US3867192A - Electron beam recording - Google Patents

Electron beam recording Download PDF

Info

Publication number
US3867192A
US3867192A US335671A US33567173A US3867192A US 3867192 A US3867192 A US 3867192A US 335671 A US335671 A US 335671A US 33567173 A US33567173 A US 33567173A US 3867192 A US3867192 A US 3867192A
Authority
US
United States
Prior art keywords
electron beam
compound
group
electron
dye precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US335671A
Inventor
Theofiel Eveline Hermans
Gerard Albert Delzenne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Original Assignee
Agfa Gevaert NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV filed Critical Agfa Gevaert NV
Priority to US05/516,957 priority Critical patent/US3984583A/en
Application granted granted Critical
Publication of US3867192A publication Critical patent/US3867192A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • G03C1/733Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds with macromolecular compounds as photosensitive substances, e.g. photochromic

Definitions

  • the present invention relates to recording media suited for the recording of information in the form of a modulated electron beam.
  • Electron sensitive layers wherein following exposure to electron beam radiation a visible color change can be developed, are known already, e.g. from the US. Pat. No. 3,331,076 and 3,370,981.
  • a'recording medium which comprises a substrate, preferably an electrically conductive substrate, on'which is super-imposed a layer containing an oil-soluble amino azo indicator dye in basic form and a highly halogenated polymeric binder.
  • Highly halogenated polymers are preferred as electron beam sensitive substances for they act as a relatively nonvolatile source of hydrochloric acid when struck by high energy electrons and do not liberate such acid under visible light conditions.
  • a disadvantage associated with said recording medium is in the fact that the amino azo indicator dyes are inherently coloured. which makes them unsuited for producing images with a colourless image background.
  • a still further object of the present invention is to provide a process for producing a visible record or image by means of a modulated electron beam.
  • an electron beamsensitive recording material that has a practically negligible sensitivity to ultra-violet radiation and visible light, said material comprising:
  • A at least one dye precursor compound, which is capable of forming a dye when being in working relationship with an electron beam-exposed compound of the group cited under (B), and
  • halogen-containing polymer undergoing dehy-v drohalogenation on electron beam impact, and/or an organic compound containing one or two halogen atoms linked to a same carbon atom, which is further linked to at least one electron-withdrawing group. and/or an organic compound that contains at least one non-halogencarrying carbon atom bound to at least one hydrogen atom and at least two electronwithdrawing groups, and/or a polyhalogenated aromatic hydroxy compound.
  • a monovalent aromatic group e.g., a phenyl group and a -OCOR group in which R is an organic group
  • a suitable polyhalogenated aromatic hydroxy compound is e.g. 4,4-dihydroxy-3,3',5,5- tetrabromodiphenyl-2,2-propane.
  • the coating mixture contains the compounds (A) and (B) in a 1:2 molar ratio.
  • the coating is effected in such a way that 025g of compound (A) are present per length (A) in nm, in the range of 330 to 680 nm is represented in the accompanying drawing.
  • the emitted photon energy ofthat lamp at a distance of 15 cm from the centre of the lamp is approximately 10 erg per sq.cm.
  • the thus exposed recording medium does not show in the visible light range (400 nm 700 nm) a spectral density increase of more than 0.2 it is particularly useful when it possesses a sufficient sensitivity to be visibly changed by electron beam impact.
  • Recording materials having an already very useful electron beam-sensitivity are capable of yielding a visible mark with an optical density ofat least 0.5 when struck by an electron beam that is accelerated with a potential difference of 20 kV and strikes the recording layer with a charge of l.l0 -Coulomb per sq.cm.
  • Preferred colorless dye precursor compounds for use according t o the present invention are spiropyran compounds containing at least one pyran ring having in the orthoand meta-position to the oxygen atom an ad jacent benzo, or naphtho ring or other higher aromatic polycyclic condensed ring system including these condensed rings or ring systems in substituted form, e.g. an
  • anthraccno or a phenanthreno ring system as is present e.g. in a spirodibenzopyran, a spirodinaphtopyran, a spirobenzonaphthopyran, a 1.3.3 trimethylindolinobenzospiropyran, a 1,3 .3- trimethylindolinonaphthospiropyran or such spiropyrans containing condensed aromatic nuclei of the anthracene or phenanthrene type.
  • spiropyrans the pyran rings, the condensed benzo rings, the condensed higher aromatic rings as CH CONHf group, an acyl group, eg acetyl, halogen, nitro, hydroxy, alkoxy, ar'yloxy or a substituent linking the carbon atoms in 3,3-pos'ition in the spiropyran system together e.g. a (CH ),,-chain wherein n is 2 or 3.
  • acyl group e.g acetyl, halogen, nitro, hydroxy, alkoxy, ar'yloxy or a substituent linking the carbon atoms in 3,3-pos'ition in the spiropyran system together e.g. a (CH ),,-chain wherein n is 2 or 3.
  • each of R, R R,, R R R and R' represents hydrogen, an aliphatic group including a substituted aliphatic group e.g. a-(C C20) alkyl group including such an alkyl group in substituted form, more particularly a methyl, ethyl, propyl, amyl or hexadecyl groupor halogenated alkyl group, an acyl group e.g. acetyl, halogen, nitro, hydroxy, an alkoxy or aryloxy group, a phenyl group or a-substituted phenyl group, piperidyl, an alkylene ester group e.g. a CH COOC H group, an al kylene carboxyl group e.g. a CH COOH group, an alkylene carbonamide group or such a group in which the carbonamide group is substitutedeg. a
  • R and R together represent a (CH chain wherein n 2, or 3 to link the carbon atoms in the'3 and 3' positions together.
  • Preferred spiropyran compounds are spirodinaphtho- 45 pyrans and spirobenzonaphthopyrans including such compounds wherein the naphthoand/or benzo ring(s) N is (are) substituted.
  • a g R' An illustrativelist of particularly useful spiropyran 3 compounds is given in the following Table 1.
  • the pyrylium salt formed is separated by suction, washed with ethanol and thereupon brought into suspension in 300 ml of ethanol.
  • the crystalline product obtained is separated by suetion, washed with water and dried.
  • spiropyran compound is recrystallized from 600 ml of benzene and again separated and dried under reduced pressure at 5()-6(lC.
  • R represents an'organic group, e.g. a saturated or unsaturated aliphatic group e.g. an alkyl group including a substituted alkyl group or an aryl group including a substituted aryl group, or represents together with R the necessary atoms to close a homocyclic ring, e.g. a cyclohexylen-Z-one ring,
  • R represents hydrogen, a lower alkyl group e.g. methyl, a substituted lower alkyl group e.g. benzyl, a phenyl group including a substituted phenyl group, or phenyloxy,
  • R having the significance as defined above,
  • Z represents the necessary atoms to close a homocyclic nucleus including a substituted homocyclic nucleus, e.g. a benzene or a naphthalene nucleus including a substituted benzene or naphthalene nucleus,
  • R represents a lower alkyl (C -C group, and n is 1 or 2.
  • Table 2 contains an illustrative list of compounds according to the above general formula (I) with their melting point.
  • the compounds of general formula (I) may be prcrine concentration ranges preferably from about 20 to pared e.g. according to: 55 percent, more preferably from about 35 to about 55 Heilbron and Whitworth, J. Chem. Soc. 123, 243 percent by weight of the polymer.
  • substances suitable for acid formation comprises or-
  • a suitable compound according to the general forganic compounds containing one or two halogen atoms mula (ll) has the following structure: e.g. chlorine, bromine or iodine linked to a same carbon atom that is further linked to at least one electronwithdrawing group e.g.
  • reaction mixture is kept at room teml @-CO-?H-CO-NH-@ 1 5 perature for 24 h.
  • the dark green solution obtained is 4 Cl poured into 200 ml of water. A sticky green product separates. The supernatant water layer is removed and the residue treated with 50 ml of methanol so that the residue solidifies. The solid obtained is pulverised and washed again with 50 ml of methanol.
  • a first preferred class of electron beam-sensitive compounds (B) are highly halogenated polymers that Br liberate hydrogen halide upon electron bombardment.
  • the molecular weight is therefore preferably above 1000 and more preferably above 10,000.
  • Preferred polymers contain in addition to hydrogen at least 25 percent by weight of labile halogen selected an, from the group of chlorine and bromine.
  • the halogenated polymers are preferably soluble in fairly highly volatile organic solvents e.g. acetone, Z-butanone, methyl ethyl ketone and tetrahydrofuran.
  • organic solvents e.g. acetone, Z-butanone, methyl ethyl ketone and tetrahydrofuran.
  • monomers such as vinylidene chloride, and vinyl chloride, and ethylenically un-
  • the preparation of compound 1 is given in detail hereinafter.
  • Preferred vinylidene chloride polymers have a chlo- Melting point: 123C. rine content ranging from about 25 to about 73 percent
  • a third preferred class of electron beam-sensitive by weight the chlo- 7 compounds (B) that are capable of producing reactive substances suitable for acid formation comprises organic compounds that contain at least one non-halogen-carrying carbon atom bound to at least one hydrogen atom and at least two electron-withdrawing groups of which the groups so -C;N, 5N5, and -O-CO-R in which R is an organic group e.g. an alkyl, an alkenyl, an aryl or a heterocyclic group are representatives.
  • each of X, Y and Z represents an acyl radicaL'eg, a carboxylic acid or sulphonic acid acyl radical, a cyano group, a nitro group, an 'azido group, an ester group, a carbonyl alkoxy group, a carbamyl group inwherein R represents an alkyl radical including a subs'tituted alkyl radical, an aryl radical including a substituted aryl radical or a heterocyclic radical including a substituted heterocyclic radical.
  • Compound 5 is prepared e.g. according to Ber. 56B, 1380.
  • Compound 6 is prepared e.g. by oxidation with hydrogen peroxide of compound 1 described above.
  • Compound 7 is prepared. e.g. according to Ber. 47, 3334.
  • Compound 8 is prepared e.g. according to Ber. 47, 1439.
  • the recording medium may be formed as a supported layer or self-supporting film-or sheet.
  • the recording media of this invention may be prepared by mixing the dye precursor compound with the electron-beam sensitive compound and applying that mixture to a suitable support or coating base.
  • the electron beam-sensitive coating is preferably deposited from a solution as a film on a support it may be applied as a dispersion having one of the components in dispersed state in a binder solution containing the other component in dissolved form or containing both the components intimately mixed as the dispersed phase.
  • both the dye precursor compound and electron beam-sensitive substance are present in mixed form in solid grains or liquid droplets dispersed in a hydrophilic binder such as a hydrophilic colloid e.g. gelatin.
