US3866371A - Structural framing system - Google Patents

Structural framing system Download PDF

Info

Publication number
US3866371A
US3866371A US338663A US33866373A US3866371A US 3866371 A US3866371 A US 3866371A US 338663 A US338663 A US 338663A US 33866373 A US33866373 A US 33866373A US 3866371 A US3866371 A US 3866371A
Authority
US
United States
Prior art keywords
connectors
reduced
full
height
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US338663A
Inventor
John Paul Rutherford Falconer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midwest Housing Research Corp
Original Assignee
Midwest Housing Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midwest Housing Research Corp filed Critical Midwest Housing Research Corp
Priority to US338663A priority Critical patent/US3866371A/en
Priority to GB884974A priority patent/GB1450870A/en
Priority to PH15568A priority patent/PH10501A/en
Priority to CA193,862A priority patent/CA1008633A/en
Priority to JP49026708A priority patent/JPS49126131A/ja
Application granted granted Critical
Publication of US3866371A publication Critical patent/US3866371A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/185Connections not covered by E04B1/21 and E04B1/2403, e.g. connections between structural parts of different material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • E04B2001/2672Connections specially adapted therefor for members formed from a number of parallel sections

Definitions

  • ABSTRACT A structural framing system for building low-cost easily-assembled enclosures comprising a connector and a beam which have a unique tongue and groove connection.
  • the connector also has a transverse slot and an aperture. Two connectors. fit together at their slots, the apertures are aligned, and a spindle part of a col umn is inserted through the aligned apertures to form a three-dimensional joint.
  • the beam is then connected to anyone of the ends of the connectors and in that way further beams, connectors, and columns are added so as to form the desired structural framing systern.
  • low-cost rural housing can be built using small modular components which are specifically designed to be easily and cheaply transported and try to reduce the time and skills required for on-site assembly.
  • packaged component systems exist, however, they trade off savings in shipping costs against the greater reliance on local labor to assemble these small component parts at the site, which tends to cancel out the economic advantage.
  • the structural framing system is basically made up of three components, a beam, a connector, and a column.
  • the beam and the connector both have stepped profiles, there being a reduced height end-portion at either end.
  • a groove extends along the longitudinal length of the end-portion, preferably vertically through the entire height of the beam.
  • the full height section has a portion of it adjacent each reduced height portion, which has a reduced width, the width being equal to the width of the groove.
  • the connector also has a transverse vertical slot extending from the level of the reduced height end-portion through the reduced width portion, which slot has a longitudinal width equal to the full width of the connector. There is an aperture extending vertically from the slot through the full width portion.
  • the column is an elongated member having a smaller cross-sectional end-portion which is called a spindle.
  • FIGS. 1 through 3 show a beam of the instant structural framing system, which beam is uniquely constructed so as to be quickly and simply joinable to either another beam or a connector.
  • the beam 10 has an end-portion 11, which end-portion preferably has a groove 12 extending through its entire height as seen in FIG. 2. It is possible that the groove need only extend through the major portion of the height of the endportion so as to show a solid longitudinal edge, as opposed to a channel as seen in FIG. 3.
  • a core 13 has a reduced width as best seen in FIG. 3, which width is equal to the width of groove 12.
  • There is a full width middle section 15 the periphery of which defines the outward shape of the beams when they are connected together.
  • beam 10 has a channel down the center of either longitudinal edge, as explained above, it is possible for the edge not to have the channel especially when the beam is to be exposed in the house for aesthetic purposes, or is to be nailed into etc.
  • FIGS. 4 through 6 show a connector 20 which has an I end-portion 21 having a vertically extending groove 22 in it.
  • This groove longitudinally extends from the core 23 to the end of the connector, and preferably extends the full height of end-portion 21.
  • Core 23 is of a reduced width as best seen in FIGS. and 6, and this reduced width is equal to the width of groove 22.
  • the longitudinal width of slot 25 is equal to the full width of the connector.
  • FIG. 4 best shows that the connector also has a stepped profile in side elevation, having a full height middle section 23 and reduced height end portions 21.
  • FIG. 7 shows a column 30 which is made up of a large cross-sectional portion 31 and a reduced crosssectional spindle 32.
  • the junction of the large and small cross-sectional portions forms a ledge 33.
  • the cross-sectional area and shape of spindle 32 corresponds with aperture 26, preferably square in crosssection.
  • connection is made permanent by an adhesive, nails, bolts pegging, or a combination of any of the foregoing.
  • the structural framing system can be extended until a junction is desired, or within the structural limits of the material, at which point another pair of connectors is assembled onto a column.
