US3856538A - Refractory lining for hot metallurgical ladles, soaking pits and furnaces - Google Patents

Refractory lining for hot metallurgical ladles, soaking pits and furnaces Download PDF

Info

Publication number
US3856538A
US3856538A US00320893A US32089373A US3856538A US 3856538 A US3856538 A US 3856538A US 00320893 A US00320893 A US 00320893A US 32089373 A US32089373 A US 32089373A US 3856538 A US3856538 A US 3856538A
Authority
US
United States
Prior art keywords
lining
ladle
refractory
clay
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00320893A
Inventor
C Murton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US320894A priority Critical patent/US3897256A/en
Priority to US00320893A priority patent/US3856538A/en
Priority to IN1952/CAL/73A priority patent/IN139945B/en
Priority to JP48125058A priority patent/JPS4999707A/ja
Application granted granted Critical
Publication of US3856538A publication Critical patent/US3856538A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63436Halogen-containing polymers, e.g. PVC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/20Compacting by centrifugal forces only, e.g. in sand slingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63492Natural resins, e.g. rosin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1636Repairing linings by projecting or spraying refractory materials on the lining
    • F27D1/1673Repairing linings by projecting or spraying refractory materials on the lining applied centrifugally
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • C04B2111/00155Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass

Definitions

  • ABSTRACT A method for reliningmetallurgical ladles, soaking pits, and furnaces at temperatures from about 400 to about 3,000 F. by propelling a mixture of refractory materials against a prior-existing lining without prior ter.
  • This invention relates to a system for relining metallurgical ladles, furnaces, soaking pits, and the like at elevated temperatures.
  • the invention also pertains to a refractory composition for use as a liner at temperatures of from 400 to about 3,000 F.
  • the lining When conventional compositions of refractory linings are applied to cold surfaces, the lining must contain enough initial moisture to provide for coalescence ofthe composition as it travels from the impeller or gun to the wall and to provide for bonding of the components forming the lining after their placement.
  • the range of the water content of conventional mixes is from about 10% to 20% by weight.
  • a liner in a steel ladle having a thickness of from 4 to 6 inches is applied cold, a period of from 6 to 15 hours is neces sary to reduce the moisture content to an acceptable level to create sufficient bond strength to meet the loading requirements of the ferrostatic head.
  • the heating times required are of the order of from 24 to 72 hours. Without those drying and, heating programs the performance of the applied lining was uncertain.
  • a section through the wall indicates the development of three distinct zones; namely, an inner fusion zone with highly viscous glasslike characteristics, an intermediate zone of sintered, solid phase reaction compounds that provide -.the strength of durability for the refractory liner, and an outer cold zone that does not reach a temperature high enough to initiate sintering.
  • the cold zone has a strength gradient extending to the cold face of the furnace or ladle having a minimum value at some distance from the sintered zone. Since most metallurgical furnaces and ladles are subject to cyclical temperature changes of an extreme range, the creation of the three zones through the wall generates problems involving their different properties of thermal expansion, thermal conduction and strength.
  • the cold refractory placement methods involve a number ofdifficulties including extended periods of time for drying the applied refractory, lack of practical means for determining when allof the moisture has been removed from the refractory mass, shrinkage conducive to cracking of the applied refractory mass, and the formation of three distinct zones upon heating having different properties throughout the refractory mass which upon cyclical temperature changes causes premature failure.
  • a method 'for applying a refractory mixture which method comprises the steps of lowering a centrifugal impeller vertically into a furnace or ladle to be relined, which furnace or ladle has a temperature of from about 400 to 2,800" F., rotating the impeller as it is moved vertically, either upwardly or downwardly, while feeding the refractory mixture through the rotating ends of the impeller to cause the refractory mixture to be deposited as a lining upon the walls of the furnace or ladle to a thickness that is dependent upon the rate of feed of the composition and upon the vertical movement of the impeller, whereby maximum adherence is obtained through meltingof the organic binder present in the refractory mixture and moisture removal is indicated by a change of color of the lining.
  • the invention also includes a mixture of refractory compositions for lining having a thickness of from about Va inch to 10 inches or more and which lining may be uniformly and consistently applied as a repair or replacement'lining on an existing metallurgical furnace or ladle at temperature of from about 400 to about 2,800 F., and which mixture having a particle size of about 8 mesh is composed of, by weight, from about 4% to about 4% organic binders, from about 40% to of clay, and from about 28% to 58% quartzite.
  • FIG. 1 is a vertical sectional view through a metallurgical ladle showing one type of centrifugal impeller disposed therein, and
  • FIG. 2 is an enlarged, fragmentary, sectional view through the ladle and repaired lining in condition ready for use.
  • the ladle After a heat of liquid metal is poured from a ladle, the ladle is normally inverted to pour out any remaining slag. Thereafter, the stopper rod and nozzle are removed and replaced. The ladle is then ready for reuse, after allowing sufficient time for a reset nozzle to dry out.
  • the lining When the ladle has been used a sufficient number of times, such as 15 to 20 heats, the lining is normally worn thin enough to require replacement. After 70% of the normal lining life has been used, the process of the present invention is employed to apply replacement lining on the inner surface of the ladle.
  • the ladle 10 As shown in FIG. 1 a ladle 10 is placed upright.
  • the ladle 10 includes a bottom wall 12 and a circular side wall 14 which walls are normally composed of metal plates fabricated to the desired shape.
  • the usedv ladle 10 also includes a remaining refractory lining 16 which is snugly disposed against the inner surface of the wall 14.
  • the bottom wall 12 also includes a lining 18.
  • the process of the present invention begins with the lowering of a centrifugal impeller, generally indicated at 20, intothe open upper end of the ladle 10.
  • the upper end of the impeller 20 usually includes a ring 22 for attachment onto the hook of an overhead crane.
  • the impeller 20 includes rotating means such as a motor 24, with-a rotatible.
  • shaft 26 having at least two similar branch portions 28 extending preferably in opposite directions of each other.
  • the shaft 26 is a conduit through which the mixture of refractory material direction (up or down), the lining is preferably applied by lowering the impeller until the arms 28 are disposed near the bottom wall 12.
  • the shaft 26 With the shaft 26 substantially coaxially disposed with regard to the vertical wall 13, the shaft is then rotated, as indicated by the arrow 34, and the impeller is lifted as indicated by the arrow 36, at a speed calculated to apply the lining 32 to the desired thickness.
  • the thickness of the lining 32 may vary from about inch up to 6 inches. Greater thicknesses such as up to l0 inches may also be applied where necessary.
