US3860217A - Shear mixer - Google Patents

Shear mixer Download PDF

Info

Publication number
US3860217A
US3860217A US354688A US35468873A US3860217A US 3860217 A US3860217 A US 3860217A US 354688 A US354688 A US 354688A US 35468873 A US35468873 A US 35468873A US 3860217 A US3860217 A US 3860217A
Authority
US
United States
Prior art keywords
channels
mixer
adjacent
elements
elongated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US354688A
Inventor
Kenneth M Grout
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Oilwell Varco LP
Original Assignee
Kenics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenics Corp filed Critical Kenics Corp
Priority to US354688A priority Critical patent/US3860217A/en
Priority to CA190,500A priority patent/CA989386A/en
Priority to FR7407490A priority patent/FR2227041B1/fr
Priority to JP2533774A priority patent/JPS574369B2/ja
Priority to BR2344/74A priority patent/BR7402344D0/en
Priority to DD177599A priority patent/DD111549A5/xx
Priority to GB1547374A priority patent/GB1437576A/en
Priority to NL7404942A priority patent/NL7404942A/xx
Priority to SE7405381A priority patent/SE404992B/en
Priority to DE2419696A priority patent/DE2419696A1/en
Application granted granted Critical
Publication of US3860217A publication Critical patent/US3860217A/en
Assigned to CHEMINEER, INC. reassignment CHEMINEER, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: KENICS CORPORATION
Anticipated expiration legal-status Critical
Assigned to HELLER FINANCIAL, INC. reassignment HELLER FINANCIAL, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: O.D.E. MANUFACTURING, INC., A CORP. OF DE
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4323Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles

