US3864687A - Coaxial horn antenna - Google Patents

Coaxial horn antenna Download PDF

Info

Publication number
US3864687A
US3864687A US370612A US37061273A US3864687A US 3864687 A US3864687 A US 3864687A US 370612 A US370612 A US 370612A US 37061273 A US37061273 A US 37061273A US 3864687 A US3864687 A US 3864687A
Authority
US
United States
Prior art keywords
horn
feeds
coaxial
antenna
horns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US370612A
Inventor
Glenn A Walters
Edward E Vonkline
Duane Tubbs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cubic Corp
Original Assignee
Cubic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cubic Corp filed Critical Cubic Corp
Priority to US370612A priority Critical patent/US3864687A/en
Application granted granted Critical
Publication of US3864687A publication Critical patent/US3864687A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/04Multimode antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements

Definitions

  • a wide band, multi-mode antenna having a plurallty of coaxial, independently fed, radiating horns.
  • Each horn [52] US. Cl. 343/778, 343/786 h m lti le f eds which can be energized in various Illt. Cl. phase relationships [0 control pola izatio
  • the an- Fleld of Search 786, tenna can be used as a direct radiator, or to illuminate 343/354 a reflector, has transmit or receive capabilities, and is adaptable to monopulse operation.
  • the antenna is a References Clted compact rigid unit of very simple construction.
  • the antenna described herein is very compact for the range of frequencies it is capable of handling, and is a rugged self-supporting structure.
  • Multiple tubular elements are assembled concentrically to provide stepped coaxial horns covering several frequency ranges.
  • Each horn has feeds positioned orthogonally relative to the horn axis, with means for energizing the feeds in selected phase relationships to obtain the required polarization characteristics.
  • the horns are essentially waveguide elements of circular or other suitable cross section, and act in combination in their concentric arrangement to provide coaxial waveguides with substantially equal electrical dimensions.
  • the radiating patterns are thus nearly constant as a function of frequency and the phase center is substantially constant over the entire band of coverage. All the radiating apertures are near planar, but retain good isolation between apertures.
  • the primary object of this invention is to provide a new and improved coaxial horn antenna.
  • Another object of this invention is to provide a new and improved co-axial horn antenna having concentrically assembled tubular waveguide elements forming stepped coaxial radiating apertures.
  • Another object of this invention is to provide a new and improved co-axial horn antenna in which each horn has feed elements which can be energized in selected phase relationships.
  • a further object of this invention is to provide a new and improved co-axial horn antenna having wide band, multi-mode capability.
  • Another object of this invention is to provide -a new and improved co-axial horn antenna which is compact and of rigid structure, adaptable to a variety of installations.
  • FIG. I is a perspective view of a typical configuration of the antenna.
  • FIG. 2 is a side elevation view, partially cut away.
  • FIG. 3 is a sectional view taken on line 33 of FIG.
  • FIG. 4 is a side elevation view of the antenna mounted on a reflector.
  • FIG. 5 is a diagram of a typical arrangement of feed connections to the antenna.
  • FIG. 6a 6d are diagrams of the polarization characteristics of the antenna with various phase relationships of the feeds DESCRIPTION OF THE PREFERRED EMBODIMENT
  • the antenna as illustrated in FIGS. 1-3 is typical, and
  • horns l2, l4 and 16 of cylindrical configuration mounted together in coaxial alignment.
  • the horns are progressively sized to provide an inner radiating aperture 18, a concentric intermediate aperture 20 and a concentric outer aperture 22 at the front end of the antenna.
  • any reasonable number of horns may be used and the cross section of the tubular elements need not be circular.
  • the rear of the antenna is closed by an end plate 24 and the forward end is held in coaxial alignment by dielectric closure elements.
  • dielectric closure elements include a disc 26 inset in the end of inner horn 12, a ring 28 between horn l2 and intermediate horn l4, and a ring 30 between horn l4 and outer horn 16.
  • the dielectric elements provide electrical isolation between the radiating apertures. Beamwidth is controlled by staggering the forward ends of the horns, with the inner horn projecting furthest, the staggering also adding to the isolation. Beamwidth is reduced as the stagger is increased and can be set to suit specific characteristics. For some uses it may be desirable to enclose the front of the antenna by a dielectric radome or cover 32, indicated in broken line in FIG. 2.
  • the inner horn l2 functions as a circular waveguide, with the radiating aperture 18 at the forward end.