  • the beams preferably come in three uniform lengths. 6 foot 6 inches, 9 foot 9 inches, and 13 foot 0 inches.
  • the connector is preferably 6 foot 3 inches long and it will be therefore seen that at the corner of a building there is a built-in cantilever of three foot provided by the connectors, and onto which a roofloverhang, or at lower level a sun-deck can be provided. With the threesize beams, rooms of various incremental dimensions made up of combinations of the length of the beams can be made at will.
  • the structural frame system is an open system and therefore does not dictate the final form of the house since it can accept any number of roof or wall sub-systems. These can be either built at the site, or prefabricated.
  • the wall sub-systems can be the conventional stud-type, an assembly of panels, prefabricated off-site, or made of sheets of structurally stable material onto which a thermosetting plastic foam or other plastic material is either 'trowelled or sprayed.
  • the structural framing system is extremely adaptable and can be placed on concrete or masonry piers, on a crawl-space or a basement wall, or on a slab-on-grade. In the case of the first two, the houses would have floors supported on the beams, and in the case of the last one, the concrete slab would form the floor.
  • the material used for making the beam, connector, or column preferably 54-inch plywood is used. Looking at FIGS. 1 through 6, it will be seen that two outer sheets of plywood run the length of the beam or connector.
  • the cores are made up of two laminated sheets of ii-inch plywood thereby making a core having a thickness of 1% inch.
  • the full width of either the beam or connector would be three inches, the combination of four fli-inch plywood sheets.
  • Plywood is utilized because of its immediate availability, large strength to weight ratio, and relatively low cost.
  • plywood, pressed paper products, for example, Homasote or fiberboards can be used with alternating layers of reinforced plastic, such as fiberglass. Use of sandwiched honeycomb structure is also possible and the choice will basically be made on economics and may be overridden by the particular use that the framing system will be put to.
  • the connectors and beams preferably have longitudinal channels along their edges, it is possible to have wallpanels of a thickness commensurate with the width of the channels, so that those wall panels fit into the channels. It can easily be seen that such a simplified method of enclosing would dramatically lower the cost whether the panels were used as dividing partitions within the dimensions of the structure, or as outside walls of the structure. It is possible to spray or trowel thermosetting foams or other plastic materials on the panels making up either the outside or the inside partitions, noting that the polymeric foams possess excellent thermal and and acoustic properties. Moreover, the foams would be applied after the panels are in position and when they set the foam would achieve stiffness and increase the strength and resistance to mechanical damage with a very small increase in weight.
  • Construction means for building low-cost easily assembled structures having joints with structural continuity and stiffness comprising: at least one beam having a stepped profile in side elevation, the middle being a full height section and at least one end portion being of reduced height, a groove extending vertically through the entire height of the end portion and longitudinally from said at least one end to the beginning of said full height section, the middle portion of the full height section being full width, and there being at least one reduced width portion longitudinally extending from said full width middle portion to the reduced height end portion; and at least two connectors also having a stepped profile in side elevation, the middle being a full height section and both end portions being of reduced height, a groove extending vertically through the entire height of the end portions and longitudinally from both ends to the beginning of the full height section, a portion of the full height section being of reduced width and the remainder being full width, a transverse vertical slot extending from the level of the reduced height end portions through said reduced width portion, which slot being in the middle of the connector and having a longitudinal width equal to said full width; said two
  • each connector additionally has an aperture extending vertically from said slot through the full width portion of the full height section, and when the two connectors are fitted together transverse to each other the apertures of the two fitted connectors are aligned.
  • Construction means as claimed in claim 3 in combination with an elongated column having a reduced in cross-section portion at one end, which reduced portion is fitted through said aligned apertures so that one of the connectors rests on a ledge at the transition from the reduced to the full size cross-section of the column, thereby forming a three-dimensional joint having structural continuity through the joint in all three axes, said column being positioned vertically and the transverse connectors extending horizontally.
  • Construction means as claimed in claim 4 including at least four columns, eight connectors and four beams connected so as to form a three-dimensional encloseable framework for a low-cost building structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