Definitions

  • the basic element of the mixer is formed with Assigneei Kenics Corporafion, Dam/firs, MaSS- a plurality of elongated channels, each preferably hav- 22 d: 7 ing an elliptic transverse cross section.
  • the channels 1 lle Apr l9 3 V are disposed about each other in a helical arrange- [21] Appl. No.: 354,688 ment and communicate with each other through one or more elongated helical slots formed in adjacent 52 U.S. l.
  • a mixer may consist of a single [56] References Cited element or of a plurality of such elements arranged UNITED STATES PATENTS with alternating right and left-handed helixgroups, (a
  • FIG. 1 A first figure.
  • the field of motionless mixers relates to that type of mixing device designed to mix components of a flowing fluid by causing a stream of such fluid to pass through a conduit containing within it stationary structural elements which physically react with said stream to produce the desired mixing action.
  • An example of this type of mixer is shown in the US Pat. No. 3,286,992 to Armeniades et al.
  • Such devices are used for a wide variety of purposes including the homogenization of miscible fluids, mass transfer of reactive components, the establishment of a uniform temperature throughout a flowing fluid mass, and the dispersion of immiscible substances including generating such fine dispersions as to produce stable emulsions. While such devices are generally satisfactory for many purposes, completely satisfactory operation has not yet been achieved for a variety of objectives.
  • the present invention takes a basically new approach to the solution of the fluid mixing problem by placing a major emphasis upon increasing the shear forces which interact between different parts of the fluid stream. While high shear is important in many mixing processes, it is particularly important where it is desired to produce a stable emulsion of immiscible fluids. As the viscosity ratio between the two fluids increases, a higher and higher degree of shear is required to improve the degree of subdivision of the fluid particles to the point where astable emulsion is reached. Even in those cases where such an emulsion is not required, the higher shear forces produced by the present invention are very useful.
  • FIG. 1 is a perspective view of one of the novel mixer elements
  • FIG. 2 is a side view of a simple mixer using one of the mixer elements of FIG. 1;
  • FIG. 3 is an enlarged cross-sectional diagram taken along line 33 of FIG. 2, illustrating the nature of its operation
  • FIG. 4 is a view similar to FIG. 1 but with the sense of the helical passages reversed with respect to the sense of FIG. 1;
  • FIG. 5 is a side view of a mixer using multiple mixer elements
  • FIG. 6 is a representation of a step in the assembly of two mixer elements in an arrangement as in FIG. 5;
  • FIG. 7 is a view as in FIG. 3 showing the effect of the reversal of the sense of the helical passages in the mixer unit;
  • FIG. 8 is a partial view, similar to FIG. 4, showing a mixer with spaced units
  • FIG. 9 is a view similar to FIG. 3 but illustrating the effect of using more than two helical passages in a single mixer unit
  • FIG. 10 is a view similar to FIG. 1 showing a form of mixer element with concave ends;
  • FIG. 11 is a side view of an arrangement with two elements of the type of FIG. 8 assembled in end-to-end relationship;
  • FIG. 12 is an enlarged end view of the upper element taken along line l212 of FIG. 11 with the orientation of the lower element shown in dotted lines;
  • FIG. 13 is a perspective view, partly in section, illustrating one method of making a mixer element
  • FIG. 14 is a perspective view of a metal blank illustrating a step in another method of making a mixer element.
  • FIG. 15 is a cross-sectional view of a mixer element made by the process illustrated in FIG. 14.
  • the basic component of the mixer of this invention consists of a body 1 in which is formed a plurality of elongated channels 2 and 3 each having an elliptic cross section and each having its longitudinal axis disposed along a helical path. These channels are interwound with each other and their cross-sections intersect adjacent the longitudinal axis of the body 1 so as to produce an elongated helical opening 4 through which each channel communicates with its adjacent channel. If we pass along each channel 2 and 3 in FIG. 1 from the top to the bottom, it will be seen that the helices formed by these channels are left-handed helices. As shown in FIG.
  • a preferred embodiment of the basic component is one in which each channel 2 and 3 consists of turning in each such unit will be matter of choice in the design of such mixers. While 'thelongitudinal axis of the body 1, referred to above, lies along a straight line, it is to be understood that the term longitudinal axis," as it applies to body 1, includes any line, whether ornot straight, about which the channels progress with either right-handed or left-handedturnings. In addition, .although the opening 4 is shown as a continuous slot extending from the top to the bottom of body 1, parts of the contiguous sides of channels 2 and 3 could be left solid so as to provide a plurality of such slots extending longitudinally of the body 1.
  • FIG. 2 A simple or elementary form of a left hand helix mixer using such a basic element is shown diagramatically in FIG. 2 in which a fluid extruder 5 is connected to the input end of a unit 1 and a discharge nozzle 6 is I connected to its output end.
  • the resulting reaction within the unit 1 is illustrated in FIG. 3.
  • Frictional forces will be set up between the walls of these channels and the fluid to produce a counter rotation in each channel at right angles to the direction of longitudinal flow of the fluid.
  • the direction of such counter rotation is shown by the arrows in FIG. 3 as a clockwise rotation of the fluid in each of the channels 2 and 3.
  • a mixer might comprise a plurality of units 1 in which the helical turns of channels 2 and 3 would be reversed in each alternate unit. For this purpose, it is desired to add to the left-hand helical passage member I, as shown in FIG. 1, a right-hand helical passage member 1a as shown in FIG. 4.
  • FIG. 4 illustrates an element la with right-hand helical passages 2a and 3a providing a passage 4a between them.
  • a preferred embodiment of the invention is that illustrated in FIG. 5 in which the mixer would consist of a plurality of basic elements lb and 1c, 1d and 1e assembled end to end in a series within a casing7.
  • Each basic element 1b and 1d is as illustrated in FIG. 1, while each element and 1e is as illustrated in FIG. 4.
  • the direction of the helical passages in each alternate element is of the opposite sense to the direction of the helical passages in the adjacent elements.
  • each alternate element also preferably has the transverse axis joining the centers of the passages angularly disposed with respect to such axis in each adjacent unit.
  • FIG. 6 shows a step in the assembly of two adjacent units wherein the upper unit 1 is the same as that shown in FIG. 1 while the lower unit la is the same as that shown in FIG. 4 but with the above described transverse axis rotated through 90 so that thetransverse axes of 1 and 1a are disposed 90 with respect to each other.
  • This angular relationship is not critical and may be of any substantial size.
  • FIG. 7 The effect of reversing the direction of the helices is illustrated in FIG. 7.
  • the clockwise rotation of the fluid for the right-hand helices of the unit of FIG. 3 becomes a counterclockwise rotation as shown by the curved arrows of FIG. 7.
  • the same high degree of internal fluid shear, as in FIG. 3, is also generated at the opening 4a in FIG. 7. Therefore, in FIG. 5, when the fluid issues from the first unit lb and encounters the second unit 10, the rotation imparted by unit lb will be reversed by the action of the unit 1c, thus increasing the mixing effectiveness of the combined device.
  • the angular displacement of the transverse axes of the helices between adjacent elements introduces additional subdivisions of the fluid stream and increased internal shearing forces which further enhance the mixing action.
  • such elements may be considered broadly as being arranged in alternating right-handed and left-handed helix groups, it being understood that a group may consist of one or more elements.