  • Aperture 20 is at the forward end of a waveguide using the outer surface of horn l2 and the inner surface of horn 14 as conductors.
  • Aperture 22 is at the forward end of a waveguide formed by the outer conductive surface of horn l4 and the inner conductive surface of horn 16.
  • each horn has a plurality of quadrantally position feeds.
  • Inner horn 12 has two feeds 40 and 42 positioned degrees apart.
  • Intermediate horn 14 has four feeds 44, 46, 48 and 50, and outer horn 16 has four feeds 52, 54, 56 and 58.
  • Each of the feeds is actually a transformer or transition of conventional type, making the transition from a coaxial connection 34 to the wave guide horn.
  • a coaxial conductor 34 extends from each feed at the rear of the antenna, with a coupling 36 for connection to associated transmit or receive apparatus.
  • the specific configurations of the feeds and coaxial connections will depend on the range of frequencies being used, the arrangment and structure being well known.
  • All the antenna horn sections operate in the TE mode, rather than the conventional TEM mode. Second and higher order linear modes are prevented by using waveguide sizes which are too small to support them.
  • the modes of interest are TE and TE In TE, mode the cutoff wavelength lt 3.4la in a circular guide, and ll 4.64a in a coaxial guide.
  • T5 mode the cutoff wavelength A, 2.057a in a circular guide, and A 2.35a in a coaxial guide.
  • These cutoff wavelengths correspond to a ratio between outer to inner coaxial diameters of 2:1, and will change only slightly as the ratio is changed.
  • the ratio is 1.98
  • n The number (n) of individual horns in a concentric assembly necessary to operate over a total bandwidth (EBW). for a coaxial waveguide is:
  • n LogZBWlLog 2 Maximum bandwidth for a given number of circularly symmetric horns is achieved with the inner horn operating in the circular guide TE mode.
  • Circularly symmetric modes are avoided by the method of excitation, which utilizes a dual coupling technique to ensure a TE mode excitation.
  • Diametrical feeds in a horn are fed in or out of phase to generate a linearly polarized wave, with either a sum or difference pattern.
  • an amplitude monopulse pattern can be produced in the plane through the two feed points.
  • a second set of feeds in quadranture relation will provide orthogonal or conjugate linearly polarized modes. With two conjugate modes, any desired polarization can be radiated.
  • FIG. 5 A typical arrangement is illustrated in FIG. 5. Diametrically opposed feeds 54 and 58 of outer horn 16 are coupled through phase shifters 60 and 62, respectively, to a hybrid junction 64, which is connected to an associated signal source. Feeds 52 and 56 are similarly coupled through phase shifters 66 and 68 to a hybrid junction 70, which is connected to a signal source. Feeds 44-50 in horn 14 would be connected in a similar manner. In horn 12, the feed 40 would be excited for horizontal polarization and the feed 42 for vertical polarization.
  • the signal source may be any suitable microwave transmitter and/or receiver means, operating on a different frequency for each horn.
  • the inner horn operates at the highest frequency and the outer horn at the lowest frequency of the useful range, the coaxial horn arrangment making it possible to have a bandwidth of several octaves.
  • the antenna can be used as a direct radiator or, as illustrated in FIG. 4, can be mounted on a suitable support 72 to illuminate a reflector 74.
  • FIGS. 6a-6d illustrate various specific examples of radiation patterns with the relative phases of the various feeds indicated by directional arrows.
  • the feeds are in phase in each diametrical pair and the two pairs are in phase, resulting in a vertically polarized radiation pattern.
  • the feeds are in phase in each diametrical pair, but the two pairs are I degrees out of phase, resulting in a horizontally polarized radiation pattern.
  • FIG. 60 indicates that the feeds are I80 degrees out of phase in each diametrical pair, but the two pairs are in phase. This produces a monopulse difference pattern with horizontal polarization in the azimuth plane. and vertical polarization in the elevation plane.
  • FIG. 61 the feeds are I80 degrees out of phase in each diametrical pair and the two pairs are also I80 degrees out of phase, The result is a monopulse difference pattern with vertical polarization in the azimuth plane and horizontal polarization in the elevation plane.
  • a coaxial horn antenna comprising:
  • the innermost horn having a pair of feeds coupled thereto that are spaced and the intermediate and outermost horns having four feeds coupled that are spaced 90, each of said feeds having means for connection to a signal source,
  • said horns are axially staggered with the innermost horn extending a preset distance from said one end, and the intermediate horn extending an intermediate distance between the innermost horn and the outermost horn,
  • each of said feeds includes a coaxial to wave guide transition element coupled to the inner surface of the respective horn,
  • said means for connection comprising a coaxial conductor to said transition element