  • the temperature of the ladle including the remaining lining 16, the lining 18 as well as the outer walls 12 and 14 may vary from as low as 400 F. up to about 3,000 F. during application of the lining 32.
  • the refractory mixture as initially applied for forming the lining 32 contains three basic constituents including organic binders, clay and quartzite.
  • the organic binders may include such materials as pitch, tar, rosins, polyvinylchlorides and polyethyltetachloride. Such binders have melting points of from about 250 to 400 F.
  • the particle size of the binders is preferably less than inch.
  • the organic binders are present in an amount varying from about 1.5% to 4%, by weight, of the total mixture.
  • the purpose of the organic binders is to replace most of the water present in prior existing mixtures which were applied to cold surfaces after a ladle had been cooled to, say, 100 F. By eliminating all or substantially all, of the water content of the mixture,
  • the organic binders are provided in an amount less than 4% of the total mixture which melts upon impingement on the hot surface of the ladle and therefore forms a tacky surface for holding subsequently applied materials impinging in the same area.
  • the heat causes binders to carbonize and leaves a mozaic structure of crystalline carbon intermixed with the other constitutents of the lining which when applied in particle form provide a mechanical structure which is bonded betweenthe old lining l6 and the new lining 32.
  • Clay is present in an amount varying from 40% to 70%, by weight, of the total mixture.
  • the preferred clay materials are alumina and silica compounds.
  • the clay compounds have wet strength as initially applied and the clay compacts itself in place to hold the entire mixture until all of the organic binders melt and carbonize to form the mozaic of crystalline carbon which provides the basic strength of the new lining 32.
  • Quartzite is present in an amount varying from 28% to 58%, by weight, of the entire composition.
  • Typical quartzite compounds include 98% of silica (SiO with about 0.5% of alumina (A1 0 The quartzite acts as a filler.
  • Water may be added to the mixture of the organic binders, clay, and quartzite either by pre-mixing or during passage of the mixture through the impeller.
  • the amount of water may vary from about 4% to 6%, by weight, of the total mixture.
  • clay compounds ordinarily contain about 4% water in various forms, such as water of hydration and crystallition, which when supplemented by the addition of from 4% to 6% of water, totals approximately 10% water for the entire mixture. Higher amounts of water often cause steam explosions.
  • the latent heat of the ladle causes much of the water to evaporate before it impinges upon the ladle wall. Sufficient water is retained, however, to cause the clay to function as a bonding agent until the lining composition is completely formed.
  • the heat in the lining immediately causes the organic binders to melt and form a sticky or tacky basis for subsequent particles which adhere in place on the tacky binders.
  • the initial lining serves as a heat insullator. At that time the wet clay,
  • the latent heat in the ladle lining 16 overcomes the insulating effect of the initial organic binder layer and causes more and more of the subsequently applied organic binder particle to melt.
  • the water is evaporated and driven out of the new lining 32.
  • the first applied portions of organic binders carbonize and form a mozaic structure of crystalline carbon intermixed with the alumina and silica particles in the quartzite and clay.
  • the resulting structure includes a continuous phase of mozaic carbon and the clay containing the spaced particles of silica of the quartzite which is the discontinuous phase.
  • the lining undergoes a color change which indicates to an observer when the final structure of the lining 32 is completly formed.
  • the refractory composition When the refractory composition is initially applied, 'it has a light gray appearance. When all of the water is evaporated, the appearance changes to a dark gray color which signals water has been evaporated. Subsequently, when the organic binders carbonize, the color of the lining again changes to a light beige appearance which is indicative of the complete formation of the lining 32. Those color changes occur very rapidly, on the order of about 10 to 15 minutes, depending upon the thickness and temperature of the ladle when the lining is applied.
  • the final structure of a typical lining 32 is shown in FIG. 2.
  • the lining 32 being disposed on the priorexisting lining 16, is typically applied to a thickness varying from about inch to about 1% inches. Greater thickness of up to 10 inches, however, may be applied where desirable.
  • the refractory composition is prepared and adhered to hot surfaces immediately without relying upon the mass cooling effect of water and material as was the case with conventional refractory materials.
  • compositions which combine the bonding effect of clay together with that of the organic binders; namely, hydrocarbonsodium silicate, hydrocarbon-phosphate, hydrocarbonchromic acid, hydrocarbon-clay, hydrocarbon-silica, hydrocarbon-alumina, and the lime.
  • hydrocarbonsodium silicate, hydrocarbon-phosphate, hydrocarbonchromic acid, hydrocarbon-clay, hydrocarbon-silica, hydrocarbon-alumina, and the lime namely, hydrocarbonsodium silicate, hydrocarbon-phosphate, hydrocarbonchromic acid, hydrocarbon-clay, hydrocarbon-silica, hydrocarbon-alumina, and the lime.
  • the thickness of the lining applied may vary from V4 inch to 10 inches or more, it has been found nents for different applications.
  • the organic binder content has an operative range from about to about 4%, with good results being from 1 to 2.5%, and with the optimumcontent being about 2%. by weight.
  • ladle and cPe 14% An iron ladle operating normally between 2,300 and 2,600 F. may receive smaller quantities and lesser b gg ip l t 1S i t gz thicknesses of lining than steel ladles operating at from y a c Con lammg 0 2 e mlx ures a e e 2,750 to 2,900 F.
  • the cold slin- Change lhdlcatloh h the Water Content 18 t gering process of lining ladles involves installation of a ty pl y dlslpated-
  • thehot metallurglcal f actory handling plant and-shop space for inst 11 equipment [5 not cooled unduely and 1t, therefore, does tion of slingering machinery.
  • the capital investment is not require subsequent lengthly heating periods to rehigh and the process is costly especially if all brick layturn it to operating temperatures.
  • a refractory composition suitable for application furnaces Because of the differences in temperature of use at temperatures ranging from about 400 F. to operation of ladles, soaking pits, and furnaces variaabout 2,800 F. and being capable of being applied to tions in the mixture of the refractory material are inhot vessels by projection, the composition consisting volved.
  • the mixture contains different amounts of compoof organic material selected from a group consisting of pitch, tar, rosins, polyvinylchloride, polyethyltetrachloride, and mixtures thereof, from about 40% to about of bonding clay, and from about 28% to about 58% of quartzite.
  • composition of claim 1 wherein there is about 1% to about 2.5% of organic binder, from about 60% to about 70% of clay, and from about 28% to about 38% of quartzite.
  • composition of claim 6 wherein there is about 2% of organic binder, about 65% of clay, and about 33% of quartzite.
  • composition of claim 1 wherein there is from to about 60% of clay, and from about 38% to about 10 about 4% to about 6% water.
  • composition of claim 4 wherein there is about 2% of organic binder, about 55% of clay, and about 9.
  • composition of claim 8 wherein there is about 5% water

