US3860522A - Synthetic lubricants resistant to shear and cold - Google Patents

Synthetic lubricants resistant to shear and cold Download PDF

Info

Publication number
US3860522A
US3860522A US131796A US13179671A US3860522A US 3860522 A US3860522 A US 3860522A US 131796 A US131796 A US 131796A US 13179671 A US13179671 A US 13179671A US 3860522 A US3860522 A US 3860522A
Authority
US
United States
Prior art keywords
oils
shear
resistant
weight
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US131796A
Inventor
Diether Fischer
Paul Hornberger
Willy Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3860522A publication Critical patent/US3860522A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/14Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on a carbon-to-carbon unsaturated bond in organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • C10N2040/13Aircraft turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/135Steam engines or turbines

Definitions

  • This invention relates to shear-resistant and coldresistant synthetic lubricants.
  • the pour point may be lowered by the addition of pour point depressants, the viscosities in the range between the turbidity point and pour remain higher than anticipated for the liquid phase due to the precipitation of crystallizable paraffin components; distinct differences may be observed between the low-temperature viscosity calculated by extrapolation of viscosity measurements made at higher temperatures by the method described in German Standard Specification DIN 51563 and the lowtemperature viscosity as actually measured. This increased viscosity greatly restricts the range of application of these oils.
  • Lubricants based on dicarboxylates for example non-substituted or alkyl-substituted adipates and sebacates, have been known in the art for a number of years. The combined use of ester oils and mineral oils for lubricating purpose has also been known for many years.
  • liquid polymers of butenes or isobutylene are unduly volatile compared with mineral oils of the same viscosity and their flash point characteristic is unsatisfactory.
  • the said polymer oils have a viscosity/temperature characteristic which is approximately the same as that of mineral oils.
  • esters of branchedchain dicarboxylic acids of from 16 to 22 carbon atoms and aliphatic alcohols of less than 6 carbon atoms with polymers of butenes having a molecular weight of from 1,200 to 4,500, the ester portion being from 10 to 95% by weight and the polymer portion being from-90 to 5% by weight.
  • Esters which-may be used in the present invention are, in particular, esters of heptadecanodioic acid with propanol, n-butanol or isobutanol or mixtures of these butanols.
  • Other suitable esters are those of alkylsubstituted adipic or sebacic acids of from 16 to 22 carbon atoms, for example decyladipic acid, dodecyladipic acid, octylsebacic acid, dibutylsebacic acid and dihexylsebacic acid with ethanol, propanol or butanol as the alcohol component.
  • Polymers which may be used according to the invention in admixture with the said esters are those having a molecular weight of from 1,200 to 4,500 as measured by the Staudinger method. They are light to heavy oils having viscosity/temperature characteristics similar to those of minerallubricating oils.
  • the polymers are prepared by known methods and may, if desired, be hydrogenated before blending with the esters.
  • Particularly suitable mixtures for use in the present invention are those of from 45 to by weight of ester with from 55 to 20% by weight of a polymer having a molecular weight of from 2,500 to 4,000 and mixtures of from 20 to 50% by weight of ester with from 80 to 50% by weight of a polymer having a molecular weight of from 1,200 to 3,000.
  • the low-temperature viscosities are unfavorably influenced, i.e. raised, by the precipitation of paraffin from the mineral oil portion.
  • the measured viscosities do not satisfy the viscosity/temperature relationship given in German Standard Specification DIN 51563. This restricts the range of utility of the oils at low temperatures.
  • esters The stability of esters is impaired when they are blended with a mineral base oil. This is shown in stability tests using the test strip apparatus by Wolf..For example, a di-n-butyl heptadecanodicarboxylate achieves the high relating of 8.5 when tested in this apparatus without any additive, whilst the rating achieved by a conventional rn'ineral base oil without any additive is 5.0. A mixture of the ester with the same base oil (with no further additive) in a ratio of 1:1 also achieves a value of 5.0. The better stability of the ester oil is lost when the latter is mixed with a mineral base oil.