  • each mole of dye precursor compound preferably at least 1 to about 1000 acid equivalents of the electron beam-sensitive compound are used.
  • the recording element composition may contain other ingredients e.g. substances that act as fog inhibitor and substances that improve the electron beamsensitivity and increase the optical density.
  • additives improve e.g. the mechanical strength or control the coating viscosity, elasticity or gloss of the recording element.
  • anti-foggants such as triaryl compounds of group V elements e.g. triphenylstibine and sterically hindered phenols e.g. 2,6 di-tert- .butyl-p-cresol and other reducing agents or compounds accepting atmospheric oxygen.
  • Triphenylstibine and analogous compounds for the purpose of fog inhibition in a photoradical recording compound 4 system based on dye salt formation aredescribed in the United Kingdom Pat. No. 1,071,104.
  • That layer preferably is 1 pm to 50 ,um thick in dried state.
  • the support if any, is preferably electrically conductive or contains a subbing layer or interlayer with relatively high electrical conductivity.
  • Suitable supports are e.g. those used in electrophotographic materials.
  • Suitable electro-conductive plates or sheets serving as support have preferably an electrical resistivity at least times as small as that of the recording layer. Supports whose surface resistance is not higher than 10 ohm per sq. are preferred.
  • Suitable supports are conductive plates, e.g. plates of metals such as aluminium, zinc, copper, tin, iron, or lead.
  • Too highly insulating supports can be provided with a conductive subbing layer or interlayer.
  • Suitable electro-conductive interlayers for insulating supports are, e.g., vacuum-coated metal and conductive metal compound (metal oxide: or metal salt) layers such as silver, tin, aluminium, titanium dioxide and copper iodide conductive layers, transparent conductive polymer layers, e.g. applied from polymers containing quaternized nitrogen atoms, such as those described in the United Kingdom Pat. No. 950,960, or layers containing conductive particles, e.g. carbon black and metal particles dispersed ina binder.
  • the binder used for said particles has a resistivity preferably lower than 10 ohm.cm.
  • a suitable: binder for that purpose is gelatin.
  • Transparent electron beam-recording materials are produced by applying the dye-forming compounds together with a suitable binder (if necessary) from a clear solution to a conductive transparent base or a transparent insulating base coated with an electroconductive transparent interlayer.
  • resin sheets having an optical density of not more than 0.10 are preferred, e.g., a sheet made of polyethylene terephthalate or cellulose triacetate.
  • the conductive interlayer preferably consists of a metal coating, e.g., a vacuum-coated aluminium layer having an optical density of not more than 0.30 or of a conductive transparent polymer layer containing an organic polyionic polymer, e.g. a polymer containing quatcrnized nitrogen atoms such as a quatcrnized polyethyleneimine.
  • Paper sheets that have an insufficient electrical conductivity are coated or impregnated with substances enhancing their conductivity, e.g. by means of a conductive overcoat such as a metal sheet laminated thereto.
  • hygroscopic compounds and antistatic agents as described, e.g., in the United Kingdom Pat. No. 964,877, and antistatic agents of polyionic type, e.g. CALGON CONDUC- TlVE POLYMER 261 of Calgon Corporation, Inc., Pittsburgh, Pa., U.S.A., provided as a solution containing 39.1% by weight of active conductive solids, on the basis ofa conductive polymer having recurring units of the following type:
  • the applied paper sheets are preferably impermeabilized to organic solvents, e.g. by means of a watensoluble colloid or by strongly hydrating the cellulose fibers such as in glassine paper.
  • halogen-containing electron beamsensitive polymers are used that serve as binding agent for the dye precursor compound.
  • Such a layer contains preferably from 0.01 to 0.1% by weight of dye precursor compound.
  • the amount of dye precursor compound per sq.m is preferably in the range of 0.2 g to 2 g per sq.m.
  • a binding agent is used to form a sufficiently strong layer or sheet embedding these compounds in working relationship with the dye precursor compoun d(s).
  • said low molecular weight or monomeric compounds are used in excess with respect to the dye precursor compounds e.g. in a 2:1 to 20:1 molar ratio.
  • Additional films or coatings may be provided on the electron beam-sensitive element to protect it from abrasion provided they are relatively transmissive to the electron beam.
  • the electron-beam-sensitive layer is self-supporting it has not to contain a conductive backing layer when during the electron beam exposure it is held in electroconductive contact with an electrically conductive element e.g. a metal plate or roller that is grounded or kept at a different potential with respect to the electron beam.
  • an electrically conductive element e.g. a metal plate or roller that is grounded or kept at a different potential with respect to the electron beam.
  • the temperature and duration of heating can vary. In general, lower heating temperatures require longer heating times, and vice versa, in order to develop or intensify an image pattern. Heating times and temperatures are dependent upon the degree of image intensification desired or necessary. Usually temperatures below 200C and heating times no longer than 5 minutes are employed.
  • the intensity of these beams can be modulated by means well known to those skilled in the art. Since the generation and control of beams of high energy is accomplished by apparatus and methods which do not form a part of the present invention and which are well known to those of ordinary skill in the art, no detailed explanation thereof is given herein.
  • the particular type of high energy beam employed in any given instance depends, of course, upon the sensitivity and response associated with the given recording medium and upon the recording conditions.
  • the type of information stored can vary widely. For example sound track and video signals and facsimile signals can be recorded.
  • the recording process of the present invention is not limited by the information to be stored.
  • Information of various kind can be used as input for modulating an electrical signal which occasionally is obtained by means of one or more transducers.
  • Example 1 A solution was prepared having the following composition:
  • the electrical resistance of the coating was l X l Q/sq.cm at a relative humidity of 50%.
  • the electron beamsensitive coating containing the spiropyran compound was dried at 60C for 2 h.
  • the electron beam had an accelerating potential of 15 kV and a resulting target current of about 40 ,uA.
  • the electron beam was focused till forming a circular cross-sectional diameter of about 1 m in the target region.
  • the beam scanned a 0.5 mm line in a period of 5 ms.
  • the pressure maintained in the apparatus was below 10' mm Hg.
  • the scanned portions of the recording layer could be detected visually by inspection with an optical microscope and were seen as separate blue lines.
  • Example 3 A solution was prepared having the following composition:
  • the exposure to ultra-violet radiation was effected as spiropyran compound number I of Table l 20 mg electron beam-sensitive compound number 2 of Table 4 200 mg methylene chloride 5 ml 10% solution in methylene chloride of polystyrene 5 ml
  • the coating of said solution proceeded in the same way as described in Example 1 on the same support.
  • the electron beam exposure was effected with an electron beam having an accelerating potential of 20 kV and striking the recording target with a charge of 1.5 X 10 C/sq.cm (Coulomb per sq. cm).
  • the colored marks produced 9n the recording layer had an optical density measured b ehind green filter (transmission in the 500 to 600 nm wavelength range) of 0.4.
  • Example 5 Example 4 was repeated with the difference. how ever, that instead of. the electron beam-sensitive compound number'6 of Table 4. compound number 2 of Table 3 was used.
  • the colored marks produced with the electron are the colored marks produced with the electron.
  • Example 8 Example 4 was repeated with the proviso, however, that as electron beam-sensitive compound, compound number 8 of Table 4 was used and the polystyrene spiropyran compound number 'l of Table l as acid-producing compound Br CH Br I 3 -s-q-dl Br 5 r methylene chloride Thercoating of said solution was carried out as described in Example 1.
  • the electron beam exposure was effected with an electron beam having an accelerating potential of kV striking the recording target with a charge of 1.5 X 10. C/sq.cm.
  • the coloured marks produced in the recording layer had an optical density measured behind green filter (transmission in the 500 to 600 nm wavelength range) Analogous results were obtained by replacing the poly-N-vinylcarbazole by polystyrene and the polyhalogenated phenol by the electron beam-sensitive compound number 9 of Table 4.
  • Example 10 A solution was prepared having the following compositionz spiropyran compound number of Table l as electron beam-sensitive compound Br CH Br i 5 HO- Q -C- -OH Br 5 l3 methylene chloride lO polymethyl methacrylate solution in methylene chloride a styryl dye having the following structural formula The coating of said solution was carried out as described in Example 1.
  • the electron beam exposure was effected with an electron beam having an accelerating potential of 20 kV striking the recording target with a charge of 5.4 l0 C/sq.cm.
  • the colored marks produced in the recording layer had an optical density measured behind blue filter (transmission in the 400-500 nm wavelength range) of 0.54.
  • Example 11 A solution was prepared having the following com posltionz spiropyran compound number 4 of Table l 20 mg Michlers ketone 5 mg copolymer of vinyl chloride and vinylidene chloride (SO/) mg methylene chloride 10 ml The solution was knife-coated (wet coating thickness 0.127 mm) on a support as described in Example 1.
  • Example 2 The exposure to ultra-violet radiation carried out as described in Example 1 yielded an overall light blue coloration (spectral density 0.02).
  • the electron beam exposure was the same as de scribed in Example 4.
  • the electron beam exposure was effected with an electron beam having an accelerating potential of 20 kV striking the recording target with a charge of 5.10 C/sq.cm, 1
  • the colored marks produced in the recording layer had an optical density measured behind green filter (transmission in the 500-600 nm wavelength range) of 0.55.
  • An electron beam-sensitive recording material which comprises an electricallyconductive substrate and superposed thereon a layer that has a sensitivity to ultra-violet radiation not high enough to provide an optical density result in the visible spectrum range of more than 0.2 when tested under the standard test con ditions described in the specification, said layer comprising:
  • Z represents the necessary atoms to close a benzene or naphthalene nucleus
  • R represents a C -C alkyl group
  • n 1 or 2
  • An electron beam-sensitive recording material according to claim 1, wherein the said substrate has a surface resistance not lower than l X IOQ/sqcm.
  • An electron beam-sensitive recording material wherein the electron beam-sensitive compounds are used with respect to the dye precursor compound in a molar ratio of 2:1 to 20:1.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Abstract