  • FIG. 9 three helical channels 9, l0, and 11, similar to channels 2 and 3 of FIG. 1, are provided in a body 12. These channels are formed respectively with longitudinal openings 13, 14 and 15, similar to' opening 4 of FIG. 1. These openings 13, 14 and 15 merge into a central opening 16 extending the length of the body 12.
  • FIG. 3 when fluid is caused to flow along each channel 9, l0 and 11, frictional forces between the walls of the channels and the flowing fluid produce a rotation of the fluid as indicated by the arrows in FIG. 9.
  • the direction of such rotation about the opening 16 produces a cumulative circumferential force around the opening 16 and drives the fluid in such opening circularly in a direction opposite to the direction of rotation of the fluid in channels 9, l0 and 11.
  • the rotation of the fluid in opening 16 is in a counterclockwise direction.
  • the resultant of the forces causing'the flow of fluid along the length of the body 12 and the above rotation forces will cause each particle in the opening 16 to flow in a helical path along the length of the opening 16 substantially in synchronism with the helical flow in each of the channels 9, l0 and 11. Not only will there exist a very effective mixing action, but also the residence times in the mixer for all particles in the fluid flow will tend to be equal resulting in a highly uniform product.
  • each channel has been illustrated as a circle, such cross section may be elliptic, a circle being one form.
  • elliptic is meant any closed planar curve along which there is no reversal of curvature, but along which there may be changes in the radius of curvature. Such definition is not to be interpreted as excluding gaps such as those due to openings 4, 13, 14 and 15.
  • channels with elliptic cross sections may be preferred, such channels may have any type of cross section. As long as such cross section defines a closed figure (except for a gap due to the opening in its side) and the channel progresses along a helical path, as described above, a counter rotation of the fluid in adjacent channels will be produced and the effects of the present invention will be generated.
  • the elliptic form of mixer element eliminates all corners which could create dead areas in which parts of the fluid might remain for substantially longer periods than the rest of the flowing fluid.
  • the existence of such corners in prior art devices are responsible for the fact that it has been virtually impossible to obtain anything approaching completely uniform residence time for fluids flowing through such'mixers.
  • the present invention makes possible a much closer approximation of such uniform residence time than has been possible heretofore.
  • FIGS. 10 and l l have been devised.
  • the unit 18 is substantially like the unit 1 of FIG. 1 and is formed with channels 19 and 20 corresponding to channels 2 and 3 of FIG. 1.
  • the end of each unit is dished with concave surfaces 21 and 22 at the ends of the channels 19 and 20.
  • Such concave surfaces meet along substantially horizontal cusp edges 23 which terminate along a circular border 24 which defines the outer limits of the concave surfaces 21 and 22.
  • This form of the end of each unit may be more readily seen in FIG. 12.
  • the dotted lines show the orientation of the end face of an adjacent unit assembled as will be described below for FIG. 11.
  • a plurality of such units 18a and 18b are assembled in end to end relation with the direction of the helical turning of the passages in each unit being reversed with respect to the direction such turning in an adjacent unit, as described in connection with FIG. 5.
  • the transverse axes are angularly disposed.
  • the edges 2311 on the lower face of 18a will be angularly displaced with respect to the edges 23b on the upper face of 18b. Therefore, any fluid which passes from the channels of 18a to the channels of 18b will encounter the sharp edges 23b which will exert additional shear forces to further enhance the operation of the device.
  • each of the units of the type described may be made of any suitable material and may be manufactured by any suitable process.
  • the unit may be made of a plastic or metal cast in a lost-wax type of mold, as shown in FIG. 13.
  • Two cylindrical lengths of casting wax 25 and 26 are pressed together along their lengths to form the central portion 27 which is to define the central opening 4 of the resulting unit.
  • the members 25 and 26 are then twisted with the desired degree of turning of the channels 2 and 3.
  • the members 25 and 26 are then placed in a cylindrical mold 28 having a bottom 29 and a cylindrical side wall member 30, shown cut away in FIG. 13.
  • the mold is then filled with the desired plastic material and caused to set into a solid form by any well known process.
  • the plastic body is removed from the mold 28 and the casting wax core 25-26 is dissolved or melted out to leave the unit substantially as shown and described in FIG. 1.
  • the unit of FIG. 4 may be made in the same way with the members 25 and 26 twisted in a direction opposite to that in FIG. 13.
  • the concave surfaces 21 and 22, as described in FIGS. 10, 11 and 12 may be machined out by any well known machining method.
  • a sheet of metal 32 may be formed with two longitudinal channels 33 and 34. Thereupon the sheet 32 may have its ends twisted in opposite directions so that one end wall occupies the position as shown in the dotted lines at 35 with respect to the other end shown in full line at 36. Of course, the metal would have to be sufficiently malleable to accommodate such twisting.
  • Two members 37 and 38 so formed may then be assembled with abutting longitudinal edges 3a as shown in FIG. 15.
  • the shapes shown in FIGS. 1 and 4 might be made by extruding plastic or malleable metal through an appropriate die while twisitng the extruded material with respect to such die.
  • a mixer element comprising a body having therein a plurality of elongated channels extending through said body and displaced with respect to each other around a longitudinal axis, each of said elongated channels being disposed along a helix around said longitudinal axis, the helices of adjacent channels being disposed in the same sense around said longitudinal axis, the contiguous inner sides of adjacent channels being provided with at least one common opening through which said adjacent channels communicate with each other; said opening comprising an elongated slot extending throughout the length of said channels.
  • a mixer element according to claim 1 in which at least one end face of said body is concave at the end of each of said channels.
  • a mixer comprising a plurality of mixer elements 7 according to claim 2 mounted in end to end relationship with their longitudinal axes in line with each other.
  • a mixer according to claim 4 in which said mixer elements are arranged in alternating right and lefthanded helix groups.
  • a mixer according to claim 4 in which adjacent mixer elements are mounted with these ends abutting each other.
  • a mixer according to claim 4 in which adjacent mixer elements are mounted with their ends spaced from each other.
  • a mixer according toclaim 4 in which the transverse axis through the centers of said channels of each of said units is angularly displaced with respect to such transverse axis of each unit adjacent thereto.
  • each of said channels has an elliptic cross section.
  • a mixer element comprising a body having therein a plurality of elongated channels extending through said body and displaced with respect to each other around a longitudinal axis, each of said elongated channels being disposed along a helix around said longitudinal axis, the helices of adjacent channels being disposed in the same sense around said longitudinal axis, the contiguous inner sides of adjacent channels being provided with at least one common opening through which said adjacent channels communicate with each other, at least one end face of said body being concave at the end of each of said channels, said concave face having pointed cusps transverse to the line joining the centers of said channels at said end face, each of said cusps extending from an edge of said slot to a point on said end face removed from said edge.