A structural framing system for building low-cost easilyassembled enclosures comprising a connector and a beam which have a unique tongue and groove connection. The connector also has a transverse slot and an aperture. Two connectors fit together at their slots, the apertures are aligned, and a spindle part of a column is inserted through the aligned apertures to form a threedimensional joint. The beam is then connected to anyone of the ends of the connectors and in that way further beams, connectors, and columns are added so as to form the desired structural framing system.

Description

United States Patent i191 Falconer [4 1 Feb. 18,1975
[ STRUCTURAL FRAMING SYSTEM [73] Assignee: Midwest Housing Research Corporation, Jefferson City, Mo.
[22] Filed: Mar. 7, 1973 [21] Appl. No.: 338,663
2,010,874 8/1935 Matheny 52/648 2,712,199 7/1955 Latimer 52/752 3,206,903 9/1965 Johnson 52/648 Primary Examiner-Frank L. Abbott Assistant E.raminer--James L. Ridgill. Jr. Attorney, Agent, or FirmHolman & Stern [57] ABSTRACT A structural framing system for building low-cost easily-assembled enclosures comprising a connector and a beam which have a unique tongue and groove connection. The connector also has a transverse slot and an aperture. Two connectors. fit together at their slots, the apertures are aligned, and a spindle part of a col umn is inserted through the aligned apertures to form a three-dimensional joint. The beam is then connected to anyone of the ends of the connectors and in that way further beams, connectors, and columns are added so as to form the desired structural framing systern.
7 Claims, 9 Drawing Figures STRUCTURAL FRAMING SYSTEM BACKGROUND OF THE INVENTION The instant invention deals with a structural framing system which is easy to assemble and of low cost.
According to recent housing census data, better than two thirds of the substandard housing in the United States is found outside the metropolitan areas. These areas are normally called rural or urbanizing-rural areas. Studies have shown that the typical small home builder in these areas cannot build at profits which attract him to low to moderate income housing. Moreover, such rural areas are less likely to benefit from industrialized building technology because of logistics and density of housing, noting that the per-unit price decreases as the number of units to be simultaneously built is increased. The distribution of manufactured housing is perhaps the greatest single drawback to lowering the cost of such lowto moderate-income housing. A typical small manufacturer of modular homes usually finds its economic delivery radius is 200 miles or less.
The prior art suggests that low-cost rural housing can be built using small modular components which are specifically designed to be easily and cheaply transported and try to reduce the time and skills required for on-site assembly. Such packaged component systems exist, however, they trade off savings in shipping costs against the greater reliance on local labor to assemble these small component parts at the site, which tends to cancel out the economic advantage.
The present trends in the building industry appear to be directed towards off-site manufactured housing which is not likely to benefit those living in rural areas since the disaggregated character of the rural market and other factors obstruct the marketability and distribution of the factory-fabricated modules.
Another problem long experienced in low-income housing in the rural area, and for that matter lowincome housing in any environment, is the lack of participation of the lower-income family in the houseplanning and design. Such a family has little choice except between one stock plan or another. In a do-ityourself house, conventional building techniques prevent all but those skilled in such techniques from building their own house in accordance with their personalized plans and designs. Rationalized and simplified building methods and techniques would increase the number of people capable of building their own house and thereby increase the amount of choice such lowincome people have in their housing.
SUMMARY OF THE INVENTION It is an object of the instant invention to overcome the above-mentioned problems and to provide a structural framing system which is standardized and simple, thereby making it possible for small local builders to construct housing on-site at reduced cost and increase the opportunity of the home-owner to participate in the planning process. The structural framing system is basically made up of three components, a beam, a connector, and a column. The beam and the connector both have stepped profiles, there being a reduced height end-portion at either end. A groove extends along the longitudinal length of the end-portion, preferably vertically through the entire height of the beam. The full height section has a portion of it adjacent each reduced height portion, which has a reduced width, the width being equal to the width of the groove. The connector also has a transverse vertical slot extending from the level of the reduced height end-portion through the reduced width portion, which slot has a longitudinal width equal to the full width of the connector. There is an aperture extending vertically from the slot through the full width portion. The column is an elongated member having a smaller cross-sectional end-portion which is called a spindle.
Two connectors transversely fit together so that the slot of one fits over the full width section of the other and vice-versa. The apertures of each connector are aligned and the spindle of the column fits through the aligned apertures so that the lower-most connector is supported by a ledge where the column changes a cross-sectional area. It will be seen that in this way, a three-dimensional joint has been formed, the column being adapted to be placed vertical and the two transverse connectors horizontally extending in four different directions. A beam is then connected to anyone or all of the ends of the connectors in a way to be hereinafter explained, and when a change of direction is desired, another pair of connectors is introduced into the system along with a column. In this way, a complete structural framing system can be simply and economically formed.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. FIG. FIG. FIG. FIG.