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

A wide band, multi-mode antenna having a plurality of coaxial, independently fed, radiating horns. Each horn has multiple feeds which can be energized in various phase relationships to control polarization. The antenna can be used as a direct radiator, or to illuminate a reflector, has transmit or receive capabilities, and is adaptable to monopulse operation. The antenna is a compact rigid unit of very simple construction.

Description

United States Patent Walters et al. Feb. 4, 1975 [5 COAXlAL HORN ANTENNA 3,325,817 6/1967 Ajioka et al. 343/786 [75] Inventors: Glenn A. Walters, Poway; Edward $22 E. VOnKline, La Mesa; Duane Tubbs, San Diego, all of Calif. Primary ExaminerEl1 Lieberman Asslgneei g lp? Corporatlon, Sim Diego Attorney, Agent, or FirmBrown & Martin [22] F11ed: June 18, 1973 [57] ABSTRACT [21] Appl. No.: 370,612
A wide band, multi-mode antenna having a plurallty of coaxial, independently fed, radiating horns. Each horn [52] US. Cl. 343/778, 343/786 h m lti le f eds which can be energized in various Illt. Cl. phase relationships [0 control pola izatio The an- Fleld of Search 786, tenna can be used as a direct radiator, or to illuminate 343/354 a reflector, has transmit or receive capabilities, and is adaptable to monopulse operation. The antenna is a References Clted compact rigid unit of very simple construction. UNITED STATES PATENTS 3,086,203 4/1963 Hutchison 343/786 1 9 Draw"; Fgures PATENTEUFEB SHEET 1 [1F 2 PAIENTEB FEBI' 4|975 VERTICAL POLARIZATION HORIZONTAL COMPONENTS CANCEL Fig. 6 a
MONOPULSE DIFFERENCE PATTERN POLARIZATION:
AZIMUTH PLANE HORIZONTAL ELEVATION PLANE VERTICAL Fig.6 0
SHEET 2 [IF 2 PHASE PHASE SHIFTER I SHIFTER HYBRID HYBRID so PHASE PHASE SHIFTER SHIFTER I 58-54 in s e-54in HORIZONTAL POLARIZATION VERTICAL COMPONENTS CANCEL Fig.'6b
MONOPULSE DIFFERENCE PATTERN POLARIZATION:
AZIMUTH PLANE VERTICAL ELEVATION PLANE HORIZONTAL Fig. 6d
1 COAXIAL HORN ANTENNA BACKGROUND OF THE INVENTION Wide band antennas usually involve the use of angular or periodic elements, such as cones, spirals and the like. These have limited power capability and are not readily adaptable to polarization changes. The antenna elements are often mounted on some type of supporting structure, resulting in a bulky unit.
SUMMARY OF THE INVENTION The antenna described herein is very compact for the range of frequencies it is capable of handling, and is a rugged self-supporting structure. Multiple tubular elements are assembled concentrically to provide stepped coaxial horns covering several frequency ranges. Each horn has feeds positioned orthogonally relative to the horn axis, with means for energizing the feeds in selected phase relationships to obtain the required polarization characteristics. The horns are essentially waveguide elements of circular or other suitable cross section, and act in combination in their concentric arrangement to provide coaxial waveguides with substantially equal electrical dimensions. The radiating patterns are thus nearly constant as a function of frequency and the phase center is substantially constant over the entire band of coverage. All the radiating apertures are near planar, but retain good isolation between apertures.
The primary object of this invention, therefore, is to provide a new and improved coaxial horn antenna.
Another object of this invention is to provide a new and improved co-axial horn antenna having concentrically assembled tubular waveguide elements forming stepped coaxial radiating apertures.
Another object of this invention is to provide a new and improved co-axial horn antenna in which each horn has feed elements which can be energized in selected phase relationships.
A further object of this invention is to provide a new and improved co-axial horn antenna having wide band, multi-mode capability.
Another object of this invention is to provide -a new and improved co-axial horn antenna which is compact and of rigid structure, adaptable to a variety of installations.
Other objects and many advantages of this invention will become more apparent upon a reading of the following detailed description and an examination of the drawings, wherein like reference numerals designate like parts throughout and in which:
FIG. I is a perspective view ofa typical configuration of the antenna.
FIG. 2 is a side elevation view, partially cut away.
FIG. 3 is a sectional view taken on line 33 of FIG.
FIG. 4 is a side elevation view of the antenna mounted on a reflector.
FIG. 5 is a diagram of a typical arrangement of feed connections to the antenna.
FIG. 6a 6d are diagrams of the polarization characteristics of the antenna with various phase relationships of the feeds DESCRIPTION OF THE PREFERRED EMBODIMENT The antenna as illustrated in FIGS. 1-3 is typical, and
comprises three cylindrical horns l2, l4 and 16 of cylindrical configuration, mounted together in coaxial alignment. The horns are progressively sized to provide an inner radiating aperture 18, a concentric intermediate aperture 20 and a concentric outer aperture 22 at the front end of the antenna. Depending on the particular use of the antenna, any reasonable number of horns may be used and the cross section of the tubular elements need not be circular.
The rear of the antenna is closed by an end plate 24 and the forward end is held in coaxial alignment by dielectric closure elements. These include a disc 26 inset in the end of inner horn 12, a ring 28 between horn l2 and intermediate horn l4, and a ring 30 between horn l4 and outer horn 16. In addition to providing support and sealing the horns for protection, the dielectric elements provide electrical isolation between the radiating apertures. Beamwidth is controlled by staggering the forward ends of the horns, with the inner horn projecting furthest, the staggering also adding to the isolation. Beamwidth is reduced as the stagger is increased and can be set to suit specific characteristics. For some uses it may be desirable to enclose the front of the antenna by a dielectric radome or cover 32, indicated in broken line in FIG. 2.
In the structure illustrated, the inner horn l2 functions as a circular waveguide, with the radiating aperture 18 at the forward end. Aperture 20 is at the forward end of a waveguide using the outer surface of horn l2 and the inner surface of horn 14 as conductors. Aperture 22 is at the forward end of a waveguide formed by the outer conductive surface of horn l4 and the inner conductive surface of horn 16.
To obtain the various radiation patterns, each horn has a plurality of quadrantally position feeds. Inner horn 12 has two feeds 40 and 42 positioned degrees apart. Intermediate horn 14 has four feeds 44, 46, 48 and 50, and outer horn 16 has four feeds 52, 54, 56 and 58. Each of the feeds is actually a transformer or transition of conventional type, making the transition from a coaxial connection 34 to the wave guide horn. A coaxial conductor 34 extends from each feed at the rear of the antenna, with a coupling 36 for connection to associated transmit or receive apparatus. The specific configurations of the feeds and coaxial connections will depend on the range of frequencies being used, the arrangment and structure being well known.
All the antenna horn sections operate in the TE mode, rather than the conventional TEM mode. Second and higher order linear modes are prevented by using waveguide sizes which are too small to support them. The modes of interest are TE and TE In TE, mode the cutoff wavelength lt 3.4la in a circular guide, and ll 4.64a in a coaxial guide. In T5 mode the cutoff wavelength A, 2.057a in a circular guide, and A 2.35a in a coaxial guide. These cutoff wavelengths correspond to a ratio between outer to inner coaxial diameters of 2:1, and will change only slightly as the ratio is changed.
The operational bandwidth (BW) for a concentric horn is approximated by the ratio of the two cutoff wavelengths. Thus for a circular guide:
and for a coaxial guide, the ratio is 1.98
The number (n) of individual horns in a concentric assembly necessary to operate over a total bandwidth (EBW). for a coaxial waveguide is:
n=LogZBWlLog 2 Maximum bandwidth for a given number of circularly symmetric horns is achieved with the inner horn operating in the circular guide TE mode.
