discharge tube embodying the invention mounted in a suitable lamp form.
Ina preferred form of the present invention, sodium chloride and aluminium chloride are used in the discharge lamp, which also contains mercury and rare gas. The total number of atoms of aluminium and sodium is preferably larger than the total number of chlorine atoms, since where the total number of metal atoms (aluminium and alkali metal) is greater than the number of chlorine atoms electrode erosion is reduced. One
effect of sodium additions can be seen in he spectrum shown inFlG. I in which the sodium D lines are apparent. Similar spectra are observed, for example, with sodium iodide and aluminium chloride or with sodium iodide and aluminium iodide discharges. A further effect is that discharge stability is increased and 50 Hz flicker is reduced to negligible proportions.
The preferred ranges for the constituents are: mercury 1030 mg cm', aluminium trihalide 5-100 [.LmOl cm', alkali metal halide 0.5 p.mol cm, with the preferred range for the ratio of the number of molecules of alkali metal halide to the number of molecules of aluminium chloride is 0.1 to 1.5 (all molecules being regarded as in the monomeric form).
By way of example only, the lamps illustrated in FIGS. 2 and 3 will now be described.
In the lamp shown in FIG. 2, a silica discharge tube 11 is closed at either end by pinches 12 which make hermetic seals around current leads 13. These current leads are connected to tungsten electrodes 14 which may incorporate an emitter material. The discharge takes place between these electrodes. The discharge vessel has a length of 35mm, an internal diameter of 10mm and a volume of 2cm. The electrode separation is 27mm.
A similar discharge tube, shown in FIG. 3, has a volume 4.3 cm, internal diameter l5mm,'length 35 mm and electrode separation 20 mm, and is mounted in an outer envelope 15 made from hard glass with a frame of a type that is known to inhibit migration of alkali atoms through the silica. An auxiliary electrode 16 is provided for ease of starting. In both cases the temperature of the discharge tube ends may be increased by coating with zirconia or by any other suitable means.
The dosingcomponents for the discharge tubes of this invention may be introduced into the tubes in any convenient form. By way of example, the halogen may be dosed as a compound of mercury, e.g., Hg Cl or directly as the metal salt, e.g., AlCl or separately as metal and halogen, or in any other convenient way. Alkali metals may be dosed directly, as the metal, or as halogen compounds e.g. NaCl, Nal, Cal.
EXAMPLE 1 The discharge space ofa lamp as shown in FIG. 2 was dosed with l 1.3 m g Hg 3.3 mg A1 2.3 mg NaCl and filled with 20 torr of argon at room temperature. This-lamp was operated at a power of 400W when the light efficacy was 106 lmW and the lamp had a warm colour appearance. The colour temperature of this lamp was 3100K and the colour rendering obtained therewith was satisfactory.
By way of comparison an aluminium chloride lamp with similar dosing but no sodium chloride has similar efficacy but a colour temperature of 7,000K and greenish white colour appearance but the same colour rendering index of 65.
EXAMPLE 2 The discharge space ofa lamp as shown in FIG. 2 was dosed with 38.6 mg I-Ig Cl 10.9 mg Hg 3.8 mg Al 10.2 mg Nal At a power of 350W, the efficacy was 100 lmW". The colour temperature of the lamp was 2,450K and the lamp had a warm colour appearance.
EXAMPLE 3 A discharge tube similar to that shown in FIG. 2 but having a 6 mm bore, an electrode separation of 27 mm and a volume of 1 cm was dosed with 17.2 mg Hg Cl 9.7 mg Hg 3.8 mg Al 0.7 mg NaCl and filled with argon to 50 torr at room temperature. The lamp at 200W gave a light efficacy of 90-100 lmW. The discharge was stable and had no perceptible flicker.
EXAMPLE 4 ing:
a light-transmitting discharge vessel;
spaced electrodes in said vessel;
amd a gass fill in said vessel comprising mercury vapour, rare gas, aluminium halide and at least one alkali metal halide.
2. A high-pressure electrical discharge vessel comprising:
a light-transmitting discharge vessel having a wall power loaded at between l0 and I00 Wcm during operation;
spaced electrodes in said vessel; and a gass fill in said vessel comprising a rare gas, mercury in the range 0 to 30 mg cm', an alkali metal halide and an aluminium halide, the alkali metal and aluminium halides being present in such quantities that the molar ratio of alkali metal halide to aluminium halide is from 0.1 to 1.5 and unevaporated aluminium and alkali metal halides are present during operation of the lamp.
3. A discharge lamp as claimed in claim 2, in which the total number of aluminium and alkali metal atoms is greater than the total number of halogen atoms.
4. A discharge lamp according to claim 2 wherein said gas fill comprises mercry in the range 10 to 30 mg cnf aluminium chloride or iodide in the range 5 to pmol cm" and sodium chloride or iodide in the range 0.5 to ,umol cm.
5. A discharge lamp according to claim 4 in which the total number of aluminium and alkali metal atoms is greater than the total number of halogen atoms.