Abstract

A shear mixer for mixing components of a flowing fluid in which the mixing action is produced primarily, but not solely, by high internally generated shear forces. The basic element of the mixer is formed with a plurality of elongated channels, each preferably having an elliptic transverse cross section. The channels are disposed about each other in a helical arrangement and communicate with each other through one or more elongated helical slots formed in adjacent sides of two or more contiguous channels. The sides of each slot are cusp-shaped and the end faces of each mixing element are preferably concave at the ends of said channels with cusps in the end faces joining the cusps at the slot edges. A mixer may consist of a single element or of a plurality of such elements arranged with alternating right and left-handed helix groups, (a group consisting of one or more of such elements). The element or elements in one helix group has the transverse axis of each pair of its channels angularly disposed with respect to such axis of an adjacent group. Methods of making such mixers are also disclosed.

Description

United States Patent [1 1 on 3,360,217
Grout Jan. 14,1975
[ SHEAR MIXER fluid in which the mixing action is produced primarily,
. but not solely, by high internally generated shear [75] Inventor' Kenneth Grout Topsfield forces. The basic element of the mixer is formed with Assigneei Kenics Corporafion, Dam/firs, MaSS- a plurality of elongated channels, each preferably hav- 22 d: 7 ing an elliptic transverse cross section. The channels 1 lle Apr l9 3 V are disposed about each other in a helical arrange- [21] Appl. No.: 354,688 ment and communicate with each other through one or more elongated helical slots formed in adjacent 52 U.S. l. sides of two or more contiguous channels The Sides of j j Int l each slot are cusp-shaped and the end faces of each [58] Field or's't 'ruiiiiiii311111115 1"'i"19 36 37 mixing element preferably at the ends of 259/99 .114. 138/38 said channels with cusps in the end faces joining the cusps at the slot edges. A mixer may consist of a single [56] References Cited element or of a plurality of such elements arranged UNITED STATES PATENTS with alternating right and left-handed helixgroups, (a
group consisting of one or more of such elements);
3,286,992 11/1966 Armeniades 259/4 Th l t or lements in one helix group has the 3,664,638 5/1972 GiOLlt i. 259/4 transverse axis of each pair of its channels angularly disposed with respect to such axis of an adjacent f' Exam" 'er Harvey Hornsby group. Methods of making such mixers are also dis- Asszstant Exammer--Robert Pous 1 dosei [57] ABSTRACT A shear mixer for mixing components of a flowing 10 Claims, 15 Drawing Figures PATENTEB JAN I 4 I975 sum 10F 3 PATENTEI] JAN I 41975 sum 3 or 3 FIG. :5
FIG.
FIG. 14
SHEAR MIXER BACKGROUND OF THE INVENTION 1. Field of the Invention Mixers having stationary elements for mixing or otherwise contacting components of a flowing fluid or fluid-like stream in order to produce such effects as homogenization of miscible fluids, mass transfer to reactive components, establishing a uniform temperature throughout the stream and producing dispersions of immiscible substances.
2. Nature of the Prior Art The field of motionless mixers relates to that type of mixing device designed to mix components of a flowing fluid by causing a stream of such fluid to pass through a conduit containing within it stationary structural elements which physically react with said stream to produce the desired mixing action. An example of this type of mixer is shown in the US Pat. No. 3,286,992 to Armeniades et al. Such devices are used for a wide variety of purposes including the homogenization of miscible fluids, mass transfer of reactive components, the establishment of a uniform temperature throughout a flowing fluid mass, and the dispersion of immiscible substances including generating such fine dispersions as to produce stable emulsions. While such devices are generally satisfactory for many purposes, completely satisfactory operation has not yet been achieved for a variety of objectives.
Nature of Present Invention The present invention takes a basically new approach to the solution of the fluid mixing problem by placing a major emphasis upon increasing the shear forces which interact between different parts of the fluid stream. While high shear is important in many mixing processes, it is particularly important where it is desired to produce a stable emulsion of immiscible fluids. As the viscosity ratio between the two fluids increases, a higher and higher degree of shear is required to improve the degree of subdivision of the fluid particles to the point where astable emulsion is reached. Even in those cases where such an emulsion is not required, the higher shear forces produced by the present invention are very useful.
BRIEF DESCRIPTION OF THE DRAWINGS In the annexed drawings:
FIG. 1 is a perspective view of one of the novel mixer elements;
FIG. 2 is a side view of a simple mixer using one of the mixer elements of FIG. 1;
FIG. 3 is an enlarged cross-sectional diagram taken along line 33 of FIG. 2, illustrating the nature of its operation;
FIG. 4 is a view similar to FIG. 1 but with the sense of the helical passages reversed with respect to the sense of FIG. 1;
FIG. 5 is a side view of a mixer using multiple mixer elements;
FIG. 6 is a representation of a step in the assembly of two mixer elements in an arrangement as in FIG. 5;
FIG. 7 is a view as in FIG. 3 showing the effect of the reversal of the sense of the helical passages in the mixer unit;
FIG. 8 is a partial view, similar to FIG. 4, showing a mixer with spaced units;
FIG. 9 is a view similar to FIG. 3 but illustrating the effect of using more than two helical passages in a single mixer unit;
FIG. 10 is a view similar to FIG. 1 showing a form of mixer element with concave ends;
FIG. 11 is a side view of an arrangement with two elements of the type of FIG. 8 assembled in end-to-end relationship;
FIG. 12 is an enlarged end view of the upper element taken along line l212 of FIG. 11 with the orientation of the lower element shown in dotted lines;
FIG. 13 is a perspective view, partly in section, illustrating one method of making a mixer element;
FIG. 14 is a perspective view of a metal blank illustrating a step in another method of making a mixer element; and
FIG. 15 is a cross-sectional view of a mixer element made by the process illustrated in FIG. 14.
The basic component of the mixer of this invention, as illustrated by way of example in FIG. 1, consists of a body 1 in which is formed a plurality of elongated channels 2 and 3 each having an elliptic cross section and each having its longitudinal axis disposed along a helical path. These channels are interwound with each other and their cross-sections intersect adjacent the longitudinal axis of the body 1 so as to produce an elongated helical opening 4 through which each channel communicates with its adjacent channel. If we pass along each channel 2 and 3 in FIG. 1 from the top to the bottom, it will be seen that the helices formed by these channels are left-handed helices. As shown in FIG. 1, a preferred embodiment of the basic component is one in which each channel 2 and 3 consists of turning in each such unit will be matter of choice in the design of such mixers. While 'thelongitudinal axis of the body 1, referred to above, lies along a straight line, it is to be understood that the term longitudinal axis," as it applies to body 1, includes any line, whether ornot straight, about which the channels progress with either right-handed or left-handedturnings. In addition, .although the opening 4 is shown as a continuous slot extending from the top to the bottom of body 1, parts of the contiguous sides of channels 2 and 3 could be left solid so as to provide a plurality of such slots extending longitudinally of the body 1.
A simple or elementary form of a left hand helix mixer using such a basic element is shown diagramatically in FIG. 2 in which a fluid extruder 5 is connected to the input end of a unit 1 and a discharge nozzle 6 is I connected to its output end. The resulting reaction within the unit 1 is illustrated in FIG. 3. As the fluid is caused to flow from the extruder 5, it follows a helical path through each channel 2 and 3. Frictional forces will be set up between the walls of these channels and the fluid to produce a counter rotation in each channel at right angles to the direction of longitudinal flow of the fluid. The direction of such counter rotation is shown by the arrows in FIG. 3 as a clockwise rotation of the fluid in each of the channels 2 and 3. This assumes a counterclockwise progression of the channels into the plane of the paper and a flow of the fluid into such plane. Therefore, at each opening or slot 4 between the channels, the fluids flowing in the channels will be rotating oppositely'to each other producing a very high degree of internal fluid shear. Such high internal shear will produce a strong mixing action for the various purposes for which such a device is intended. Where the opening 4 is not continuous from the top to the bottom of body 1, it is merely required that a sufficient total length of the common openings between channels 1 and 2 be produced to result in a substantial volume in which the above-described shear forces may be developed.
It may be that, for some purposes, the elementary form of mixer shown in FIG. 2, would not be the preferred one. Therefore, a mixer might comprise a plurality of units 1 in which the helical turns of channels 2 and 3 would be reversed in each alternate unit. For this purpose, it is desired to add to the left-hand helical passage member I, as shown in FIG. 1, a right-hand helical passage member 1a as shown in FIG. 4.
FIG. 4 illustrates an element la with right-hand helical passages 2a and 3a providing a passage 4a between them.
A preferred embodiment of the invention is that illustrated in FIG. 5 in which the mixer would consist of a plurality of basic elements lb and 1c, 1d and 1e assembled end to end in a series within a casing7. Each basic element 1b and 1d is as illustrated in FIG. 1, while each element and 1e is as illustrated in FIG. 4. Thus, the direction of the helical passages in each alternate element is of the opposite sense to the direction of the helical passages in the adjacent elements.
In addition to the reversal of direction of the helices in alternate elements, each alternate element also preferably has the transverse axis joining the centers of the passages angularly disposed with respect to such axis in each adjacent unit. Thus, FIG. 6 shows a step in the assembly of two adjacent units wherein the upper unit 1 is the same as that shown in FIG. 1 while the lower unit la is the same as that shown in FIG. 4 but with the above described transverse axis rotated through 90 so that thetransverse axes of 1 and 1a are disposed 90 with respect to each other. This angular relationship is not critical and may be of any substantial size.