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 through 3 show a beam of the instant structural framing system, which beam is uniquely constructed so as to be quickly and simply joinable to either another beam or a connector. The beam 10 has an end-portion 11, which end-portion preferably has a groove 12 extending through its entire height as seen in FIG. 2. It is possible that the groove need only extend through the major portion of the height of the endportion so as to show a solid longitudinal edge, as opposed to a channel as seen in FIG. 3. A core 13 has a reduced width as best seen in FIG. 3, which width is equal to the width of groove 12. There is a full width middle section 15 the periphery of which defines the outward shape of the beams when they are connected together. FIG. 1 best shows that the beam has a stepped profile in side-elevation, having a full height middle section 15 and reduced height end portions 11. Preferably, beam 10 has a channel down the center of either longitudinal edge, as explained above, it is possible for the edge not to have the channel especially when the beam is to be exposed in the house for aesthetic purposes, or is to be nailed into etc.
FIGS. 4 through 6 show a connector 20 which has an I end-portion 21 having a vertically extending groove 22 in it. This groove longitudinally extends from the core 23 to the end of the connector, and preferably extends the full height of end-portion 21. In the middle of the connector 20, there is a transverse slot 25 which extends from the level of the reduced height end-portion 21 through the core 23. Core 23 is of a reduced width as best seen in FIGS. and 6, and this reduced width is equal to the width of groove 22. The longitudinal width of slot 25 is equal to the full width of the connector. There is an aperture 26 in the center of the connector extending from the slot 25 to the opposite edge of the connector. Preferably there is a channel 24 running along one edge of the connector, but it is possible for this longitudinal edge to be flush and dispense with the channel 24. FIG. 4 best shows that the connector also has a stepped profile in side elevation, having a full height middle section 23 and reduced height end portions 21.
FIG. 7 shows a column 30 which is made up of a large cross-sectional portion 31 and a reduced crosssectional spindle 32. The junction of the large and small cross-sectional portions forms a ledge 33. The cross-sectional area and shape of spindle 32 corresponds with aperture 26, preferably square in crosssection.
The three elements above explained, namely the beam, the connector and the column, fit together to form a rigid three-dimensional joint as best seen in FIG. 8. Two connectors are transversely joined one to the other in such a way that the slot 25 of one fits into the slot of the other and over the full width portion of the other connector remembering, that the width of the slots is equal to the full width of the connector. The holes 26 are aligned and the spindle 32 is introduced through the aligned holes so that the bottom-most connector rests on the ledge 33. To extend any one of the connectors in a longitudinal direction a beam is placed on the connector as seen in FIG. 8 so that the end-portion ll of the beam 10 fits onto and over the core 23 of the connector, and the core 13 of the beam fits into the groove 22 of the connector. Once these elements have been frictionally fit together, noting that their dimensions are such that they will only properly fit in a given orientation, the connection is made permanent by an adhesive, nails, bolts pegging, or a combination of any of the foregoing. The structural framing system can be extended until a junction is desired, or within the structural limits of the material, at which point another pair of connectors is assembled onto a column.
The beams preferably come in three uniform lengths. 6 foot 6 inches, 9 foot 9 inches, and 13 foot 0 inches. The connector is preferably 6 foot 3 inches long and it will be therefore seen that at the corner of a building there is a built-in cantilever of three foot provided by the connectors, and onto which a roofloverhang, or at lower level a sun-deck can be provided. With the threesize beams, rooms of various incremental dimensions made up of combinations of the length of the beams can be made at will. It should be noted that the structural frame system is an open system and therefore does not dictate the final form of the house since it can accept any number of roof or wall sub-systems. These can be either built at the site, or prefabricated. Since the main structural frame system is designed to carry dead and live building loads, the enclosing wall subsystem need not duplicate this capability which, therefore, can allow a dramatic decrease in cost. The wall sub-systems can be the conventional stud-type, an assembly of panels, prefabricated off-site, or made of sheets of structurally stable material onto which a thermosetting plastic foam or other plastic material is either 'trowelled or sprayed.
The structural framing system is extremely adaptable and can be placed on concrete or masonry piers, on a crawl-space or a basement wall, or on a slab-on-grade. In the case of the first two, the houses would have floors supported on the beams, and in the case of the last one, the concrete slab would form the floor.