Circularly symmetric modes are avoided by the method of excitation, which utilizes a dual coupling technique to ensure a TE mode excitation. Diametrical feeds in a horn are fed in or out of phase to generate a linearly polarized wave, with either a sum or difference pattern. By connecting two diametrical feeds to a suitable hybrid, an amplitude monopulse pattern can be produced in the plane through the two feed points. A second set of feeds in quadranture relation will provide orthogonal or conjugate linearly polarized modes. With two conjugate modes, any desired polarization can be radiated.
A typical arrangement is illustrated in FIG. 5. Diametrically opposed feeds 54 and 58 of outer horn 16 are coupled through phase shifters 60 and 62, respectively, to a hybrid junction 64, which is connected to an associated signal source. Feeds 52 and 56 are similarly coupled through phase shifters 66 and 68 to a hybrid junction 70, which is connected to a signal source. Feeds 44-50 in horn 14 would be connected in a similar manner. In horn 12, the feed 40 would be excited for horizontal polarization and the feed 42 for vertical polarization.
The signal source may be any suitable microwave transmitter and/or receiver means, operating on a different frequency for each horn. The inner horn operates at the highest frequency and the outer horn at the lowest frequency of the useful range, the coaxial horn arrangment making it possible to have a bandwidth of several octaves. The antenna can be used as a direct radiator or, as illustrated in FIG. 4, can be mounted on a suitable support 72 to illuminate a reflector 74.
With reference to FIG. 5, if feeds 54 and 58 are excited out of phase a vertically polarized wave is radiated. Similarly, if feeds 52 and 56 are excited out of phase, a horizontally polarized wave is radiated. If diametrical pairs 52-56 and 54-58 are fed with equal amplitude in phase quadrature, a circularly polarized wave is radiated.
FIGS. 6a-6d illustrate various specific examples of radiation patterns with the relative phases of the various feeds indicated by directional arrows. In FIG. 6a, the feeds are in phase in each diametrical pair and the two pairs are in phase, resulting in a vertically polarized radiation pattern. In FIG. 6b, the feeds are in phase in each diametrical pair, but the two pairs are I degrees out of phase, resulting in a horizontally polarized radiation pattern.
FIG. 60 indicates that the feeds are I80 degrees out of phase in each diametrical pair, but the two pairs are in phase. This produces a monopulse difference pattern with horizontal polarization in the azimuth plane. and vertical polarization in the elevation plane. In FIG. 61] the feeds are I80 degrees out of phase in each diametrical pair and the two pairs are also I80 degrees out of phase, The result is a monopulse difference pattern with vertical polarization in the azimuth plane and horizontal polarization in the elevation plane.
If only one polarization is required for a specific purpose only diametrically opposed feeds are required, rather than the quadrantal arrangement. The wide band and variable radiation pattern characteristics make the antenna very versatile, and the compact structure makes it adaptable to a variety of installations.
- Having described our invention, we now claim:
1. A coaxial horn antenna, comprising:
a plurality of at least three progressively sized tubular horns secured together in coaxial alignment and defining concentric radiating apertures at one end,
the innermost horn having a pair of feeds coupled thereto that are spaced and the intermediate and outermost horns having four feeds coupled that are spaced 90, each of said feeds having means for connection to a signal source,
said horns are axially staggered with the innermost horn extending a preset distance from said one end, and the intermediate horn extending an intermediate distance between the innermost horn and the outermost horn,
each of said feeds includes a coaxial to wave guide transition element coupled to the inner surface of the respective horn,
said means for connection comprising a coaxial conductor to said transition element,
and the ratio of cross sectional size between adjacent horns is approximately 2 to l.