Claims (5)

1. A HIGH-PRESSURE ELECTRICAL DISCHARGE LAMP COMPRISING: A LIGHT-TRANSMITTING DISCHARGE VESSEL; SPACED ELECTRODES IN SAID VESSEL; AND A GASS FILL IN SAID C VESSEL COMPRISING MERCURY VAPOUR, RARE GAS, ALUMINUM HALIDE AND AT LEAST ONE ALKALI METAL HALIDE.
2. A high-pressure electrical discharge vessel comprising: a light-transmitting discharge vessel having a wall power loaded at between 10 and 100 Wcm 2 during operation; spaced electrodes in said vessel; and a gass fill in said vessel comprising a rare gas, mercury in the range 0 to 30 mg cm 3, an alkali metal halide and an aluminium halide, the alkali metal and aluminium halides being present in such quantities that the molar ratio of alkali metal halide to aluminium halide is from 0.1 to 1.5 and unevaporated aluminium and alkali metal halides are present during operation of the lamp.
3. A discharge lamp as claimed in claim 2, in which the total number of aluminium and alkali metal atoms is greater than the total number of halogen atoms.
4. A discharge lamp according to claim 2 wherein said gas fill comprises mercry in the range 10 to 30 mg cm 3, aluminium chloride or iodide in the range 5 to 100 Mu mol cm 3 and sodium chloride or iodide in the range 0.5 to 150 Mu mol cm 3.
5. A discharge lamp according to claim 4 in which the total number of aluminium and alkali metal atoms is greater than the total number of halogen atoms.
US434927A 1973-01-23 1974-01-21 Electric discharge devices Expired - Lifetime US3867664A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB346973A GB1444023A (en) 1973-01-23 1973-01-23 Electric discharge lamps

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/965,278 Reissue USRE30831E (en) 1973-01-23 1978-12-01 Electric discharge devices

Publications (1)

Publication Number Publication Date
US3867664A true US3867664A (en) 1975-02-18

Family

ID=9758912

Family Applications (1)

Application Number Title Priority Date Filing Date
US434927A Expired - Lifetime US3867664A (en) 1973-01-23 1974-01-21 Electric discharge devices

Country Status (14)

Country Link
US (1) US3867664A (en)
JP (1) JPS5837662B2 (en)
BE (1) BE810033A (en)
CA (1) CA988988A (en)
DE (1) DE2402760C3 (en)
DK (1) DK138969B (en)
FR (1) FR2214968B1 (en)
GB (1) GB1444023A (en)
IE (1) IE38771B1 (en)
IT (1) IT1003493B (en)
LU (1) LU69211A1 (en)
NL (1) NL182925C (en)
SE (1) SE383228B (en)
ZA (1) ZA74411B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135110A (en) * 1975-02-13 1979-01-16 Thorn Electrical Industries Limited Electrical discharge lamp
FR2538951A1 (en) * 1982-12-29 1984-07-06 Gen Electric CONTROL OF RADIAL DISTRIBUTIONS IN HIGH POWER DISCHARGE LAMPS AND CONTROL METHOD
US6157141A (en) * 1998-05-05 2000-12-05 Osram Sylvania Inc. Blue light electrodeless high intensity discharge lamp system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2422411A1 (en) * 1974-05-09 1975-12-11 Philips Patentverwaltung HIGH PRESSURE MERCURY VAPOR DISCHARGE LAMP
DE2826733C2 (en) * 1977-07-05 1982-07-29 General Electric Co., Schenectady, N.Y. High pressure metal halide discharge lamp
US4591759A (en) * 1984-09-10 1986-05-27 General Electric Company Ingredients for solenoidal metal halide arc lamps
US4705987A (en) * 1985-10-03 1987-11-10 The United States Of America As Represented By The United States Department Of Energy Very high efficacy electrodeless high intensity discharge lamps