  • dicarboxylates with polymers of butenes according to the present invention multi-grade oils are provided which are completely stable to shear and which satisfy the V/T relationship given in German Standard Specification DIN 51 563 down to very low temperatures, e.g. 40C.
  • the mixtures of the invention show superior aging stability to comparable lubricants containing mineral oil.
  • the comparative oil B is also a 10W/30 multi-grade oil which canin tioivev riTn'iidditi on tothe 11mm lubricating oil, 23% of di-n-butyl heptadecanodicar-. boxylate as oil component.
  • the amount of V.I. improver added is 3% and that of the detergent/inhibitor combination is 6%.
  • the viscosity index is 134.
  • the oil of the invention as described in this Example also possesses absolute stability to shear. Testing of the shear resistance by the method of forcing the oil A stability test using the test strip apparatus gave the 0 following results:
  • the oil of the invention as described in Example 1 has the rating 8.5. This rating is excellent for an oil not containing any additives for improving the detergent/- dispersant characteristic.
  • the rating of commerical HD oils of the test strip apparatus is between 8.0 and 10.0, whilst mineral base oils achieve ratings of approximately 5. 1f the esters are not mixed with poly(isobutylene) as proposed by the invention but with a conventional mineral base oil, the rating achieved is much the same as that of the mineral base oil alone.
  • EXAMPLE 2 50 parts of di-n-butyl heptadecanodicarboxylate are mixed with 50 parts of poly(isobutylene) having a molecular weight of 3,200. The mixture has the properties of a 20W/50 multi-grade oil having excellent cold viscosities and shear resistance:
  • the comparative oil A tested under the same conditions, shows a distinct loss of viscosity and reduction of the viscosity index:
  • a comparable commercial 20W/50 oil prepared by mixing a mineral base oil with a V.1. improver and a detergent/inhibitor combination has the following data:
  • oils produced by mixing esters and polylisobutylene) as proposed by the invention may be used as such for lubricating purpose; or conventional lubricant additives may be added, such as those for improving the detergent characteristic, the attrition characteristic, the resistance to oxidation and the pressure resistance, to extend the range of application of the oils.
  • conventional lubricant additives may be added, such as those for improving the detergent characteristic, the attrition characteristic, the resistance to oxidation and the pressure resistance, to extend the range of application of the oils.
  • V.l. improvers is not necessary.
  • the lubricants of the invention may be advantageously used in a variety of lubricating applications.
  • oils may be used as engine oils, gear oils, and
  • Shear-resistant and cold-resistant synthetic lubri cants consisting essentially of a mixture of. esters of branched-chain dicarboxylic acids of from 16 to 22 carbon atoms and aliphatic alcohols of less than 6 carbon atoms with homopolymers of butenes having a molecular weight of 2,500 to 4,000, said esters being 45 to by weight of said mixture and said homopolymers being 55 to 20% by weight of said mixture.
  • Shear-resistant and cold-resistant synthetic lubricants consisting essentially of a mixture of esters of branched-chain dicarboxylic acids of from 16 to 22 carbon atoms and aliphatic alcohols of less than 6 carbon atoms with homopolymers of butenes having a molecular weight of 1,200 to 3,000, said esters being 20 to 50% by weight said mixture and said homopolymers being 80 to 50% by weight of said mixture.
  • ester component is the ester of heptadecanodioic acid with n-butanol, isobutanol or mixtures thereof.
  • ester component is the ester of heptadecanodioic acid with n-butanol, isobutanol or mixtures thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Shear-resistant and cold-resistant synthetic lubricants consisting of a mixture of esters of branched-chain dicarboxylic acids of from 16 to 22 carbon atoms and aliphatic alcohols of less than 6 carbon atoms with polymers of butenes having a molecular weight of from 1,200 to 4,500, the ester portion being from 10 to 95% by weight and the polymer portion from 90 to 5% by weight.