An electron beam-sensitive recording material that has a sensitivity to ultra-violet radiation not high enough to provide an optical density in the visible spectrum range of more than 0.2 when exposed with said radiation under the described test conditions, wherein said material comprises: A. at least one dye precursor compound, which is capable of forming a dye when being in working relationship with an electron beam-exposed compound of the group mentioned here under (B), and B. a halogen-containing polymer undergoing dehydrohalogenation on electron beam impact and/or an organic compound containing one or two halogen atoms linked to a same carbon atom that is further linked to at least one electron-withdrawing group, and/or an organic compound that contains at least one nonhalogen carrying carbon atom bound to at least one hydrogen atom and at least two electron-withdrawing groups, and/or a polyhalogenated aromatic hydroxy compound.

Description

finite States atent 1191 Hermans et a1.
14 1 Feb. 18, 1975 ELECTRON BEAM RECORDING Primary Examiner-Michael Sofocleous [75] Inventors: Theofiel Eveline Hermans, Attorney Agent Flrm wllham Damel Boechout; Gerard Albert Delzenne, S-Gravenwezel, both of Belgium [57] ABSTRACT [73] Assignee1 AGFA'Gevaert Mouse], Belg'um An electron beam-sensitive recording material that [22] Filed: Feb 2 73 has a sensitivity to ultra-violet radiation not high enough to provide an optical density in the visible [2H P NO: 3351671 spectrum range of more than 0.2 when exposed with said radiation under the described test conditions, [30] Foreign Application Priority Data wherein Said mamrial Comprises:
Feb 29, 1972 Great Britain 9398/72 at least one y Precursor Compound, which iS capable of forming a dye when being in working [52] US. Cl 117/201, 117/211, 117/217, relationship with an r n a xp s 117 21 117 22 117/227 117/230, 340 135 compound of the group mentioned here under ('8), [51] lint. C1 ..G01d15/14, GOld 15/34 and i 0f Search l l, a halogn containing polymer undergoing l 17/226- 230; 346/135 dehydrohalogenation on electron beam impact and/or an organic compound containing one or two halogen References Cited atoms linked to a same carbon atom that is further UNITED STATES PATENTS linked to at least one electron-withdrawing group, 333 I 076 7/1967 Dubbe et a1 H 346/135 and/or an organic compound that contains at least one 3,331,077 7/1967 Plank 1. 346/1 nonhalogen y g Carbon atom bound to at least 3,370,981 2/1968 Ney 117/230 one hydrogen atom and at least two 3,425,867 2/1969 Stillo 1 117/211 electron-withdrawing groups, and/or a Wiese D/halogenated aromatic hydroxy ompound 3,761,942 9/1973 Lorenz et a] 346/135 1 5 Claims, 1 Drawing Figure CC ,1 F
wo 3 50 450 450 5150 550 6'00 W 760 nmuT" The present invention relates to recording media suited for the recording of information in the form of a modulated electron beam.
Electron sensitive layers wherein following exposure to electron beam radiation a visible color change can be developed, are known already, e.g. from the US. Pat. No. 3,331,076 and 3,370,981.
In accordance with the invention described in the latter Specification a'recording medium is used, which comprises a substrate, preferably an electrically conductive substrate, on'which is super-imposed a layer containing an oil-soluble amino azo indicator dye in basic form and a highly halogenated polymeric binder.
Highly halogenated polymers are preferred as electron beam sensitive substances for they act as a relatively nonvolatile source of hydrochloric acid when struck by high energy electrons and do not liberate such acid under visible light conditions.
A disadvantage associated with said recording medium is in the fact that the amino azo indicator dyes are inherently coloured. which makes them unsuited for producing images with a colourless image background.
It is an object of this invention to provide an electron beam-recording medium by means of which a visible record corresponding with the information supplied by an information-wise modulated electron beam can be obtained.
It is a preferred object ofthis invention to provide an electron beam-recording medium, which can provide visible images on a colourless or practically almost colourless image background.
It is a further object of this invention to provide an electron beam-recording medium, which practically does not induce color formation under ultra-violet radiation and visible light exposure conditions.
A still further object of the present invention is to provide a process for producing a visible record or image by means of a modulated electron beam.
Other objects and advantages will become apparent from the following description.
According to the present invention an electron beamsensitive recording material is provided that has a practically negligible sensitivity to ultra-violet radiation and visible light, said material comprising:
A. at least one dye precursor compound, which is capable of forming a dye when being in working relationship with an electron beam-exposed compound of the group cited under (B), and
B. a halogen-containing polymer undergoing dehy-v drohalogenation on electron beam impact, and/or an organic compound containing one or two halogen atoms linked to a same carbon atom, which is further linked to at least one electron-withdrawing group. and/or an organic compound that contains at least one non-halogencarrying carbon atom bound to at least one hydrogen atom and at least two electronwithdrawing groups, and/or a polyhalogenated aromatic hydroxy compound.
Examples of suitable electron-withdrawing groups are:
2: "GEN, 2: N59
a monovalent aromatic group, e.g., a phenyl group and a -OCOR group in which R is an organic group,
e.g. an alkyl group, an aryl group or a heterocyclic group. A suitable polyhalogenated aromatic hydroxy compound is e.g. 4,4-dihydroxy-3,3',5,5- tetrabromodiphenyl-2,2-propane.
In order to assist in the selection of electron beamsensitive compositions that contain a compound (A) in effective contact with a compound (B) and that have an almost negligible sensitivity to UV. radiation and visible light a standard test has been developed.
STANDARD TEST PROCEDURE In said test'a spiropyran compound having the following structural formula:
as representative of the compounds mentioned under (A) is coated in admixture with a selected compound ofgroup (B) from a methylene chloride solution olipolystyrene to a polyethylene terephthalate resin support.
The coating mixture contains the compounds (A) and (B) in a 1:2 molar ratio. The coating is effected in such a way that 025g of compound (A) are present per length (A) in nm, in the range of 330 to 680 nm is represented in the accompanying drawing.
The emitted photon energy ofthat lamp at a distance of 15 cm from the centre of the lamp is approximately 10 erg per sq.cm.
When the thus exposed recording medium does not show in the visible light range (400 nm 700 nm) a spectral density increase of more than 0.2 it is particularly useful when it possesses a sufficient sensitivity to be visibly changed by electron beam impact.
Recording materials having an already very useful electron beam-sensitivity are capable of yielding a visible mark with an optical density ofat least 0.5 when struck by an electron beam that is accelerated with a potential difference of 20 kV and strikes the recording layer with a charge of l.l0 -Coulomb per sq.cm.
Preferred colorless dye precursor compounds for use according t o the present invention are spiropyran compounds containing at least one pyran ring having in the orthoand meta-position to the oxygen atom an ad jacent benzo, or naphtho ring or other higher aromatic polycyclic condensed ring system including these condensed rings or ring systems in substituted form, e.g. an
anthraccno or a phenanthreno ring system as is present e.g. in a spirodibenzopyran, a spirodinaphtopyran, a spirobenzonaphthopyran, a 1.3.3 trimethylindolinobenzospiropyran, a 1,3 .3- trimethylindolinonaphthospiropyran or such spiropyrans containing condensed aromatic nuclei of the anthracene or phenanthrene type.
In said spiropyrans the pyran rings, the condensed benzo rings, the condensed higher aromatic rings as CH CONHf group, an acyl group, eg acetyl, halogen, nitro, hydroxy, alkoxy, ar'yloxy or a substituent linking the carbon atoms in 3,3-pos'ition in the spiropyran system together e.g. a (CH ),,-chain wherein n is 2 or 3. I General formulaecovering particularly suited spiropyrans'are the following:
wherein:
each of R, R R,, R R R and R' represents hydrogen, an aliphatic group including a substituted aliphatic group e.g. a-(C C20) alkyl group including such an alkyl group in substituted form, more particularly a methyl, ethyl, propyl, amyl or hexadecyl groupor halogenated alkyl group, an acyl group e.g. acetyl, halogen, nitro, hydroxy, an alkoxy or aryloxy group, a phenyl group or a-substituted phenyl group, piperidyl, an alkylene ester group e.g. a CH COOC H group, an al kylene carboxyl group e.g. a CH COOH group, an alkylene carbonamide group or such a group in which the carbonamide group is substitutedeg. a
group, or R and R together represent a (CH chain wherein n 2, or 3 to link the carbon atoms in the'3 and 3' positions together.
Suited spiropyran compounds and their preparation are described in the published German Patent Application No. 1,274,655 1,269,665 1,286,110- 1,286,111
and 1,286,112, and by W. Dilthey, Berres, Holterkoff, Wiibken, J. Prakt. Chem. [2] 114, 187 (1926), by C. F. Koelsch and W. R. Workman in J. Am. Chem. Soc. 74, 6288 (1952) and by I. M.- Heilbron and G. F.
H 0 /CH Howard in J. Chem. Soc. (1934), 1571.
1 Preferred spiropyran compounds are spirodinaphtho- 45 pyrans and spirobenzonaphthopyrans including such compounds wherein the naphthoand/or benzo ring(s) N is (are) substituted. a g R' An illustrativelist of particularly useful spiropyran 3 compounds is given in the following Table 1.
Table SpiropyTan compound Melting point Melting point Table L-Continued Spiropyran compound & 2