Claims (1)

1. A coaxial horn antenna, comprising: a plurality of at least three progressively sized tubular horns secured together in coaxial alignment and defining concentric radiating apertures at one end, the innermost horn having a pair of feeds coupled thereto that are spaced 90* and the intermediate and outermost horns having four feeds coupled that are spaced 90*, each of said feeds having means for connection to a signal source, said horns are axially staggered with the innermost horn extending a preset distance from said one end, and the intermediate horn extending an intermediate distance between the innermost horn and the outermost horn, each of said feeds inCludes a coaxial to wave guide transition element coupled to the inner surface of the respective horn, said means for connection comprising a coaxial conductor to said transition element, and the ratio of cross sectional size between adjacent horns is approximately 2 to 1.
US370612A 1973-06-18 1973-06-18 Coaxial horn antenna Expired - Lifetime US3864687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US370612A US3864687A (en) 1973-06-18 1973-06-18 Coaxial horn antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US370612A US3864687A (en) 1973-06-18 1973-06-18 Coaxial horn antenna

Publications (1)

Publication Number Publication Date
US3864687A true US3864687A (en) 1975-02-04

Family

ID=23460399

Family Applications (1)

Application Number Title Priority Date Filing Date
US370612A Expired - Lifetime US3864687A (en) 1973-06-18 1973-06-18 Coaxial horn antenna

Country Status (1)

Country Link
US (1) US3864687A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041499A (en) * 1975-11-07 1977-08-09 Texas Instruments Incorporated Coaxial waveguide antenna
US4042935A (en) * 1974-08-01 1977-08-16 Hughes Aircraft Company Wideband multiplexing antenna feed employing cavity backed wing dipoles
DE2613566A1 (en) * 1976-03-30 1977-10-06 Siemens Ag Microwave double horn aerial - generates first pattern with large central lobe and second pattern with central null
FR2439483A1 (en) * 1978-10-17 1980-05-16 Nasa COAXIAL ANTENNA ASSEMBLY, ESPECIALLY FOR SPACE MACHINES
US4443804A (en) * 1981-09-28 1984-04-17 Ford Aerospace & Communications Corporation Modified difference mode coaxial antenna with flared aperture
US4740795A (en) * 1986-05-28 1988-04-26 Seavey Engineering Associates, Inc. Dual frequency antenna feeding with coincident phase centers
EP0291233A2 (en) * 1987-05-11 1988-11-17 Hazeltine Corporation Multimode omni antenna with flush mount
US4819005A (en) * 1986-08-21 1989-04-04 Wilkes Brian J Concentric waveguides for a dual-band feed system
US4821046A (en) * 1986-08-21 1989-04-11 Wilkes Brian J Dual band feed system
US4849761A (en) * 1988-05-23 1989-07-18 Datron Systems Inc. Multi-mode feed system for a monopulse antenna
FR2641133A1 (en) * 1988-12-26 1990-06-29 Alcatel Espace
US5216432A (en) * 1992-02-06 1993-06-01 California Amplifier Dual mode/dual band feed structure
ES2036940A2 (en) * 1991-11-05 1993-06-01 Cesel S A Ceselsa Probe antenna
EP0556941A1 (en) * 1992-02-14 1993-08-25 E-Systems Inc. Integrated antenna-converter system in a unitary package
US5255003A (en) * 1987-10-02 1993-10-19 Antenna Downlink, Inc. Multiple-frequency microwave feed assembly
US5461394A (en) * 1992-02-24 1995-10-24 Chaparral Communications Inc. Dual band signal receiver
US6222492B1 (en) * 1994-05-09 2001-04-24 Optim Microwave, Inc. Dual coaxial feed for tracking antenna
US7663560B1 (en) 2005-11-15 2010-02-16 The Directv Group, Inc. Antenna pointing aid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086203A (en) * 1961-03-07 1963-04-16 Bell Telephone Labor Inc Communication system using polarized waves and employing concentric waveguides to control transmitter-receiver interaction
US3325817A (en) * 1964-06-01 1967-06-13 Hughes Aircraft Co Dual frequency horn antenna
US3508277A (en) * 1966-05-27 1970-04-21 Int Standard Electric Corp Coaxial horns with cross-polarized feeds of different frequencies
US3665481A (en) * 1970-05-12 1972-05-23 Nasa Multi-purpose antenna employing dish reflector with plural coaxial horn feeds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086203A (en) * 1961-03-07 1963-04-16 Bell Telephone Labor Inc Communication system using polarized waves and employing concentric waveguides to control transmitter-receiver interaction
US3325817A (en) * 1964-06-01 1967-06-13 Hughes Aircraft Co Dual frequency horn antenna
US3508277A (en) * 1966-05-27 1970-04-21 Int Standard Electric Corp Coaxial horns with cross-polarized feeds of different frequencies
US3665481A (en) * 1970-05-12 1972-05-23 Nasa Multi-purpose antenna employing dish reflector with plural coaxial horn feeds