As far as the material used for making the beam, connector, or column, preferably 54-inch plywood is used. Looking at FIGS. 1 through 6, it will be seen that two outer sheets of plywood run the length of the beam or connector. The cores are made up of two laminated sheets of ii-inch plywood thereby making a core having a thickness of 1% inch. The full width of either the beam or connector would be three inches, the combination of four fli-inch plywood sheets. Plywood is utilized because of its immediate availability, large strength to weight ratio, and relatively low cost. Moreover, plywood, pressed paper products, for example, Homasote or fiberboards can be used with alternating layers of reinforced plastic, such as fiberglass. Use of sandwiched honeycomb structure is also possible and the choice will basically be made on economics and may be overridden by the particular use that the framing system will be put to.
Since the connectors and beams preferably have longitudinal channels along their edges, it is possible to have wallpanels of a thickness commensurate with the width of the channels, so that those wall panels fit into the channels. It can easily be seen that such a simplified method of enclosing would dramatically lower the cost whether the panels were used as dividing partitions within the dimensions of the structure, or as outside walls of the structure. It is possible to spray or trowel thermosetting foams or other plastic materials on the panels making up either the outside or the inside partitions, noting that the polymeric foams possess excellent thermal and and acoustic properties. Moreover, the foams would be applied after the panels are in position and when they set the foam would achieve stiffness and increase the strength and resistance to mechanical damage with a very small increase in weight. It is possible to generate foams on-site and apply these foams directly to the shell or the frame of the building thus creating an enclosing envelope which would greatly reduce the problem of joints between panels. It is possible as well to apply foam to the roof, either on properly sloped panels or onto a sub-structure with the proper pitch.
What is claimed is:
1. Construction means for building low-cost easily assembled structures having joints with structural continuity and stiffness comprising: at least one beam having a stepped profile in side elevation, the middle being a full height section and at least one end portion being of reduced height, a groove extending vertically through the entire height of the end portion and longitudinally from said at least one end to the beginning of said full height section, the middle portion of the full height section being full width, and there being at least one reduced width portion longitudinally extending from said full width middle portion to the reduced height end portion; and at least two connectors also having a stepped profile in side elevation, the middle being a full height section and both end portions being of reduced height, a groove extending vertically through the entire height of the end portions and longitudinally from both ends to the beginning of the full height section, a portion of the full height section being of reduced width and the remainder being full width, a transverse vertical slot extending from the level of the reduced height end portions through said reduced width portion, which slot being in the middle of the connector and having a longitudinal width equal to said full width; said two connectors being fitted transverse to each other with the slot of one fitting into the slot of the other and over the respective full width portions of the two connectors, and said beam fitting onto the end portion of one of said two connectors, the reduced width portion of the beam frictionally fitting into the groove of the one connector and the reduced width portion of the one connector fitting into the groove of the beam so as to form a longitudinal extension of the connector with the beam, thereby forming a twodimensional joint having structural continuity through the intersection point of two connectors.
2. Construction means as claimed in claim 1 wherein said beam has a reduced height end portion at both ends, said groove extends vertically through the entire height of both end portions and longitudinally from both ends to the beginning of said full height section, and there are two reduced width portions each one longitudinally extending from said full width middle portion to each reduced height end portion.
3. Construction means as claimed in claim 2 wherein each connector additionally has an aperture extending vertically from said slot through the full width portion of the full height section, and when the two connectors are fitted together transverse to each other the apertures of the two fitted connectors are aligned.
4. Construction means as claimed in claim 3 in combination with an elongated column having a reduced in cross-section portion at one end, which reduced portion is fitted through said aligned apertures so that one of the connectors rests on a ledge at the transition from the reduced to the full size cross-section of the column, thereby forming a three-dimensional joint having structural continuity through the joint in all three axes, said column being positioned vertically and the transverse connectors extending horizontally.
5. Construction means as claimed in claim 4 wherein said two connectors are fitted at to one another; said aligned apertures are square in cross-section; and said reduced cross-section on the column is square.
6. Contruction means as claimed in claim 1 wherein said beams and connectors are made of plywood and in the assembled condition the beams and connectors have a continuous channel running along at least one longitudinal edge.
7. Construction means as claimed in claim 4 including at least four columns, eight connectors and four beams connected so as to form a three-dimensional encloseable framework for a low-cost building structure.