Description

United States Patent 1 Fischer et al.
[451 Jan. 14,1975
SYNTHETIC LUBRICANTS RESISTANT TO SHEAR AND COLD Inventors: Diether Fischer, 7 1m Sandgarter,
Wachenheim; Paul Hornberger, 12 In den Zlegelgaerten; Willy Wolf, 8 Alwin-Mit1asch-Platz,, both of Ludwigshafen, all of Germany Filed: Apr. 6, 1971 Appl. No.: 131,796
Foreign Application Priority Data Apr. 14, 1970 Germany 2017744 US. Cl 252/56 S, 252/59 Int. Cl C10m 1/28 Field of Search 252/56 S, 59
References Cited UNITED STATES PATENTS 9/1952 Morway et a1 252/56 S 2,746,925 5/1956 Garber et al 252/59 2,891,084 6/1959 Alm et a1 252/56 S 3,098,042 7/1963 Morway et'al... 252/59 3,271,311 9/1966 Morway et a1..... 252/59 3,329,613 7/1967 Fischer et a1. 252/59 Primary ExaminerDaniel E. Wyman Assistant ExaminerY. H. Smith Attorney, Agent, or FirmJohnston, Keil, Thompson & Shurtleff 57 ABSTRACT 4 Claims, N0 Drawings SYNTHETIC LUBRICANTS RESISTANT TO SHEAR AND COLD This invention relates to shear-resistant and coldresistant synthetic lubricants.
In industry there is an ever-increasing demand for lubricating oils showing good flow at low temperatures yet possessing adequate viscosity at higher temperanumber of reasons. If the amount of VI. improvers e.g. polyacrylates or polymethacrylates added is to remain within tolerable limits, the use or additional use of paraffin base oils is inevitable. Cooling of the oils causes the pour point to be reached as a result of crystallization of solid paraffins. Although the pour point may be lowered by the addition of pour point depressants, the viscosities in the range between the turbidity point and pour remain higher than anticipated for the liquid phase due to the precipitation of crystallizable paraffin components; distinct differences may be observed between the low-temperature viscosity calculated by extrapolation of viscosity measurements made at higher temperatures by the method described in German Standard Specification DIN 51563 and the lowtemperature viscosity as actually measured. This increased viscosity greatly restricts the range of application of these oils.
Moreover, such multi-grade oils containing V.I. improvers are not stable to the action of shearing forces encountered under operating conditions. The resulting decrease in viscosity and reduction of the viscosity index impairs the viscosity/temperature characteristic and the original multi-grade character of the oil is lost. Finally, the addition of VI. improvers modifies the stability of the oil, and such modification must be counteracted by increasing the addition of inhibitors and materials having a cleaning effect on the interior of the engine.
Lubricants based on dicarboxylates, for example non-substituted or alkyl-substituted adipates and sebacates, have been known in the art for a number of years. The combined use of ester oils and mineral oils for lubricating purpose has also been known for many years.
Furthermore, in special lubricating applications requiring pure lubricants based on hydrocarbons and free from foreign matter, it is known to use liquid polymers of butenes or isobutylene. However, these polymers are unduly volatile compared with mineral oils of the same viscosity and their flash point characteristic is unsatisfactory. The said polymer oils have a viscosity/temperature characteristic which is approximately the same as that of mineral oils.
We have now found that excellent shear-resistant and cold-resistant synthetic lubricants are obtained by mixing esters of branchedchain dicarboxylic acids of from 16 to 22 carbon atoms and aliphatic alcohols of less than 6 carbon atoms with polymers of butenes having a molecular weight of from 1,200 to 4,500, the ester portion being from 10 to 95% by weight and the polymer portion being from-90 to 5% by weight.
Esters which-may be used in the present invention are, in particular, esters of heptadecanodioic acid with propanol, n-butanol or isobutanol or mixtures of these butanols. Other suitable esters are those of alkylsubstituted adipic or sebacic acids of from 16 to 22 carbon atoms, for example decyladipic acid, dodecyladipic acid, octylsebacic acid, dibutylsebacic acid and dihexylsebacic acid with ethanol, propanol or butanol as the alcohol component. Polymers which may be used according to the invention in admixture with the said esters are those having a molecular weight of from 1,200 to 4,500 as measured by the Staudinger method. They are light to heavy oils having viscosity/temperature characteristics similar to those of minerallubricating oils. The polymers are prepared by known methods and may, if desired, be hydrogenated before blending with the esters.