Table IC0ntinued Spiropyran compound Table l (lontinued Spiropyran compound arin amt W? In order to illustrate in more detail the preparation of the spirobi(arylopyran) compounds and of the spiro- (indolino, arylopyran) compounds the following preparation receipts are given:
PREPARATION 1 Preparation of 3-methyldi-B-naphthospiropyran (compound 2 of Table 1) In a three-necked 2 litre flask, fitted with a reflux condenser and a gas inlet tube reaching nearly the bottom of the flask are introduced:
ethanol 1 litre butanone 22 ml (0.25 mole) Z-hydroxy-l -naphtaldehyde 86 g (0.5 mole) The flask is shaken until partial dissolution of the ingradients. Dry hydrogen chloride gas is introduced at a rate that allows complete absorption and the start of ethanol reflux. Thereupon the already strongly blue coloured mixture is cooled in a mixture of ice and sodium chloride and the introduction of hydrogen chloride gas is continued until saturation. In the reaction mixture green crystals of pyrylium salt form and the crystallization is allowed to proceed overnight in a refrigerator.
The pyrylium salt formed is separated by suction, washed with ethanol and thereupon brought into suspension in 300 ml of ethanol.
Whilst stirring a by weight aqueous solution of ammonium hydroxide is added until the mixture is definitely alcaline. During that operation the mixture becomes colourless.
The crystalline product obtained is separated by suetion, washed with water and dried.
Finally the spiropyran compound is recrystallized from 600 ml of benzene and again separated and dried under reduced pressure at 5()-6(lC.
Yield: 45 g.
Melting point: 204C.
PREPARATION 2 Preparation of l,3,3-trimethylindolinobenzopyrylospiran (compound 22 of Table l J In a 100 ml flask fitted with a reflux condenser are introduced the following ingredients:
salicylaldehyde 3.7 g (0.03 mole) l,3,3-trimethyl-2-methylene indolamine 5.1 g (0.03 mole) ethanol ml lt is assumed that by the electron beam exposure a dyestuff salt having the pyrylium structure forms when a spirobi(arylopyran) compound is used as dye precursor, and that when a spiro(indolino, arylopyran) compound is used, a dyestuff having the indolinium salt to one of the following general formulae (l) or (ll):
RI wh m-2 54, 1 (I) .J v
wherein:
R represents an'organic group, e.g. a saturated or unsaturated aliphatic group e.g. an alkyl group including a substituted alkyl group or an aryl group including a substituted aryl group, or represents together with R the necessary atoms to close a homocyclic ring, e.g. a cyclohexylen-Z-one ring,
R represents hydrogen, a lower alkyl group e.g. methyl, a substituted lower alkyl group e.g. benzyl, a phenyl group including a substituted phenyl group, or phenyloxy,
Z represents the necessary atoms to close a homocyclic ring or ring system including such a ring or ring system in substituted state e.g. a phenyl group, a naphthyl group or such groups carrying in addition to the hydroxyl group one or more substituents e.g. a methoxy group or a benzyl group that is further substituted with a hydroxygroup, and a -CH=CH-COR, group. R, having the significance as defined above,
Z represents the necessary atoms to close a homocyclic nucleus including a substituted homocyclic nucleus, e.g. a benzene or a naphthalene nucleus including a substituted benzene or naphthalene nucleus,
R represents a lower alkyl (C -C group, and n is 1 or 2.
The following Table 2 contains an illustrative list of compounds according to the above general formula (I) with their melting point.
Table 2 Number of the Structural formula Melting compound po'nt C 1 -GH=CH-C0- C -OH 2 Amman-004 11 I -OH 5 -CH=CH-COCH l -OH 5 4 -CH=GH-COCH .H .0 83
OCH
, o ll 5 -CH= 148 6 cH=c-co-cH 177 o =0 -coc 22 Y 7 3 H5 7 8 -CH=CH-CO-CH=CH- C 159 19 20 The compounds of general formula (I) may be prcrine concentration ranges preferably from about 20 to pared e.g. according to: 55 percent, more preferably from about 35 to about 55 Heilbron and Whitworth, J. Chem. Soc. 123, 243 percent by weight of the polymer.
(1923), A second preferred class of electron beam-sensitive C. D. Harries, Ber. 24, 3180 (1891). compounds (B) that are capable of producing reactive Decker and V. Fellenberg, Ann. 364, 21 (1909). substances suitable for acid formation comprises or- A suitable compound according to the general forganic compounds containing one or two halogen atoms mula (ll) has the following structure: e.g. chlorine, bromine or iodine linked to a same carbon atom that is further linked to at least one electronwithdrawing group e.g.
c=o, )s0 -CEN, -NO2, 41
or phenyl group. i Compounds falling within the scope of that class and the preparation of which may proceed as follgws; that behave as desired in the described test are e.g. the
In a 250 ml flask fitted with a reflux condenser and Compounds listed Table a gas inlet tube reaching nearly the bottom of the flask T bl are introduced: a
3. O aC2i fl l naphthldehide i0 nl Structural formula Melting.
' .O The flask is shaken until a solution is obtained and polnt C) subsequently while the flask is cooled in ice water dry hydrogen chloride gas is introduced for 15 min.
Thereupon the reaction mixture is kept at room teml @-CO-?H-CO-NH-@ 1 5 perature for 24 h. The dark green solution obtained is 4 Cl poured into 200 ml of water. A sticky green product separates. The supernatant water layer is removed and the residue treated with 50 ml of methanol so that the residue solidifies. The solid obtained is pulverised and washed again with 50 ml of methanol.
Yield after drying: 9 g. Y Q' I' Q 95 Melting point: 200C. B Compound 20 of Table 2 has been prepared as described in the Belgian Pat. No. 787,339.
A first preferred class of electron beam-sensitive compounds (B) are highly halogenated polymers that Br liberate hydrogen halide upon electron bombardment.
when these polymers are SOlld they may serve as 40 5- Q- 98 binder for the dye precursor compounds(s). The molecular weight is therefore preferably above 1000 and more preferably above 10,000.
Preferred polymers contain in addition to hydrogen at least 25 percent by weight of labile halogen selected an, from the group of chlorine and bromine.
For ease of coating the halogenated polymers are preferably soluble in fairly highly volatile organic solvents e.g. acetone, Z-butanone, methyl ethyl ketone and tetrahydrofuran. In the preparation of the halogenated polymers preferably monomers such as vinylidene chloride, and vinyl chloride, and ethylenically un- In order to illustrate the preparation of the compounds of Table 3 the preparation of compound 1 is given in detail hereinafter.
478 g of benzoylacetoanilide are whilst stirring dissolved in 3 litres of methylene chloride and the solution boiled with reflux. At reflux temperature over a period saturated monomers with a high halogen content such 45 270 of sulphonylchlonde are added drop a 1,1,3,33 penich1ombmpen 1 fluorotrichloro wise. The react on proceeds exothermally so that no ethylene, 1,1-difluoro-2,2-dichloroethylene and trifurther heatmg requlredchloroethylene are used After the addition of the sulphonyl chloride the stir- These monomers may b copolymerized to some ring is maintained for 4 hours. Thereupon 50 ml of tent e.g. to improve the film-forming characteristics or methanOi are added and ti g o ma ntaining the rethe solubility in the solvent or solvent mixture applied flux s Started again. Residual unreacte'd sulphonyl in the coating operation. Suitable comonomers are e.g. chloride is driven off, After standing overnight the solmethyl acrylate, ethyl acrylate, n-butyl acrylate, hexyl vent of the reaction mixture is evaporated and a solid acrylate, methyl methacrylate, and B-chloroethyl acrywhite product is obtained. The thus obtained product late. is recrystallized from a mixture of 800 ml of ethanol Preferred natural polymers modified by halogenation and 250 ml of water. are halogenated rubbers. Yield: 86
Preferred vinylidene chloride polymers have a chlo- Melting point: 123C. rine content ranging from about 25 to about 73 percent A third preferred class of electron beam-sensitive by weight. With the vinyl chloride polymers the chlo- 7 compounds (B) that are capable of producing reactive substances suitable for acid formation comprises organic compounds that contain at least one non-halogen-carrying carbon atom bound to at least one hydrogen atom and at least two electron-withdrawing groups of which the groups so -C;N, 5N5, and -O-CO-R in which R is an organic group e.g. an alkyl, an alkenyl, an aryl or a heterocyclic group are representatives.
Compounds falling within the scope of that class and that behave as described in the above described test may be selected from compounds corresponding to the following general formula:
wherein:
each of X, Y and Z represents an acyl radicaL'eg, a carboxylic acid or sulphonic acid acyl radical, a cyano group, a nitro group, an 'azido group, an ester group, a carbonyl alkoxy group, a carbamyl group inwherein R represents an alkyl radical including a subs'tituted alkyl radical, an aryl radical including a substituted aryl radical or a heterocyclic radical including a substituted heterocyclic radical.
Specific examples of compounds of that third class suited for use according to the present invention are represented in the following Table 4.
Table 4 I Structural Formula Melting Point C 1. Q-CO-ZH-CO-NH-Q 445 2. Q-CO-eH-GO- -Q 16o OCOCH=CH- 5., Q-CO-eH-CO-NH-Q 98 5. ca -coo-ea cooo a Boiling point {mo-122C 00011 5 mm Hg Structural Formula Melting Point K1 CH-COCH 5 In order to illustrate the preparation of the comg 0f Compound are diSSOlVed in ml of d pounds fT bl 4 h preparation fth Compounds 1, methylformamide. To this solution 8 g of compound 2 3 d 4 i given h i fm (II) and 6 g of diethylamine are added. The reaction Preparation of Compound 1 mixture is boiled with reflux for 3 h whereupon the re- Reaction scheme: action mass is poured into water. The obtained crude .-SH 1 Q-CO-gH-CONH-Q compound 2.1 g of compound (I) and 5.47 g of compound (II) are 40 product is purified with active carbon in boiling ethaboiled for 1 hour with reflux in 25 ml of ethanol. The nol.