Claims (7)

1. Construction means for building low-cost easily assembled structures having joints with structural continuity and stiffness comprising: at least one beam having a stepped profile in side elevation, the middle being a full height section and at least one end portion being of reduced height, a groove extending vertically through the entire height of the end portion and longitudinally from said at least one end to the beginning of said full height section, the middle portion of the full height section being full width, and there being at least one reduced width portion longitudinally extending from said full width middle portion to the reduced height end portion; and at least two connectors also having a stepped profile in side elevation, the middle being a full height section and both end portions being of reduced height, a groove extending vertically through the entire height of the end portions and longitudinally from both ends to the beginning of the full height section, a portion of the full height section being of reduced width and the remainder being full width, a transverse vertical slot extending from the level of the reduced height end portions through said reduced width portion, which slot being in the middle of the connector and having a longitudinal width equal to said full width; said two connectors being fitted transverse to each other with the slot of one fitting into the slot of the other and over the respective full width portions of the two connectors, and said beam fitting onto the end portion of one of said two connectors, the reduced width portion of the beam frictionally fitting into the groove of the one connector and the reduced width portion of the one connector fitting into the groove of the beam so as to form a longitudinal extension of the connector with the beam, thereby forming a two-dimensional joint having structural continuity through the intersection point of two connectors.
2. Construction means as claimed in claim 1 wherein said beam has a reduced height end portion at both ends, said groove extends vertically through the entire height of both end portions and longitudinally from both ends to the beginning of said full height section, and there are two reduced width portions each one longitudinally extending from said full width middle portion to each reduced height end portion.
3. Construction means as claimed in claim 2 wherein each connector additionally has an aperture extending vertically from said slot through the full width portion of the full height section, and when the two connectors are fitted together transverse to each other the apertures of the two fitted connectors are aligned.
4. Construction means as claimed in claim 3 in combination with an elongated column having a reduced in cross-section portion at one end, which reduced portion is fitted through said aligned apertures so that one of the connectors rests on a ledge at the transition from the reduced to the full size cross-section of the column, thereby forming a three-dimensional joint having structural continuity through the joint in all three axes, said column being positioned vertically and the transverse connectors extending horizontally.
5. Construction means as claimed in claim 4 wherein said two connectors are fitted at 90* to one another; said aligned apertures are square in cross-section; and said reduced cross-section on the column is square.
6. Contruction means as claimed in claim 1 wherein said beams and connectors are made of plywood and in the assembled condition the beams and connectors have a continuous channel running along at least one longitudinal edge.
7. Construction means as claimed in claim 4 including at least four columns, eight connectors and four beams connected so as to form a three-dimensional encloseable framework for a low-cost building structure.
US338663A 1973-03-07 1973-03-07 Structural framing system Expired - Lifetime US3866371A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US338663A US3866371A (en) 1973-03-07 1973-03-07 Structural framing system
GB884974A GB1450870A (en) 1973-03-07 1974-02-27 Structural framing system
PH15568A PH10501A (en) 1973-03-07 1974-03-01 Structural framing system
CA193,862A CA1008633A (en) 1973-03-07 1974-03-01 Structural framing system
JP49026708A JPS49126131A (en) 1973-03-07 1974-03-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US338663A US3866371A (en) 1973-03-07 1973-03-07 Structural framing system