Particularly suitable mixtures for use in the present invention are those of from 45 to by weight of ester with from 55 to 20% by weight of a polymer having a molecular weight of from 2,500 to 4,000 and mixtures of from 20 to 50% by weight of ester with from 80 to 50% by weight of a polymer having a molecular weight of from 1,200 to 3,000.
The previously known viscosity/temperatureimproved lubricants based on mineral lubricating oils or mixtures of mineral lubricating oils with ester oils have distinct disadvantages:
To achieve the usual multi-grade properties it is necessary to add a VI. improver. This gives these multigrade oils their wellknown susceptibility to shearing forces, which results in a reduction of viscosity in use.
The low-temperature viscosities are unfavorably influenced, i.e. raised, by the precipitation of paraffin from the mineral oil portion. The measured viscosities do not satisfy the viscosity/temperature relationship given in German Standard Specification DIN 51563. This restricts the range of utility of the oils at low temperatures.
The stability of esters is impaired when they are blended with a mineral base oil. This is shown in stability tests using the test strip apparatus by Wolf..For example, a di-n-butyl heptadecanodicarboxylate achieves the high relating of 8.5 when tested in this apparatus without any additive, whilst the rating achieved by a conventional rn'ineral base oil without any additive is 5.0. A mixture of the ester with the same base oil (with no further additive) in a ratio of 1:1 also achieves a value of 5.0. The better stability of the ester oil is lost when the latter is mixed with a mineral base oil.
However, by mixing dicarboxylates with polymers of butenes according to the present invention multi-grade oils are provided which are completely stable to shear and which satisfy the V/T relationship given in German Standard Specification DIN 51 563 down to very low temperatures, e.g. 40C. In addition, the mixtures of the invention show superior aging stability to comparable lubricants containing mineral oil.
EXAMPLE 1 Number of passes through Bosch nozzle 1 2 5 1 est at 378C 68.89 62.20 61.27 60.85 60.00 59.46 cSt at 98.9C 10.78 9.38 9.15 8.98 8.86 8.76 V.1. 136 130 128 126 126 125 Extrapolated according to according DlN 51562 to DlN 51563 Viscosity at 989C 10.13 cSt 37.8C 64.95 cSt- 17.8C 2220 about 2200 Viscosity index 134 SAE class l0W/30 Pour point 57C. Flash point 236C Noack test (250C) 12% Conradson carbon residue The 011 thus obtained has excellent cold viscosities. By comparison, the viscosities, as measured by German Standard DIN 51562, of comparable commercial oils based on a mineral oil are much higher at low temperatures and differ from the values obtained by extrapolat1on:
HQ iY n A1 11.19203 m ds? Q1 p pared by adding 4.8% of a V.1. improver and 5.2% of a detergent/inhibitor combination to a mineral lubricating oil. It has a viscosity index of 136.
The comparative oil B is also a 10W/30 multi-grade oil which canin tioivev riTn'iidditi on tothe 11mm lubricating oil, 23% of di-n-butyl heptadecanodicar-. boxylate as oil component. In this case the amount of V.I. improver added is 3% and that of the detergent/inhibitor combination is 6%. The viscosity index is 134.
The oil of the invention as described in this Example also possesses absolute stability to shear. Testing of the shear resistance by the method of forcing the oil A stability test using the test strip apparatus gave the 0 following results:
Rating 63% di-n-butyl heptadecanodicarboxylate} 8.5 37% poly(isobutylene) mol.wt. 3.000 63% di-n-butylheptadecanodicarboxylate 37% mineral lubricating oil Solvent 5.0 to 5.5
Neutral (2.5E/SOC) mineral lubricating oil Solvent 5.0