The effect of reversing the direction of the helices is illustrated in FIG. 7. The clockwise rotation of the fluid for the right-hand helices of the unit of FIG. 3 becomes a counterclockwise rotation as shown by the curved arrows of FIG. 7. The same high degree of internal fluid shear, as in FIG. 3, is also generated at the opening 4a in FIG. 7. Therefore, in FIG. 5, when the fluid issues from the first unit lb and encounters the second unit 10, the rotation imparted by unit lb will be reversed by the action of the unit 1c, thus increasing the mixing effectiveness of the combined device. Furthermore, the angular displacement of the transverse axes of the helices between adjacent elements introduces additional subdivisions of the fluid stream and increased internal shearing forces which further enhance the mixing action.
Instead of reversing the direction of the helices in every alternate mixer element, a plurality of such elements with these helical elements all in the same sense may be followed by a plurality of such elements with their helices all in the opposite sense. Therefore, such elements may be considered broadly as being arranged in alternating right-handed and left-handed helix groups, it being understood that a group may consist of one or more elements.
Also, as illustrated in FIG. 8, instead of the adjacent ends of successive elements 1b and 1c being in contact with each other, such ends may be spaced from each other where it is desired to provide a plenum 8 between successive elements.
The principles of the present invention may be incorporated in structures in which more than two helical channels are present. For example, in FIG. 9, three helical channels 9, l0, and 11, similar to channels 2 and 3 of FIG. 1, are provided in a body 12. These channels are formed respectively with longitudinal openings 13, 14 and 15, similar to' opening 4 of FIG. 1. These openings 13, 14 and 15 merge into a central opening 16 extending the length of the body 12. As described in connection with FIG. 3, when fluid is caused to flow along each channel 9, l0 and 11, frictional forces between the walls of the channels and the flowing fluid produce a rotation of the fluid as indicated by the arrows in FIG. 9. The direction of such rotation about the opening 16 produces a cumulative circumferential force around the opening 16 and drives the fluid in such opening circularly in a direction opposite to the direction of rotation of the fluid in channels 9, l0 and 11. As shown, the rotation of the fluid in opening 16 is in a counterclockwise direction. The resultant of the forces causing'the flow of fluid along the length of the body 12 and the above rotation forces will cause each particle in the opening 16 to flow in a helical path along the length of the opening 16 substantially in synchronism with the helical flow in each of the channels 9, l0 and 11. Not only will there exist a very effective mixing action, but also the residence times in the mixer for all particles in the fluid flow will tend to be equal resulting in a highly uniform product. I
It is to be understood that, although the cross section of each channel has been illustrated as a circle, such cross section may be elliptic, a circle being one form. By the term elliptic" is meant any closed planar curve along which there is no reversal of curvature, but along which there may be changes in the radius of curvature. Such definition is not to be interpreted as excluding gaps such as those due to openings 4, 13, 14 and 15.
While channels with elliptic cross sections may be preferred, such channels may have any type of cross section. As long as such cross section defines a closed figure (except for a gap due to the opening in its side) and the channel progresses along a helical path, as described above, a counter rotation of the fluid in adjacent channels will be produced and the effects of the present invention will be generated.
However, the elliptic form of mixer element eliminates all corners which could create dead areas in which parts of the fluid might remain for substantially longer periods than the rest of the flowing fluid. The existence of such corners in prior art devices are responsible for the fact that it has been virtually impossible to obtain anything approaching completely uniform residence time for fluids flowing through such'mixers. The present invention makes possible a much closer approximation of such uniform residence time than has been possible heretofore.
In order further to enhance the uniformity of residence time and to increase the mixing action of this invention, the embodiment of FIGS. 10 and l l have been devised. In FIG. 10, the unit 18 is substantially like the unit 1 of FIG. 1 and is formed with channels 19 and 20 corresponding to channels 2 and 3 of FIG. 1. However, in FIG. 10, the end of each unit is dished with concave surfaces 21 and 22 at the ends of the channels 19 and 20. Such concave surfaces meet along substantially horizontal cusp edges 23 which terminate along a circular border 24 which defines the outer limits of the concave surfaces 21 and 22. This form of the end of each unit may be more readily seen in FIG. 12. The dotted lines show the orientation of the end face of an adjacent unit assembled as will be described below for FIG. 11.
As shown in FIG. 1 l, a plurality of such units 18a and 18b are assembled in end to end relation with the direction of the helical turning of the passages in each unit being reversed with respect to the direction such turning in an adjacent unit, as described in connection with FIG. 5. Further, as described in connection with FIG. 5, the transverse axes are angularly disposed. Thus the edges 2311 on the lower face of 18a will be angularly displaced with respect to the edges 23b on the upper face of 18b. Therefore, any fluid which passes from the channels of 18a to the channels of 18b will encounter the sharp edges 23b which will exert additional shear forces to further enhance the operation of the device.
Each of the units of the type described may be made of any suitable material and may be manufactured by any suitable process. For example, the unit may be made of a plastic or metal cast in a lost-wax type of mold, as shown in FIG. 13. Two cylindrical lengths of casting wax 25 and 26 are pressed together along their lengths to form the central portion 27 which is to define the central opening 4 of the resulting unit. The members 25 and 26 are then twisted with the desired degree of turning of the channels 2 and 3. The members 25 and 26 are then placed in a cylindrical mold 28 having a bottom 29 and a cylindrical side wall member 30, shown cut away in FIG. 13. The mold is then filled with the desired plastic material and caused to set into a solid form by any well known process. Thereupon, the plastic body is removed from the mold 28 and the casting wax core 25-26 is dissolved or melted out to leave the unit substantially as shown and described in FIG. 1. Of course, the unit of FIG. 4 may be made in the same way with the members 25 and 26 twisted in a direction opposite to that in FIG. 13. Where desired, the concave surfaces 21 and 22, as described in FIGS. 10, 11 and 12 may be machined out by any well known machining method.
Other methods of making the units may be used. For example, as shown in FIG. 14, a sheet of metal 32 may be formed with two longitudinal channels 33 and 34. Thereupon the sheet 32 may have its ends twisted in opposite directions so that one end wall occupies the position as shown in the dotted lines at 35 with respect to the other end shown in full line at 36. Of course, the metal would have to be sufficiently malleable to accommodate such twisting. Two members 37 and 38 so formed may then be assembled with abutting longitudinal edges 3a as shown in FIG. 15. The shapes shown in FIGS. 1 and 4 might be made by extruding plastic or malleable metal through an appropriate die while twisitng the extruded material with respect to such die. Various other methods of fabricating these units will suggest themselves to those skilled in the art.-
I claim:
1. A mixer element comprising a body having therein a plurality of elongated channels extending through said body and displaced with respect to each other around a longitudinal axis, each of said elongated channels being disposed along a helix around said longitudinal axis, the helices of adjacent channels being disposed in the same sense around said longitudinal axis, the contiguous inner sides of adjacent channels being provided with at least one common opening through which said adjacent channels communicate with each other; said opening comprising an elongated slot extending throughout the length of said channels.
2. A mixer element according to claim 1 in which at least one end face of said body is concave at the end of each of said channels. v
3. A mixer element according to claim 1 in which the number of said channels is at least three.
4. A mixer comprising a plurality of mixer elements 7 according to claim 2 mounted in end to end relationship with their longitudinal axes in line with each other.
5. A mixer according to claim 4 in which said mixer elements are arranged in alternating right and lefthanded helix groups.
6. A mixer according to claim 4 in which adjacent mixer elements are mounted with these ends abutting each other.
7. A mixer according to claim 4 in which adjacent mixer elements are mounted with their ends spaced from each other.
8. A mixer according toclaim 4 in which the transverse axis through the centers of said channels of each of said units is angularly displaced with respect to such transverse axis of each unit adjacent thereto.
9. A mixer according to claim 1 in which each of said channels has an elliptic cross section.
10. A mixer element comprising a body having therein a plurality of elongated channels extending through said body and displaced with respect to each other around a longitudinal axis, each of said elongated channels being disposed along a helix around said longitudinal axis, the helices of adjacent channels being disposed in the same sense around said longitudinal axis, the contiguous inner sides of adjacent channels being provided with at least one common opening through which said adjacent channels communicate with each other, at least one end face of said body being concave at the end of each of said channels, said concave face having pointed cusps transverse to the line joining the centers of said channels at said end face, each of said cusps extending from an edge of said slot to a point on said end face removed from said edge.