Publications (1)

Publication Number Publication Date
US3866371A true US3866371A (en) 1975-02-18

Family

ID=23325611

Family Applications (1)

Application Number Title Priority Date Filing Date
US338663A Expired - Lifetime US3866371A (en) 1973-03-07 1973-03-07 Structural framing system

Country Status (5)

Country Link
US (1) US3866371A (en)
JP (1) JPS49126131A (en)
CA (1) CA1008633A (en)
GB (1) GB1450870A (en)
PH (1) PH10501A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089144A (en) * 1974-03-28 1978-05-16 Franz Astl Building element
US4163349A (en) * 1977-05-26 1979-08-07 Smith Glenn W Insulated building panels
US4677806A (en) * 1986-04-04 1987-07-07 The United States Of America As Represented By The Secretary Of Agriculture Wooden building system with flange interlock and beams for use in the system
EP0550803A1 (en) * 1992-01-10 1993-07-14 Karl Moser Wood elements joining process
US10174497B2 (en) * 2014-12-16 2019-01-08 Manuel Perez-Romero Prefabricated construction system and method with three-dimensional structural nodes
US20190048586A1 (en) * 2016-02-23 2019-02-14 Jin Woo Kim Gongpo assembly structure of traditional korean-style house and temple
US11021866B2 (en) * 2018-05-30 2021-06-01 Iida Sangyo Co., Ltd. Building and construction method for same
EP3919698A1 (en) 2020-06-05 2021-12-08 Phylem Structures, Sl Engineered wood structural system
EP4102002A1 (en) * 2021-06-11 2022-12-14 Urban Beta UG A building component and a building assembly
WO2022258598A1 (en) * 2021-06-11 2022-12-15 Urban Beta Ug Building components for building assemblies and building assemblies comprising such building components

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174751A (en) * 1987-12-28 1989-07-11 Ooshika Shinko Kk Pillar or beam constitution member and connecting method
DE9211330U1 (en) * 1992-08-21 1993-02-18 Aurich, Winfried, O-8060 Dresden, De
JP2537453B2 (en) * 1992-10-14 1996-09-25 忠道 西片 Method of manufacturing wooden structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US198926A (en) * 1878-01-08 Improvement in portable houses
US305584A (en) * 1884-09-23 forrest
US797640A (en) * 1905-05-13 1905-08-22 Embossing Company Toy house.
US1189360A (en) * 1909-02-08 1916-07-04 Annibale A Guerini Fireproof building.
US2010874A (en) * 1933-04-11 1935-08-13 Charles B Matheny Knockdown building
US2712199A (en) * 1952-10-06 1955-07-05 Henry R Latimer Toy building blocks
US3206903A (en) * 1960-10-13 1965-09-21 William G Johnson House framing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US198926A (en) * 1878-01-08 Improvement in portable houses
US305584A (en) * 1884-09-23 forrest
US797640A (en) * 1905-05-13 1905-08-22 Embossing Company Toy house.
US1189360A (en) * 1909-02-08 1916-07-04 Annibale A Guerini Fireproof building.
US2010874A (en) * 1933-04-11 1935-08-13 Charles B Matheny Knockdown building
US2712199A (en) * 1952-10-06 1955-07-05 Henry R Latimer Toy building blocks
US3206903A (en) * 1960-10-13 1965-09-21 William G Johnson House framing