Neutral (2.5E/50C) The oil of the invention as described in Example 1 has the rating 8.5. This rating is excellent for an oil not containing any additives for improving the detergent/- dispersant characteristic. The rating of commerical HD oils of the test strip apparatus is between 8.0 and 10.0, whilst mineral base oils achieve ratings of approximately 5. 1f the esters are not mixed with poly(isobutylene) as proposed by the invention but with a conventional mineral base oil, the rating achieved is much the same as that of the mineral base oil alone.
EXAMPLE 2 50 parts of di-n-butyl heptadecanodicarboxylate are mixed with 50 parts of poly(isobutylene) having a molecular weight of 3,200. The mixture has the properties of a 20W/50 multi-grade oil having excellent cold viscosities and shear resistance:
shear test .the oil has the following values:
through a Bosch-Diesel injection nozzle at a pressure of Viscosity at 989C 111.05 cSt 200 atmospheres shows no reduction of the viscosity or 55 V I C R2 of the viscosity index: E class lbw/50 Number of passes through Bosch nozzle 0 1 2 5 1 20 cSt at 378C 64.95 65.30 64.32 64.57 65.43 64.91
cSt at 989C 10.13 10.11 10.11 10.16 10.13 10.10
The comparative oil A, tested under the same conditions, shows a distinct loss of viscosity and reduction of the viscosity index:
A comparable commercial 20W/50 oil prepared by mixing a mineral base oil with a V.1. improver and a detergent/inhibitor combination, has the following data:
Measured Extrapolated Viscosity at 989C 17.94 cSt 30C no longer measurable 25000 cSt V.l. 129 SAE class W/50 Pour point 40C In the shear test, the viscosity of the oil fell to the following values after 20 passes through the Bosch nozzle:
Viscosity at 989C l5.l4 cSt 378C 124.33 cSl V.l. 123 SAE class 20W/40 EXAMPLE 3 Measured Extrapolated Viscosity at 989C 17.80 cSt 37.8C l7l.0 l7l8C 12700 cSt 13200 cSt V.l. ll7 SAE class 80/90 These data remain unchanged after 20 passes throughaBosch nozzle. I
The oils produced by mixing esters and polylisobutylene) as proposed by the invention may be used as such for lubricating purpose; or conventional lubricant additives may be added, such as those for improving the detergent characteristic, the attrition characteristic, the resistance to oxidation and the pressure resistance, to extend the range of application of the oils. However, the addition of V.l. improvers is not necessary.
The lubricants of the invention may be advantageously used in a variety of lubricating applications.
For example they may be used as engine oils, gear oils,
hydraulic oils, ATF oils, shock-absorber oils, turbine oils and oils for lubricating aeroturbines.
We claim:
1. Shear-resistant and cold-resistant synthetic lubri cants consisting essentially of a mixture of. esters of branched-chain dicarboxylic acids of from 16 to 22 carbon atoms and aliphatic alcohols of less than 6 carbon atoms with homopolymers of butenes having a molecular weight of 2,500 to 4,000, said esters being 45 to by weight of said mixture and said homopolymers being 55 to 20% by weight of said mixture.
2. Shear-resistant and cold-resistant synthetic lubricants consisting essentially of a mixture of esters of branched-chain dicarboxylic acids of from 16 to 22 carbon atoms and aliphatic alcohols of less than 6 carbon atoms with homopolymers of butenes having a molecular weight of 1,200 to 3,000, said esters being 20 to 50% by weight said mixture and said homopolymers being 80 to 50% by weight of said mixture.
3. Lubricants as claimed in claim 2 wherein said ester component is the ester of heptadecanodioic acid with n-butanol, isobutanol or mixtures thereof.
4, Lubricants as claimed in claim 1 wherein said ester component is the ester of heptadecanodioic acid with n-butanol, isobutanol or mixtures thereof.
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 1 3,860,522
DATED Jan. 14, 1975 INV ENTOR(S) Diether Fischer, Paul Hornberger, Willy Wolf It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
In the heading, third line in the section of the Inventors, delete"Zlegelgaerten" AND substitute -Ziegelgaerten.
In the heading, fourth line in the section of the Inventors, delete "Mitlasch" and substitute -Mittasch-.
Column 6, line 29, delete "weight said mixture and substitute--weight of said mixture.
Signed and Stalled this fourth Day of May 1976 [SEAL] Arrest.
RUTH. C. MA.SON C. MARSHALL DANN 4! 11i?" (ummissimwr ()fPtlIL-HIS and Trademarks