Claims (10)

1. A mixer element comprising a body having therein a plurality of elongated channels extending through said body and displaced with respect to each other around a longitudinal axis, each of said elongated channels being disposed along a helix around said longitudinal axis, the helices of adjacent channels being disposed in the same sense around said longitudinal axis, the contiguous inner sides of adjacent channels being provided with at least one common opening through which said adjacent channels communicate with each other; said opening comprising an elongated slot extending throughout the length of said channels.
2. A mixer element according to claim 1 in which at least one end face of said body is concave at the end of each of said channels.
3. A mixer element according to claim 1 in which the number of said channels is at least three.
4. A mixer comprising a plurality of mixer elements according to claim 2 mounted in end to end relationship with their longitudinal axes in line with each other.
5. A mixer according to claim 4 in which said mixer elements are arranged in alternating right and left-handed helix groups.
6. A mixer according to claim 4 in which adjacent mixer elements are mounted with these ends abutting each other.
7. A mixer according to claim 4 in which adjacent mixer elements are mounted with their ends spaced from each other.
8. A mixer according to claim 4 in which the transverse axis through the centers of said channels of each of said units is angularly displaced with respEct to such transverse axis of each unit adjacent thereto.
9. A mixer according to claim 1 in which each of said channels has an elliptic cross section.
10. A mixer element comprising a body having therein a plurality of elongated channels extending through said body and displaced with respect to each other around a longitudinal axis, each of said elongated channels being disposed along a helix around said longitudinal axis, the helices of adjacent channels being disposed in the same sense around said longitudinal axis, the contiguous inner sides of adjacent channels being provided with at least one common opening through which said adjacent channels communicate with each other, at least one end face of said body being concave at the end of each of said channels, said concave face having pointed cusps transverse to the line joining the centers of said channels at said end face, each of said cusps extending from an edge of said slot to a point on said end face removed from said edge.
US354688A 1973-04-26 1973-04-26 Shear mixer Expired - Lifetime US3860217A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US354688A US3860217A (en) 1973-04-26 1973-04-26 Shear mixer
CA190,500A CA989386A (en) 1973-04-26 1974-01-18 Helically wound tubular doublets and triplets in a flow mixer
FR7407490A FR2227041B1 (en) 1973-04-26 1974-03-05
JP2533774A JPS574369B2 (en) 1973-04-26 1974-03-06
BR2344/74A BR7402344D0 (en) 1973-04-26 1974-03-25 SHEAR ACTUATION MIXER
DD177599A DD111549A5 (en) 1973-04-26 1974-04-01
GB1547374A GB1437576A (en) 1973-04-26 1974-04-08 Shear mixer
NL7404942A NL7404942A (en) 1973-04-26 1974-04-11
SE7405381A SE404992B (en) 1973-04-26 1974-04-22 MIXER UNIT, PREFERABLY FOR FLOWERING SCOUTS, INCLUDING A BODY WITH A SEVERAL ELLANT CHANNELS
DE2419696A DE2419696A1 (en) 1973-04-26 1974-04-24 MIXING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US354688A US3860217A (en) 1973-04-26 1973-04-26 Shear mixer

Publications (1)

Publication Number Publication Date
US3860217A true US3860217A (en) 1975-01-14

Family

ID=23394496

Family Applications (1)

Application Number Title Priority Date Filing Date
US354688A Expired - Lifetime US3860217A (en) 1973-04-26 1973-04-26 Shear mixer

Country Status (10)