reaction mixture is cooled slowly overnight and the Yield: 8 g..
precipitate formed sucked off and 3 times washed with Melting point: 160C. methanol. Preparation of Compound 3 Reaction scheme:
@-cocr1 coNH-@ @-sesr compound 5 (I) (II) Yield: 2 g. 12 g of compound (I) are dissolved in 250 ml of chlo- Melting point: 145C. roform. To the obtained solution 13.5 g of compound Preparation of Compound 2 (ll) dissolved in 100 ml of chloroform are added. The I Reaction scheme: reaction mixture is boiled with reflux for 4 h and cooled Q-CO-gH-CONH-Q HOOCCH=CH-@ compound. 2
(Ii (II) -COCHCO1\TH- so 61 Q 2 5.3 g of compound (1) and 6.5 g ofcompound (11) are mixed in 75 ml of dimethylformamide and heated for 4 hours on a water bath at 40C. Thereupon the reaction mass is poured into 500 ml of a mixture of water and ice. The formed precipitate is washed with water and dried.
Yield: 6 g.
Melting point: 161C.
Compound 5 is prepared e.g. according to Ber. 56B, 1380.
Compound 6 is prepared e.g. by oxidation with hydrogen peroxide of compound 1 described above.
Compound 7 is prepared. e.g. according to Ber. 47, 3334.
Compound 8 is prepared e.g. according to Ber. 47, 1439.
The recording medium may be formed as a supported layer or self-supporting film-or sheet.
The recording media of this invention may be prepared by mixing the dye precursor compound with the electron-beam sensitive compound and applying that mixture to a suitable support or coating base.
Although the electron beam-sensitive coating is preferably deposited from a solution as a film on a support it may be applied as a dispersion having one of the components in dispersed state in a binder solution containing the other component in dissolved form or containing both the components intimately mixed as the dispersed phase.
According to a particular embodiment both the dye precursor compound and electron beam-sensitive substance are present in mixed form in solid grains or liquid droplets dispersed in a hydrophilic binder such as a hydrophilic colloid e.g. gelatin.
For each mole of dye precursor compound preferably at least 1 to about 1000 acid equivalents of the electron beam-sensitive compound are used.
In addition to the mixture of dye precursor compound, electron beam sensitive substance and binding agent the recording element composition may contain other ingredients e.g. substances that act as fog inhibitor and substances that improve the electron beamsensitivity and increase the optical density.
Substances that improve the electron beamsensitivity may be found in the classes of sensitizing agents described in the Belgian Pat. No. 771,848. Ex-- amples of such compounds are: Michlers ketone and styryl dyes.
Other additives improve e.g. the mechanical strength or control the coating viscosity, elasticity or gloss of the recording element.
In connection with the inhibition of spontaneous fog are to be mentioned particularly anti-foggants such as triaryl compounds of group V elements e.g. triphenylstibine and sterically hindered phenols e.g. 2,6 di-tert- .butyl-p-cresol and other reducing agents or compounds accepting atmospheric oxygen.
Triphenylstibine and analogous compounds for the purpose of fog inhibition in a photoradical recording compound 4 system based on dye salt formation aredescribed in the United Kingdom Pat. No. 1,071,104.
When the recording composition for producing a supported layer is coated, that layer preferably is 1 pm to 50 ,um thick in dried state. The support, if any, is preferably electrically conductive or contains a subbing layer or interlayer with relatively high electrical conductivity.
Suitable supports are e.g. those used in electrophotographic materials.
Suitable electro-conductive plates or sheets serving as support have preferably an electrical resistivity at least times as small as that of the recording layer. Supports whose surface resistance is not higher than 10 ohm per sq. are preferred.
Examples of suitable supports are conductive plates, e.g. plates of metals such as aluminium, zinc, copper, tin, iron, or lead.
Too highly insulating supports can be provided with a conductive subbing layer or interlayer.
Suitable electro-conductive interlayers for insulating supports are, e.g., vacuum-coated metal and conductive metal compound (metal oxide: or metal salt) layers such as silver, tin, aluminium, titanium dioxide and copper iodide conductive layers, transparent conductive polymer layers, e.g. applied from polymers containing quaternized nitrogen atoms, such as those described in the United Kingdom Pat. No. 950,960, or layers containing conductive particles, e.g. carbon black and metal particles dispersed ina binder. The binder used for said particles has a resistivity preferably lower than 10 ohm.cm. A suitable: binder for that purpose is gelatin.
Transparent electron beam-recording materials are produced by applying the dye-forming compounds together with a suitable binder (if necessary) from a clear solution to a conductive transparent base or a transparent insulating base coated with an electroconductive transparent interlayer.
As transparent bases resin sheets having an optical density of not more than 0.10 are preferred, e.g., a sheet made of polyethylene terephthalate or cellulose triacetate. The conductive interlayer preferably consists of a metal coating, e.g., a vacuum-coated aluminium layer having an optical density of not more than 0.30 or of a conductive transparent polymer layer containing an organic polyionic polymer, e.g. a polymer containing quatcrnized nitrogen atoms such as a quatcrnized polyethyleneimine.
1n reproduction techniques wherein the prints are to be produced on an opaque or semi-transparent background preferably a paper sheet is used as support for the recording layer.
Paper sheets that have an insufficient electrical conductivity are coated or impregnated with substances enhancing their conductivity, e.g. by means of a conductive overcoat such as a metal sheet laminated thereto.
As substances suited for enhancing the conductivity of a paper sheet and which can be applied in the paper mass are particularly mentioned hygroscopic compounds and antistatic agents as described, e.g., in the United Kingdom Pat. No. 964,877, and antistatic agents of polyionic type, e.g. CALGON CONDUC- TlVE POLYMER 261 of Calgon Corporation, Inc., Pittsburgh, Pa., U.S.A., provided as a solution containing 39.1% by weight of active conductive solids, on the basis ofa conductive polymer having recurring units of the following type:
The applied paper sheets are preferably impermeabilized to organic solvents, e.g. by means of a watensoluble colloid or by strongly hydrating the cellulose fibers such as in glassine paper.
In a preferred recording layer composition of the present invention halogen-containing electron beamsensitive polymers are used that serve as binding agent for the dye precursor compound. Such a layer contains preferably from 0.01 to 0.1% by weight of dye precursor compound. The amount of dye precursor compound per sq.m is preferably in the range of 0.2 g to 2 g per sq.m.
When applying low molecular weight 1000) or monomeric compounds that are electron-beamsensitive, a binding agent is used to form a sufficiently strong layer or sheet embedding these compounds in working relationship with the dye precursor compoun d(s).
According to a preferred embodiment said low molecular weight or monomeric compounds are used in excess with respect to the dye precursor compounds e.g. in a 2:1 to 20:1 molar ratio.
Additional films or coatings may be provided on the electron beam-sensitive element to protect it from abrasion provided they are relatively transmissive to the electron beam.
If the electron-beam-sensitive layer is self-supporting it has not to contain a conductive backing layer when during the electron beam exposure it is held in electroconductive contact with an electrically conductive element e.g. a metal plate or roller that is grounded or kept at a different potential with respect to the electron beam.
Good electrical contact between the electron beamsensitive layer and a conductive backing, normally maintained at ground potential is best achieved with an electrically conductive layer or support making integrally part of the recording medium that is e.g. manufactured in the form of a recording strip or tape.
With the media described above a colour change is generally observed in the sensitive element immediately upon electron beam impingement or shortly thereafter by overall heating the recording element (thermal development).
The temperature and duration of heating can vary. In general, lower heating temperatures require longer heating times, and vice versa, in order to develop or intensify an image pattern. Heating times and temperatures are dependent upon the degree of image intensification desired or necessary. Usually temperatures below 200C and heating times no longer than 5 minutes are employed.
When records are made by the use of an intensity modulated scanning electron beam, it is usually convenient to operate in a vacuum chamber wherein a reduced pressure e.g. of the order of 10 to 10 mm Hg are maintained.
Although in the preceding description of the invention stress has been laid on the use of an electron beam in the recording of information on the present recording elements, these elements are equally well suited for the recording of other high energy particle beams e.g.-
proton beams, neutron beams (producing secondary electrons) and ion'beams.
The intensity of these beams can be modulated by means well known to those skilled in the art. Since the generation and control of beams of high energy is accomplished by apparatus and methods which do not form a part of the present invention and which are well known to those of ordinary skill in the art, no detailed explanation thereof is given herein. The particular type of high energy beam employed in any given instance depends, of course, upon the sensitivity and response associated with the given recording medium and upon the recording conditions.