Claims (3)

  1. 2. Shear-resistant and cold-resistant synthetic lubricants consisting essentially of a mixture of esters of branched-chain dicarboxylic acids of from 16 to 22 carbon atoms and aliphatic alcohols of less than 6 carbon atoms with homopolymers of butenes having a molecular weight of 1,200 to 3,000, said esters being 20 to 50% by weight said mixture and said homopolymers being 80 to 50% by weight of said mixture.
  2. 3. Lubricants as claimed in claim 2 wherein said ester component is the ester of heptadecanodioic acid with n-butanol, isobutanol or mixtures thereof.
  3. 4. LubricantS as claimed in claim 1 wherein said ester component is the ester of heptadecanodioic acid with n-butanol, isobutanol or mixtures thereof.
US131796A 1970-04-14 1971-04-06 Synthetic lubricants resistant to shear and cold Expired - Lifetime US3860522A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19702017744 DE2017744A1 (en) 1970-04-14 1970-04-14 Shear and cold resistant synthetic lubricants

Publications (1)

Publication Number Publication Date
US3860522A true US3860522A (en) 1975-01-14

Family

ID=5768013

Family Applications (1)

Application Number Title Priority Date Filing Date
US131796A Expired - Lifetime US3860522A (en) 1970-04-14 1971-04-06 Synthetic lubricants resistant to shear and cold

Country Status (5)

Country Link
US (1) US3860522A (en)
BE (1) BE765657A (en)
DE (1) DE2017744A1 (en)
FR (1) FR2086060B1 (en)
GB (1) GB1333882A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175047A (en) * 1978-09-25 1979-11-20 Mobil Oil Corporation Synthetic ester and hydrogenated olefin oligomer lubricant and method of reducing fuel consumption therewith
US4175046A (en) * 1978-09-20 1979-11-20 Mobil Oil Corporation Synthetic lubricant
US4253981A (en) * 1979-07-05 1981-03-03 Morton-Norwich Products, Inc. Viscous lubricant composition comprising mixed esters and a silicone oil
US4601840A (en) * 1985-06-21 1986-07-22 National Distillers And Chemical Corp. Mist lubrication process
US4859352A (en) * 1988-02-29 1989-08-22 Amoco Corporation Low temperature high performance grease
US4879054A (en) * 1988-02-29 1989-11-07 Amoco Corporation Process for producing low temperature high performance grease
US5133888A (en) * 1990-09-28 1992-07-28 Amoco Corporation Cruise missile engine bearing grease
US5180865A (en) * 1991-12-06 1993-01-19 Pennzoil Products Company Base oil for shear stable multi-viscosity lubricants and lubricants therefrom
WO1994022990A1 (en) * 1993-04-01 1994-10-13 Ethyl Corporation Gear oil compositions
US5436379A (en) * 1994-01-14 1995-07-25 Pennzoil Products Company Base oil for shear stable multi-viscosity lubricants and lubricants therefrom
US5756430A (en) * 1996-03-18 1998-05-26 Exxon Chemical Patents Inc Mist oil lubricant
US5854185A (en) * 1994-03-31 1998-12-29 Shell Oil Company Lubricant mixtures and grease compositions based thereon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453114B1 (en) * 1990-03-31 1995-05-24 Tonen Corporation Hydraulic fluids for automobile suspensions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2610948A (en) * 1950-03-23 1952-09-16 Standard Oil Dev Co Lubricating compositions
US2746925A (en) * 1951-09-27 1956-05-22 Exxon Research Engineering Co Lubricants and additives therefor
US2891084A (en) * 1959-06-16 Method of preparing same
US3098042A (en) * 1957-01-17 1963-07-16 Exxon Research Engineering Co Lubricants containing polybutene-1
US3271311A (en) * 1963-10-08 1966-09-06 Exxon Research Engineering Co Lubricant
US3329613A (en) * 1962-09-29 1967-07-04 Basf Ag Lubricating-oil additive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891084A (en) * 1959-06-16 Method of preparing same
US2610948A (en) * 1950-03-23 1952-09-16 Standard Oil Dev Co Lubricating compositions
US2746925A (en) * 1951-09-27 1956-05-22 Exxon Research Engineering Co Lubricants and additives therefor
US3098042A (en) * 1957-01-17 1963-07-16 Exxon Research Engineering Co Lubricants containing polybutene-1
US3329613A (en) * 1962-09-29 1967-07-04 Basf Ag Lubricating-oil additive
US3271311A (en) * 1963-10-08 1966-09-06 Exxon Research Engineering Co Lubricant