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042935A (en) * 1974-08-01 1977-08-16 Hughes Aircraft Company Wideband multiplexing antenna feed employing cavity backed wing dipoles
US4041499A (en) * 1975-11-07 1977-08-09 Texas Instruments Incorporated Coaxial waveguide antenna
DE2613566A1 (en) * 1976-03-30 1977-10-06 Siemens Ag Microwave double horn aerial - generates first pattern with large central lobe and second pattern with central null
FR2439483A1 (en) * 1978-10-17 1980-05-16 Nasa COAXIAL ANTENNA ASSEMBLY, ESPECIALLY FOR SPACE MACHINES
US4218685A (en) * 1978-10-17 1980-08-19 Nasa Coaxial phased array antenna
US4443804A (en) * 1981-09-28 1984-04-17 Ford Aerospace & Communications Corporation Modified difference mode coaxial antenna with flared aperture
US4740795A (en) * 1986-05-28 1988-04-26 Seavey Engineering Associates, Inc. Dual frequency antenna feeding with coincident phase centers
US4819005A (en) * 1986-08-21 1989-04-04 Wilkes Brian J Concentric waveguides for a dual-band feed system
US4821046A (en) * 1986-08-21 1989-04-11 Wilkes Brian J Dual band feed system
EP0291233A2 (en) * 1987-05-11 1988-11-17 Hazeltine Corporation Multimode omni antenna with flush mount
EP0291233A3 (en) * 1987-05-11 1989-11-29 Hazeltine Corporation Multimode omni antenna with flush mount
US5255003A (en) * 1987-10-02 1993-10-19 Antenna Downlink, Inc. Multiple-frequency microwave feed assembly
US4849761A (en) * 1988-05-23 1989-07-18 Datron Systems Inc. Multi-mode feed system for a monopulse antenna
FR2641133A1 (en) * 1988-12-26 1990-06-29 Alcatel Espace
US5001444A (en) * 1988-12-26 1991-03-19 Alcatel Espace Two-frequency radiating device
EP0377155A1 (en) * 1988-12-26 1990-07-11 Alcatel Espace Dual frequency radiating device
ES2036940A2 (en) * 1991-11-05 1993-06-01 Cesel S A Ceselsa Probe antenna
US5216432A (en) * 1992-02-06 1993-06-01 California Amplifier Dual mode/dual band feed structure
WO1993016502A1 (en) * 1992-02-06 1993-08-19 California Amplifier Dual mode/dual band feed structures
EP0556941A1 (en) * 1992-02-14 1993-08-25 E-Systems Inc. Integrated antenna-converter system in a unitary package
US5276457A (en) * 1992-02-14 1994-01-04 E-Systems, Inc. Integrated antenna-converter system in a unitary package
US5461394A (en) * 1992-02-24 1995-10-24 Chaparral Communications Inc. Dual band signal receiver
US6222492B1 (en) * 1994-05-09 2001-04-24 Optim Microwave, Inc. Dual coaxial feed for tracking antenna
US7663560B1 (en) 2005-11-15 2010-02-16 The Directv Group, Inc. Antenna pointing aid

Similar Documents

Publication Publication Date Title
US3864687A (en) Coaxial horn antenna
US3969730A (en) Cross slot omnidirectional antenna
US3906508A (en) Multimode horn antenna
US4458250A (en) 360-Degree scanning antenna with cylindrical array of slotted waveguides
Chlavin A new antenna feed having equal E-and H-plane patterns
US6107897A (en) Orthogonal mode junction (OMJ) for use in antenna system
US3568204A (en) Multimode antenna feed system having a plurality of tracking elements mounted symmetrically about the inner walls and at the aperture end of a scalar horn
US6087999A (en) Reflector based dielectric lens antenna system
US6011520A (en) Geodesic slotted cylindrical antenna
US3665480A (en) Annular slot antenna with stripline feed
US4208660A (en) Radio frequency ring-shaped slot antenna
US3858214A (en) Antenna system
US3818490A (en) Dual frequency array
US4041499A (en) Coaxial waveguide antenna
US4839663A (en) Dual polarized slot-dipole radiating element
EP0666611B1 (en) Scanning antenna with fixed dipole in a rotating cup-shaped reflector
US4494117A (en) Dual sense, circularly polarized helical antenna
US4740795A (en) Dual frequency antenna feeding with coincident phase centers
US5134420A (en) Bicone antenna with hemispherical beam
US3713167A (en) Omni-steerable cardioid antenna
JP4428864B2 (en) Coaxial cavity antenna
EP0142555A1 (en) Dual band phased array using wideband elements with diplexer.
US4451830A (en) VHF Omni-range navigation system antenna
US3348228A (en) Circular dipole antenna array
JP2001320228A (en) Dielectric leakage wave antenna