It is not absolutely necessary to use intensity modulated scanning beams since originals e.g. a punched tape or chart in forming a density pattern for the high intensity particle radiation can be flooded (simultaneously overall exposed) with said radiation.
The type of information stored can vary widely. For example sound track and video signals and facsimile signals can be recorded. The recording process of the present invention is not limited by the information to be stored. Information of various kind can be used as input for modulating an electrical signal which occasionally is obtained by means of one or more transducers.
The following examples illustrate further the present invention.
The percentages are by weight unless otherwise mentioned.
Example 1 A solution was prepared having the following composition:
spiropyran compound no. 4 of Table l 20 mg chlorinated natural rubber (PARLON-l25 cps of Hercules Powder Company lnc., Wilmington.
Del.) 500 mg methylene chloride 10 ml an aqueous solution of gelatin and Calgon Conductive- Polymer 261 in a weight ratio of 2:1. The conductive coating contained 2 g of gelatin per sq.m.
The electrical resistance of the coating was l X l Q/sq.cm at a relative humidity of 50%.
The electron beamsensitive coating containing the spiropyran compound was dried at 60C for 2 h.
In order to check the sensitivity to ultra-violet radiation and to see whether or not a coloration resulted from a prolonged U.\/. exposure a part of the dried recording material was subjected for h to UV. radiation of a HPL-SO W mercury vapour lamp placed at a distance of cm.
No optical density increase higher than 0.2 was obtained in the visible spectrum.
Another part of the recording material was exposed in an electron probe analyser AMR/3 of Philips Electronic Instruments. The electron beam had an accelerating potential of 15 kV and a resulting target current of about 40 ,uA. The electron beam was focused till forming a circular cross-sectional diameter of about 1 m in the target region. The beam scanned a 0.5 mm line in a period of 5 ms. The pressure maintained in the apparatus was below 10' mm Hg.
The scanned portions of the recording layer could be detected visually by inspection with an optical microscope and were seen as separate blue lines.
Analogous results were obtained by replacing chlori nated natural rubber by one of the following binding agents:
OLOVIN F/M of Wacker-Chemie, Munich, W. Germany, which binding agent has the following structural formula:
O-CF -CHC1 2 C)--COCE[ cellulose O-CO-CHCl ALL.
H --GH 011 -93 (.t/y/z 26. l/6.9/67 by weight) I GEON 200 of British Geon Ltd. (a copolymer of vinyl chloride and vinylidene' chloride) polyvinyl chloride. Example 2 -CH 9 Cl Example 1 was repeated with the proviso, however,
that as dye precursor compound 18 of Table 2 was used, magenta lines were obtained. Example 3 A solution was prepared having the following composition:
the spiropyran compound numbcr l The coating of said solution proceeded in the same way as described in Example l on the same support.
The exposure to ultra-violet radiation was effected as spiropyran compound number I of Table l 20 mg electron beam-sensitive compound number 2 of Table 4 200 mg methylene chloride 5 ml 10% solution in methylene chloride of polystyrene 5 ml The coating of said solution proceeded in the same way as described in Example 1 on the same support.
The exposure to ultra-violet radiation yielded a same result as described in Example 1..
The electron beam exposure was effected with an electron beam having an accelerating potential of 20 kV and striking the recording target with a charge of 1.5 X 10 C/sq.cm (Coulomb per sq. cm).
The colored marks produced 9n the recording layer had an optical density measured b ehind green filter (transmission in the 500 to 600 nm wavelength range) of 0.4.
Analogous results were obtained by using spiropyran compound number 4 of Table 1 instead of spiropyran compound number 1 and by applying the electron beam-sensitive compound number 6 instead of number 2 of Table 4.
Example 5 Example 4 was repeated with the difference. how ever, that instead of. the electron beam-sensitive compound number'6 of Table 4. compound number 2 of Table 3 was used.
The colored marks produced with the electron.
beam on the recording layer had an optical density measured behindred filter (transmission above 600 nm) of l.l.
When the electron beam-sensitive compound numl was replaced by the dye precursor compound olnumber l8 of Table 2. Example 8 Example 4 was repeated with the proviso, however, that as electron beam-sensitive compound, compound number 8 of Table 4 was used and the polystyrene spiropyran compound number 'l of Table l as acid-producing compound Br CH Br I 3 -s-q-dl Br 5 r methylene chloride Thercoating of said solutionwas carried out as described in Example 1.
The electron beam exposure was effected with an electron beam having an accelerating potential of kV striking the recording target with a charge of 1.5 X 10. C/sq.cm.
The coloured marks produced in the recording layer had an optical density measured behind green filter (transmission in the 500 to 600 nm wavelength range) Analogous results were obtained by replacing the poly-N-vinylcarbazole by polystyrene and the polyhalogenated phenol by the electron beam-sensitive compound number 9 of Table 4.
Analogous results were obtained by replacing the spiropyran compound number 1 of Table l by the dye precursor compound number 18 of Table 2.
Example 10 A solution was prepared having the following compositionz spiropyran compound number of Table l as electron beam-sensitive compound Br CH Br i 5 HO- Q -C- -OH Br 5 l3 methylene chloride lO polymethyl methacrylate solution in methylene chloride a styryl dye having the following structural formula The coating of said solution was carried out as described in Example 1.
The electron beam exposure was effected with an electron beam having an accelerating potential of 20 kV striking the recording target with a charge of 5.4 l0 C/sq.cm.
The colored marks produced in the recording layer had an optical density measured behind blue filter (transmission in the 400-500 nm wavelength range) of 0.54.
When leaving the styryl dye out of the recording layer composition an optical density of only 0.3 could be obtained.
Example 11 A solution was prepared having the following com posltionz spiropyran compound number 4 of Table l 20 mg Michlers ketone 5 mg copolymer of vinyl chloride and vinylidene chloride (SO/) mg methylene chloride 10 ml The solution was knife-coated (wet coating thickness 0.127 mm) on a support as described in Example 1.
The exposure to ultra-violet radiation carried out as described in Example 1 yielded an overall light blue coloration (spectral density 0.02).
The electron beam exposure was the same as de scribed in Example 4.
l 3l ue colored marks were obtained.
dye precursor compound number 18 of Table 2 20 mg electron beam-sensitive compound number 2 of Table 3 150 mg 5% solution of polystyrene l ml The coating of said solution was carried out as described in Example 1.
The electron beam exposure was effected with an electron beam having an accelerating potential of 20 kV striking the recording target with a charge of 5.10 C/sq.cm, 1
The colored marks produced in the recording layer had an optical density measured behind green filter (transmission in the 500-600 nm wavelength range) of 0.55.
By replacing the spiropyran compound number 4 by spiropyran compound number 1 and by using 500 mg of electron beam-sensitive compound number 3 of Table 3 in admixture to said composition the same electron beam recording result could be obtained with an accelerating potential of only 15 k\/,
We claim: 0
1. An electron beam-sensitive recording material which comprises an electricallyconductive substrate and superposed thereon a layer that has a sensitivity to ultra-violet radiation not high enough to provide an optical density result in the visible spectrum range of more than 0.2 when tested under the standard test con ditions described in the specification, said layer comprising:
A. at least one dye precursor compound corresponding to one of the following general formulae:
wherein:
R, R R,, R R R and R' each represent hydrogen, alkyl, alkyl substituted with halogen, alkyl substituted with an ester group, alkyl substituted with a carboxyl group, alkyl substituted with a N- phenylcarbamyl group, a hydroxy group, an alkoxy group, an aryloxy group, a phenyl group, piperidyl, acetyl, halogen, nitro, or R and R together represent a (CH chain wherein n=2 or 3 to link the carbon atoms in the 3 and 3 positions together or Z represents the necessary atoms to close a phenyl or naphthyl nucleus,
Z represents the necessary atoms to close a benzene or naphthalene nucleus,
R represents a C -C alkyl group, and
n represents 1 or 2, and
B. at least one organic compound of the group consisting of:
1. an organic compound containing one or two halogen atoms linked to the same carbon atom that is further linked to at least one electron-withdrawing group selected from the group consisting of a halogen carrying carbon atom bound to at least onehydrogen atom and at least two electronwithdrawing groups selected from the group consisting of in which R is an organic group, and
3. a polyhalogenated aromatic hydroxy compound.
2. An electron beam-sensitive recording material according to claim 1, wherein the said substrate has a surface resistance not lower than l X IOQ/sqcm.
3. An electron beam-sensitive recording material according to claim 1, wherein the dye precursor compound is a spiropyran compound.
4. An electron beam-sensitive recording material according to claim 1, wherein the amount of dye precursor compound per sqfm is in the range of 0.25 to 2 g.
5. An electron beam-sensitive recording material according to claim 1, wherein the electron beam-sensitive compounds are used with respect to the dye precursor compound in a molar ratio of 2:1 to 20:1.