Country Link
US (1) US3860217A (en)
JP (1) JPS574369B2 (en)
BR (1) BR7402344D0 (en)
CA (1) CA989386A (en)
DD (1) DD111549A5 (en)
DE (1) DE2419696A1 (en)
FR (1) FR2227041B1 (en)
GB (1) GB1437576A (en)
NL (1) NL7404942A (en)
SE (1) SE404992B (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112520A (en) * 1976-03-25 1978-09-05 Oscar Patton Gilmore Static mixer
US4222671A (en) * 1978-09-05 1980-09-16 Gilmore Oscar Patrick Static mixer
US4259021A (en) * 1978-04-19 1981-03-31 Paul R. Goudy, Jr. Fluid mixing apparatus and method
US4363552A (en) * 1981-03-18 1982-12-14 E. I. Du Pont De Nemours And Company Static mixer
US4374542A (en) * 1977-10-17 1983-02-22 Bradley Joel C Undulating prismoid modules
WO1983002133A1 (en) * 1981-12-17 1983-06-23 Bailey, John, M. Dual fuel mixer-emulsifier
US4404173A (en) * 1980-09-24 1983-09-13 Unc Recovery Corporation Apparatus for contacting substantially immiscible liquids
US4439405A (en) * 1980-09-24 1984-03-27 Unc Recovery Corporation Method for varying the mixing time and proportions in the contacting of substantially immiscible liquids
US4611615A (en) * 1983-11-02 1986-09-16 Petrovic Ljubisa M Fluid treatment apparatus and method
US4614440A (en) * 1985-03-21 1986-09-30 Komax Systems, Inc. Stacked motionless mixer
US4884894A (en) * 1985-08-14 1989-12-05 Yuugenkaisha Ohnobankinkougyousho Fluid mixing element
US5053202A (en) * 1990-08-02 1991-10-01 Olin Corporation Static mixer configuration
US5564827A (en) * 1993-10-05 1996-10-15 Sulzer Chemtech Ag Device for the homogenization of high-viscosity fluids
EP1125624A1 (en) * 1998-09-02 2001-08-22 Maeda Corporation Kneader
US6286597B1 (en) 1999-04-12 2001-09-11 Baker Hughes Incorporated Shoe track saver and method of use
WO2005035995A1 (en) * 2003-10-11 2005-04-21 Kvaerner Process Systems A.S. Fluid phase distribution adjuster
US20080017246A1 (en) * 2006-07-18 2008-01-24 Fuji Xerox Co., Ltd. Microchannel device
US20080240987A1 (en) * 2007-03-27 2008-10-02 Fuji Xerox Co., Ltd. Micro fluidic device and method for producing micro fluidic device
US20090098027A1 (en) * 2007-10-12 2009-04-16 Fuji Xerox Co., Ltd. Microreactor device
US20100229987A1 (en) * 2009-03-16 2010-09-16 Fuji Xerox Co., Ltd. Micro fluidic device and fluid control method
US20110182134A1 (en) * 2010-01-22 2011-07-28 Dow Global Technologies Inc. Mixing system comprising an extensional flow mixer
US20120134232A1 (en) * 2006-02-07 2012-05-31 Stamixco Technology Ag Mixing Element for a static mixer and process for producing such a mixing element
US8679336B2 (en) 2008-11-14 2014-03-25 Fuji Xerox Co., Ltd. Microchannel device, separation apparatus, and separation method
WO2015073657A1 (en) * 2013-11-15 2015-05-21 Dow Global Technologies Llc Interfacial surface generators and methods of manufacture thereof
US20170320028A1 (en) * 2015-11-13 2017-11-09 Re Mixers, Inc. Static mixer
WO2019050699A3 (en) * 2017-09-06 2019-05-02 Waters Technologies Corporation Fluid mixer
CN111032202A (en) * 2017-09-06 2020-04-17 沃特世科技公司 Fluid mixer
US11173458B2 (en) 2018-03-14 2021-11-16 Tata Consultancy Services Limited Integrated apparatus for mixing and separating fluid phases and method therefor
US11555805B2 (en) 2019-08-12 2023-01-17 Waters Technologies Corporation Mixer for chromatography system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212377U (en) * 1975-07-16 1977-01-28
JPS5410417Y2 (en) * 1976-10-14 1979-05-15
US5000547A (en) * 1981-08-20 1991-03-19 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4977008A (en) * 1981-08-20 1990-12-11 E. I Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4982056A (en) * 1981-08-20 1991-01-01 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxide
US4977026A (en) * 1981-08-20 1990-12-11 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4977297A (en) * 1981-08-20 1990-12-11 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4975505A (en) * 1981-08-20 1990-12-04 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4973142A (en) * 1981-08-20 1990-11-27 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4999248A (en) * 1981-08-20 1991-03-12 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US4977025A (en) * 1981-08-20 1990-12-11 E. I Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
US5006382A (en) * 1981-08-20 1991-04-09 E. I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
GB2120113B (en) * 1982-05-13 1985-10-09 Komax Systems Inc Mixing in flow
EP0482145B1 (en) * 1990-05-08 1997-04-16 Sulzer Chemtech AG Catalyst assembly within a column
CN1066916A (en) * 1991-05-20 1992-12-09 谢志强 The technology for mixing water in heavy oil of emulsifier free and emulsifier unit
JPH0560524U (en) * 1992-01-23 1993-08-10 株式会社荒井製作所 Fluid mixing equipment
WO2000021650A1 (en) * 1998-10-15 2000-04-20 The Dow Chemical Company Static mixer
JP4194522B2 (en) * 2004-04-19 2008-12-10 協和工業株式会社 Gas-liquid mixed bubble generator
JP6312768B2 (en) * 2016-10-06 2018-04-18 俊一 武藤 Fine bubble generator
CN110681298B (en) * 2019-09-27 2022-01-11 华东师范大学 3D laminar flow micromixer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286992A (en) * 1965-11-29 1966-11-22 Little Inc A Mixing device
US3664638A (en) * 1970-02-24 1972-05-23 Kenics Corp Mixing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286992A (en) * 1965-11-29 1966-11-22 Little Inc A Mixing device
US3664638A (en) * 1970-02-24 1972-05-23 Kenics Corp Mixing device