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771009A (en) * 1971-12-27 1973-11-06 Gte Laboratories Inc Electrode discharge device with electrode-activating fill

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2102866A5 (en) * 1970-08-27 1972-04-07 Eclairage Lab

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771009A (en) * 1971-12-27 1973-11-06 Gte Laboratories Inc Electrode discharge device with electrode-activating fill

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135110A (en) * 1975-02-13 1979-01-16 Thorn Electrical Industries Limited Electrical discharge lamp
FR2538951A1 (en) * 1982-12-29 1984-07-06 Gen Electric CONTROL OF RADIAL DISTRIBUTIONS IN HIGH POWER DISCHARGE LAMPS AND CONTROL METHOD
US6157141A (en) * 1998-05-05 2000-12-05 Osram Sylvania Inc. Blue light electrodeless high intensity discharge lamp system

Also Published As

Publication number Publication date
LU69211A1 (en) 1974-04-08
BE810033A (en) 1974-05-16
CA988988A (en) 1976-05-11
DE2402760A1 (en) 1974-07-25
FR2214968B1 (en) 1978-10-27
ZA74411B (en) 1974-11-27
GB1444023A (en) 1976-07-28
NL7400944A (en) 1974-07-25
DE2402760C3 (en) 1980-01-31
IE38771B1 (en) 1978-05-24
JPS5837662B2 (en) 1983-08-17
IE38771L (en) 1974-07-23
NL182925C (en) 1988-06-01
JPS49104479A (en) 1974-10-03
DE2402760B2 (en) 1979-05-31
AU6481974A (en) 1975-07-24
IT1003493B (en) 1976-06-10
DK138969C (en) 1979-05-28
DK138969B (en) 1978-11-20
FR2214968A1 (en) 1974-08-19
SE383228B (en) 1976-03-01

Similar Documents

Publication Publication Date Title
CA1303663C (en) High-pressure mercury vapour discharge lamp
US4171498A (en) High pressure electric discharge lamp containing metal halides
US3979624A (en) High-efficiency discharge lamp which incorporates a small molar excess of alkali metal halide as compared to scandium halide
US4020377A (en) High pressure mercury vapor discharge lamp
JPH05205697A (en) High-voltage discharge lamp
US3781586A (en) Long lifetime mercury-metal halide discharge lamps
EP0400980B1 (en) Metal halide lamp
US3786297A (en) Discharge lamp which incorporates cerium and cesium halides and a high mercury loading
US3798487A (en) Discharge lamp which incorporates divalent cerium halide and cesium halide and a high mercury loading
US3530327A (en) Metal halide discharge lamps with rare-earth metal oxide used as electrode emission material
US3764843A (en) High-pressure gas discharge lamp containing germanium and selenium
US3958145A (en) High pressure, mercury vapor, metal halide discharge lamp
US3867664A (en) Electric discharge devices
GB1580991A (en) High pressure gas discharge light source with metal halide additive
US4247798A (en) Mercury-metal halide discharge lamp
US3900750A (en) Metal halide discharge lamp having heat absorbing coating
JPH0684496A (en) High pressure metallic vapor electric discharge lamp
JP3388539B2 (en) Mercury-free metal halide lamp
EP0582709B1 (en) Metal iodide lamp
US4015164A (en) Metallic halide high-pressure gas discharge lamp
US3927343A (en) Wall-stabilised high-pressure mercury vapour discharge lamp containing iodide
EP0784334A1 (en) Metal halide lamp
US5225733A (en) Scandium halide and alkali metal halide discharge lamp
USRE30831E (en) Electric discharge devices
US3575630A (en) High pressure mercury vapor discharge lamp containing zirconium iodide