Claims (10)

1. AN ELECTRON BEAM-SENSITIVE RECORDING MATERIAL WHICH COMPRISES AN ELECTRICALLY CONDUCTIVE AND SUPERPOSED THEREON A LAYER THAT HAS A SENSITIVITY TO ULTRA-VIOLET RADIATION NOT HIGH ENOUGH TO PROVIDE AN OPTICAL DENSITY RESULT IN THE VISIBLE SPECTRUM RANGE OF MORE THAN 0.2 WNEN TESTED UNDER THE STANDARD TEST CONDITIONS DESCRIBED IN THE SPECIFICATION, SAID LAYER COMPRISING: A. AT LEAST ONE DYE PRECURSOR COMPOUND CORRESPONDING TO ONE OF THE FOLLOWING GENERAL FORMULAE:
1. AN ORGANIC COMPOUND CONTAINING ONE OR TWO HALOGEN ATOMS LINKED TO THE SAME CARBON ATOM THAT IS FURTHER LINKED TO AT LEAST ONE ELECTRON-WITHDRAWING GROUP SELECTED FROM THE GROUP CONSISTING OF A
2. AN ORGANIC COMPOUND CONTAINING AT LEAST ONE NONHALOGEN CARRYING CARBON ATOM BOUND TO AT LEAST ONE HYDROGEN ATOM AND AT LEAST TWO ELECTRON-WITHDRAWING GROUPS SELECTED FROM THE GROUP CONSISTING OF
2. An electron beam-sensitive recording material according to claim 1, wherein the said substrate has a surface resistance not lower than 1 X 107 Omega /sq.cm.
2. an organic compound containing at least one nonhalogen carrying carbon atom bound to at least one hydrogen atom and at least two electron-withdrawing groups selected from the group consisting of
3. a polyhalogenated aromatic hydroxy compound.
3. An electron beam-sensitive recording material according to claim 1, wherein the dye precursor compound is a spiropyran compound.
3. A POLYHALOGENATED AROMATIC HYDROXY COMPOUND.
4. An electron beam-sensitive recording material according to claim 1, wherein the amount of dye precursor compound per sq.m is in the range of 0.25 t0 2 g.
5. An electron beam-sensitive recording material according to claim 1, wherein the electron beam-sensitive compounds are used with respect to the dye precursor compound in a molar ratio of 2: 1 to 20:1.
US335671A 1972-02-29 1973-02-26 Electron beam recording Expired - Lifetime US3867192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/516,957 US3984583A (en) 1972-02-29 1974-10-22 Electron beam recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB939872A GB1422157A (en) 1972-02-29 1972-02-29 Electron beam recording material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/516,957 Division US3984583A (en) 1972-02-29 1974-10-22 Electron beam recording method