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089144A (en) * 1974-03-28 1978-05-16 Franz Astl Building element
US4163349A (en) * 1977-05-26 1979-08-07 Smith Glenn W Insulated building panels
US4677806A (en) * 1986-04-04 1987-07-07 The United States Of America As Represented By The Secretary Of Agriculture Wooden building system with flange interlock and beams for use in the system
EP0550803A1 (en) * 1992-01-10 1993-07-14 Karl Moser Wood elements joining process
US10174497B2 (en) * 2014-12-16 2019-01-08 Manuel Perez-Romero Prefabricated construction system and method with three-dimensional structural nodes
US20190048586A1 (en) * 2016-02-23 2019-02-14 Jin Woo Kim Gongpo assembly structure of traditional korean-style house and temple
US10704259B2 (en) * 2016-02-23 2020-07-07 Jin Woo Kim Gongpo assembly structure of traditional Korean-style house and temple
US11021866B2 (en) * 2018-05-30 2021-06-01 Iida Sangyo Co., Ltd. Building and construction method for same
EP3919698A1 (en) 2020-06-05 2021-12-08 Phylem Structures, Sl Engineered wood structural system
WO2021245177A1 (en) 2020-06-05 2021-12-09 Phylem Structures S.L. Engineered wood structural system
EP4234832A2 (en) 2020-06-05 2023-08-30 Phylem Structures, Sl Engineered wood structural system
EP4234831A2 (en) 2020-06-05 2023-08-30 Phylem Structures, Sl Engineered wood structural system
EP4234831A3 (en) * 2020-06-05 2023-09-27 Phylem Structures, Sl Engineered wood structural system
US11846100B2 (en) 2020-06-05 2023-12-19 Phylem Structures, S.L. Engineered wood structural system
EP4102002A1 (en) * 2021-06-11 2022-12-14 Urban Beta UG A building component and a building assembly
WO2022258598A1 (en) * 2021-06-11 2022-12-15 Urban Beta Ug Building components for building assemblies and building assemblies comprising such building components

Also Published As

Publication number Publication date
JPS49126131A (en) 1974-12-03
CA1008633A (en) 1977-04-19
GB1450870A (en) 1976-09-29
PH10501A (en) 1977-05-17

Similar Documents

Publication Publication Date Title
US3751864A (en) Interstitial space frame system
US3514910A (en) Modular building construction
US9441359B1 (en) Structurally independent frame for component based multi-unit buildings
US3353315A (en) Grooved panel with load-bearing strips
US4154030A (en) Prefab panels and system for building construction
US3688461A (en) Framework for building structures
US5758463A (en) Composite modular building panel
US6237297B1 (en) Modular structural members for constructing buildings, and buildings constructed of such members
US4194339A (en) Method for constructing town houses and the like
US3866371A (en) Structural framing system
US6195950B1 (en) Engineered structural modular units
US6041562A (en) Composite wall construction and dwelling therefrom
US3712008A (en) Modular building construction system
US5493839A (en) Structural building panel and panel system
US20050086900A1 (en) Integral forming technology, a method of constructing steel reinforced concrete structures
US4201020A (en) Building panel and panel assembly
US3831327A (en) Service core installation system
CN212926694U (en) Square column structure and house
US3736709A (en) Building system
US9200447B1 (en) Prestressed modular foam structures
US3902287A (en) Dwelling construction system
US3562978A (en) Building construction
US4073102A (en) Premanufactured modular town house building construction
US3810335A (en) Fire barrier system for multi-family dwellings
US3844083A (en) Wall made of a plurality of interconnected collapsible modules and method of assembly