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175046A (en) * 1978-09-20 1979-11-20 Mobil Oil Corporation Synthetic lubricant
US4175047A (en) * 1978-09-25 1979-11-20 Mobil Oil Corporation Synthetic ester and hydrogenated olefin oligomer lubricant and method of reducing fuel consumption therewith
US4253981A (en) * 1979-07-05 1981-03-03 Morton-Norwich Products, Inc. Viscous lubricant composition comprising mixed esters and a silicone oil
US4601840A (en) * 1985-06-21 1986-07-22 National Distillers And Chemical Corp. Mist lubrication process
US4859352A (en) * 1988-02-29 1989-08-22 Amoco Corporation Low temperature high performance grease
US4879054A (en) * 1988-02-29 1989-11-07 Amoco Corporation Process for producing low temperature high performance grease
US5133888A (en) * 1990-09-28 1992-07-28 Amoco Corporation Cruise missile engine bearing grease
US5180865A (en) * 1991-12-06 1993-01-19 Pennzoil Products Company Base oil for shear stable multi-viscosity lubricants and lubricants therefrom
WO1994022990A1 (en) * 1993-04-01 1994-10-13 Ethyl Corporation Gear oil compositions
US5571445A (en) * 1993-04-01 1996-11-05 Ethyl Corporation Gear oil compositions
US5436379A (en) * 1994-01-14 1995-07-25 Pennzoil Products Company Base oil for shear stable multi-viscosity lubricants and lubricants therefrom
US5854185A (en) * 1994-03-31 1998-12-29 Shell Oil Company Lubricant mixtures and grease compositions based thereon
US5756430A (en) * 1996-03-18 1998-05-26 Exxon Chemical Patents Inc Mist oil lubricant

Also Published As

Publication number Publication date
BE765657A (en) 1971-10-13
FR2086060A1 (en) 1971-12-31
GB1333882A (en) 1973-10-17
FR2086060B1 (en) 1975-07-04
DE2017744A1 (en) 1971-10-28

Similar Documents

Publication Publication Date Title
US3860522A (en) Synthetic lubricants resistant to shear and cold
US3564044A (en) Liquid esters of neoalkylpolyols and mixtures of gem and straight chain or alkanoic neo acids
US2091627A (en) Composition of matter and process
US4175046A (en) Synthetic lubricant
GB565333A (en) Improvements relating to high temperature lubrication
US2830956A (en) Hydraulic power transmission fluids
US2923682A (en) Lubricating compositions containing mixed salts
US2336195A (en) Lubricating composition
US2411150A (en) Oil blend
US3298951A (en) Stabilized polybutene composition
US3048542A (en) Lubricating compositions
NO325041B1 (en) Hydraulic fluid mixtures
US3492229A (en) Functional fluid compositions
US2264353A (en) Lubricant
JPS5975997A (en) Synthetic lubricating agent composition for transmission
US2491028A (en) Lubricating grease compositions
US2550760A (en) Hydraulic fluid compositions
KR960705900A (en) POLYOL ESTER LUBRICANTS. ESPECIALLY THOSE COMPATIBLE WITH MINERAL OILS. FOR REFRIGERATING COMPRESSORS OPERATING AT HIGH TEMPERATURES
US3759862A (en) Lubricating oil composition
US3681247A (en) Lubricant composition
US3634240A (en) Rust inhibitors comprising lithium salts
US2389227A (en) Pneumatic tool lubricant
US3481873A (en) Lubricant and method for lubricating a piston engine
EP0203494B1 (en) Lubricating oil for use in flon atmosphere
US2438468A (en) Oil composition