Publications (1)

Publication Number Publication Date
US3867192A true US3867192A (en) 1975-02-18

Family

ID=9871205

Family Applications (1)

Application Number Title Priority Date Filing Date
US335671A Expired - Lifetime US3867192A (en) 1972-02-29 1973-02-26 Electron beam recording

Country Status (6)

Country Link
US (1) US3867192A (en)
JP (1) JPS48100139A (en)
BE (1) BE795986A (en)
DE (1) DE2308529A1 (en)
FR (1) FR2174050B1 (en)
GB (1) GB1422157A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987002481A1 (en) * 1985-10-16 1987-04-23 Gaf Corporation Reduction of deflection errors in e-beam recording
US4913948A (en) * 1988-04-11 1990-04-03 Director-General Of The Agency Of Industrial Science And Technology Optical recording medium
US6677586B1 (en) * 2002-08-27 2004-01-13 Kla -Tencor Technologies Corporation Methods and apparatus for electron beam inspection of samples
CN107501117A (en) * 2017-08-22 2017-12-22 三峡大学 A kind of acryloxy amide derivatives containing carbonyl and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331076A (en) * 1964-12-28 1967-07-11 Minnesota Mining & Mfg Method and medium for electron beam recording
US3331077A (en) * 1964-12-28 1967-07-11 Minnesota Mining & Mfg Method and medium for electron beam recording
US3370981A (en) * 1963-09-23 1968-02-27 Minnesota Mining & Mfg Electron beam recording medium with amino-azo indicator and halogenated polymer coating
US3425867A (en) * 1963-09-23 1969-02-04 Minnesota Mining & Mfg Electron beam recording medium with acid sensitive indicator and halogenated polymer coating
US3467951A (en) * 1964-03-18 1969-09-16 Minnesota Mining & Mfg Electron beam recording and readout process for information storage and retrieval
US3761942A (en) * 1971-07-28 1973-09-25 Ibm Low energy thermochromic image recording device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609093A (en) * 1968-09-11 1971-09-28 Larry A Harrah Photochromic radiation dosimeter
BE787339A (en) * 1971-09-14 1973-02-09 Agfa Gevaert Nv PHOTOGRAPHIC REGISTRATION AND REPRODUCTION OF INFORMATION

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3370981A (en) * 1963-09-23 1968-02-27 Minnesota Mining & Mfg Electron beam recording medium with amino-azo indicator and halogenated polymer coating
US3425867A (en) * 1963-09-23 1969-02-04 Minnesota Mining & Mfg Electron beam recording medium with acid sensitive indicator and halogenated polymer coating
US3467951A (en) * 1964-03-18 1969-09-16 Minnesota Mining & Mfg Electron beam recording and readout process for information storage and retrieval
US3331076A (en) * 1964-12-28 1967-07-11 Minnesota Mining & Mfg Method and medium for electron beam recording
US3331077A (en) * 1964-12-28 1967-07-11 Minnesota Mining & Mfg Method and medium for electron beam recording
US3761942A (en) * 1971-07-28 1973-09-25 Ibm Low energy thermochromic image recording device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987002481A1 (en) * 1985-10-16 1987-04-23 Gaf Corporation Reduction of deflection errors in e-beam recording
US4668609A (en) * 1985-10-16 1987-05-26 Gaf Corporation Reduction of deflection errors in E-beam recording
US4913948A (en) * 1988-04-11 1990-04-03 Director-General Of The Agency Of Industrial Science And Technology Optical recording medium
US6677586B1 (en) * 2002-08-27 2004-01-13 Kla -Tencor Technologies Corporation Methods and apparatus for electron beam inspection of samples
CN107501117A (en) * 2017-08-22 2017-12-22 三峡大学 A kind of acryloxy amide derivatives containing carbonyl and preparation method thereof

Also Published As

Publication number Publication date
DE2308529A1 (en) 1973-09-06
GB1422157A (en) 1976-01-21
FR2174050A1 (en) 1973-10-12
FR2174050B1 (en) 1977-04-22
JPS48100139A (en) 1973-12-18
BE795986A (en) 1973-08-27

Similar Documents

Publication Publication Date Title
US4429029A (en) Organic electrophotographic recording medium
US3810762A (en) Photochromic composition containing polyhalogenated hydrocarbon,spiropyran compound and poly-n-vinylcarbazole and the use thereof
US3189447A (en) Electrophotographic material and method
US4419427A (en) Electrophotographic medium with perylene-3,4,9,10-tetracarboxylic acid N,N'-bis-(2',6'-dichlorophenyl)-diimide
US4026704A (en) Electrophotographic recording material
US3745005A (en) Electrophotographic elements having barrier layers
US3980480A (en) Photographic recording and reproduction of information photochromic composition containing polyhalogenated hydrocarbon, spiropyran compound and heterocyclic mercapto compound and the use thereof
US4556622A (en) Electrophotographic recording material whose photoconductor layer contains a halogenated perylene dye sensitizer
US3916069A (en) Reduced styryl/cyanine dye
US3984583A (en) Electron beam recording method
US4264694A (en) Photosensitive medium for electrophotography having a cyanine photoconductive pigment
US3526502A (en) Electrophotographic material
US4840869A (en) Light-sensitive composition
US3867192A (en) Electron beam recording
US4407919A (en) Electrophotographic plate
US5955229A (en) Electrophotographic photoreceptor
US3820995A (en) Photochromic material containing a spiropyran compound a polyhalogenated hydrocarbon photoactivator and an acetanilide sensitizer and the use thereof in photoimaging
US3370981A (en) Electron beam recording medium with amino-azo indicator and halogenated polymer coating
US3533787A (en) Photoconductive elements containing polymeric binders of nuclear substituted vinyl haloarylates
US3974147A (en) Reduced styryl dyes
US3784376A (en) Photoconductive element containing furans, indoles, or thiophenes
US3495266A (en) Process for forming visible images by electron beam recording
CA1101413A (en) Anthraquino-cycloalkane and -ethene dyes
US4634553A (en) Novel 4H-tellurin tellurane electron-accepting sensitizers for electron-donating photoconductive compositions
US5190840A (en) Multiactive electrophotographic element comprising a polyester of a tetramethyl bisphenol A derivative