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112520A (en) * 1976-03-25 1978-09-05 Oscar Patton Gilmore Static mixer
US4374542A (en) * 1977-10-17 1983-02-22 Bradley Joel C Undulating prismoid modules
US4259021A (en) * 1978-04-19 1981-03-31 Paul R. Goudy, Jr. Fluid mixing apparatus and method
US4222671A (en) * 1978-09-05 1980-09-16 Gilmore Oscar Patrick Static mixer
US4404173A (en) * 1980-09-24 1983-09-13 Unc Recovery Corporation Apparatus for contacting substantially immiscible liquids
US4439405A (en) * 1980-09-24 1984-03-27 Unc Recovery Corporation Method for varying the mixing time and proportions in the contacting of substantially immiscible liquids
US4363552A (en) * 1981-03-18 1982-12-14 E. I. Du Pont De Nemours And Company Static mixer
WO1983002133A1 (en) * 1981-12-17 1983-06-23 Bailey, John, M. Dual fuel mixer-emulsifier
US4611615A (en) * 1983-11-02 1986-09-16 Petrovic Ljubisa M Fluid treatment apparatus and method
US4614440A (en) * 1985-03-21 1986-09-30 Komax Systems, Inc. Stacked motionless mixer
US4884894A (en) * 1985-08-14 1989-12-05 Yuugenkaisha Ohnobankinkougyousho Fluid mixing element
US5053202A (en) * 1990-08-02 1991-10-01 Olin Corporation Static mixer configuration
US5564827A (en) * 1993-10-05 1996-10-15 Sulzer Chemtech Ag Device for the homogenization of high-viscosity fluids
EP1125624A1 (en) * 1998-09-02 2001-08-22 Maeda Corporation Kneader
EP1125624A4 (en) * 1998-09-02 2004-04-28 Maeda Construction Kneader
US6286597B1 (en) 1999-04-12 2001-09-11 Baker Hughes Incorporated Shoe track saver and method of use
WO2005035995A1 (en) * 2003-10-11 2005-04-21 Kvaerner Process Systems A.S. Fluid phase distribution adjuster
US20120134232A1 (en) * 2006-02-07 2012-05-31 Stamixco Technology Ag Mixing Element for a static mixer and process for producing such a mixing element
US8360630B2 (en) * 2006-02-07 2013-01-29 Stamixco Technology Ag Mixing element for a static mixer and process for producing such a mixing element
US8418719B2 (en) 2006-07-18 2013-04-16 Fuji Xerox Co., Ltd. Microchannel device
US20080017246A1 (en) * 2006-07-18 2008-01-24 Fuji Xerox Co., Ltd. Microchannel device
US20080240987A1 (en) * 2007-03-27 2008-10-02 Fuji Xerox Co., Ltd. Micro fluidic device and method for producing micro fluidic device
US8721992B2 (en) 2007-03-27 2014-05-13 Fuji Xerox Co., Ltd Micro fluidic device
US20090098027A1 (en) * 2007-10-12 2009-04-16 Fuji Xerox Co., Ltd. Microreactor device
US8349273B2 (en) 2007-10-12 2013-01-08 Fuji Xerox Co., Ltd. Microreactor device
US8679336B2 (en) 2008-11-14 2014-03-25 Fuji Xerox Co., Ltd. Microchannel device, separation apparatus, and separation method
US20100229987A1 (en) * 2009-03-16 2010-09-16 Fuji Xerox Co., Ltd. Micro fluidic device and fluid control method
US8585278B2 (en) 2009-03-16 2013-11-19 Fuji Xerox Co., Ltd. Micro fluidic device and fluid control method
US20120287744A1 (en) * 2010-01-22 2012-11-15 Dow Global Technologies Llc Mixing system comprising an extensional flow mixer
US20110182134A1 (en) * 2010-01-22 2011-07-28 Dow Global Technologies Inc. Mixing system comprising an extensional flow mixer
US8876365B2 (en) * 2010-01-22 2014-11-04 Dow Global Technologies Llc Mixing system comprising an extensional flow mixer
WO2015073657A1 (en) * 2013-11-15 2015-05-21 Dow Global Technologies Llc Interfacial surface generators and methods of manufacture thereof
US20160281750A1 (en) * 2013-11-15 2016-09-29 Dow Global Technologies Llc Interfacial surface generators and methods of manufacture thereof
US10898872B2 (en) * 2015-11-13 2021-01-26 Re Mixers, Inc. Static mixer
US20170320028A1 (en) * 2015-11-13 2017-11-09 Re Mixers, Inc. Static mixer
US11786876B2 (en) 2015-11-13 2023-10-17 Re Mixers, Inc. Static mixer
CN111032202A (en) * 2017-09-06 2020-04-17 沃特世科技公司 Fluid mixer
CN111050895A (en) * 2017-09-06 2020-04-21 沃特世科技公司 Fluid mixer
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
CN111050895B (en) * 2017-09-06 2022-06-03 沃特世科技公司 Fluid mixer
WO2019050699A3 (en) * 2017-09-06 2019-05-02 Waters Technologies Corporation Fluid mixer
US11173458B2 (en) 2018-03-14 2021-11-16 Tata Consultancy Services Limited Integrated apparatus for mixing and separating fluid phases and method therefor
US11555805B2 (en) 2019-08-12 2023-01-17 Waters Technologies Corporation Mixer for chromatography system

Also Published As

Publication number Publication date
JPS502256A (en) 1975-01-10
DD111549A5 (en) 1975-02-20
FR2227041A1 (en) 1974-11-22
DE2419696A1 (en) 1974-11-21
SE404992B (en) 1978-11-13
BR7402344D0 (en) 1974-12-03
CA989386A (en) 1976-05-18
GB1437576A (en) 1976-05-26
FR2227041B1 (en) 1978-03-31
NL7404942A (en) 1974-10-29
JPS574369B2 (en) 1982-01-26

Similar Documents

Publication Publication Date Title
US3860217A (en) Shear mixer
US3195865A (en) Interfacial surface generator
US4747697A (en) Fluid mixer
US5551777A (en) Single screw extruder capable of generating chaotic mixing
EP0619134A1 (en) Mixing receptacle
DE602005003356T2 (en) METHOD, DEVICE AND ROTOR FOR HOMOGENIZING A MEDIUM
US3779521A (en) Extrusion assembly
US3957256A (en) Screw extruder
Ottino Unity and diversity in mixing: Stretching, diffusion, breakup, and aggregation in chaotic flows
US4340311A (en) Interfacial surface generator mixer
DE102008009199A1 (en) Reaction mixer system for mixing and chemical reaction of at least two fluids
EP2618920B1 (en) Cartridge system with device for synchronizing two streams of fluid and related methods
EP0084180A2 (en) Mixing element and motionless mixer
US3427003A (en) Apparatus for mixing and homogenizing viscous liquids
EP0125465A2 (en) Stirring device
US20030091677A1 (en) Die for extruding flowable materials and having a static mixer therein
DE1175428B (en) Device for pressing out viscous materials, in particular thermoplastics
DE2629293A1 (en) STATIC MIXER
DE2625618A1 (en) DEVICE FOR MIXING AT LEAST TWO MEDIA
CH662778A5 (en) Extruder mixing in particular for multi-component plastic and rubber.
DE102006016482A1 (en) Passive micro-mixer for single- or multi-phase fluids has two inlets and an outlet plus numerous mixer elements located in different three-dimensional planes
DE1906654B2 (en) METHOD AND DEVICE FOR MIXING LIQUID OR GAS INTO A MELT OR SOLUTION OF A POLYMER
DE2257593C2 (en) Device for equalizing temperature differences within the mass strand of thermoplastic and elastomeric masses
DE2152644B2 (en) Screw extruder mixing section - with alternately tapering pockets preventing material jamming
DE1557223B2 (en) Device for dispersing gases and / or liquids and / or solids in liquids

Legal Events

Date Code Title Description
AS Assignment

Owner name: HELLER FINANCIAL, INC.

Free format text: SECURITY INTEREST;ASSIGNOR:O.D.E. MANUFACTURING, INC., A CORP. OF DE;REEL/FRAME:006034/0231

Effective date: 19900220