Abstract

A method for relining metallurgical ladles, soaking pits, and furnaces at temperatures from about 400* to about 3,000* F. by propelling a mixture of refractory materials against a priorexisting lining without prior cooling thereof, the relining thickness being from about 1/4 inch up to 10 inches or more. The refractory mixture consists essentially of, by weight, from about 1/4% to about 4% of an organic binder, from about 40% to 70% of clay, and from about 28% to about 58% quartzite. To facilitate its application, the refractory mixture is mixed with about 4% to 6% water.

Description

United States Patent [191 [111 3,856,538 Murton 1 Dec. 24, 1974 4] REFRACTORY LINING FOR HOT 3,340,075
METALLURGICAL LADLES, SOAKING PITS AND FURNACES Fay et al. l06/68 9/1967 Stoddard et al. 106/69 Primary Examiner-J. Poer Attorney, Agent, or Firm-L. P. Johns [57] ABSTRACT A method for reliningmetallurgical ladles, soaking pits, and furnaces at temperatures from about 400 to about 3,000 F. by propelling a mixture of refractory materials against a prior-existing lining without prior ter.
9 Claims, 2 Drawing Figures -/4 i j K "*36 I I I j b a REFRACTORY LINING FOR HOT METALLURGICAL LADLES, SOAKING PITS AND FURNACES This application is a division of Ser. No. 77,059, filed Oct. 1, 1970 entitled Method for Applying Refractory Lining on Hot Metallurgical Ladles, Soaking Pits, and Furnaces, of which the inventor is C. B. Murton, now U.S. Pat. No. 3,737,489 issued June 5, 1973.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a system for relining metallurgical ladles, furnaces, soaking pits, and the like at elevated temperatures. The invention also pertains to a refractory composition for use as a liner at temperatures of from 400 to about 3,000 F.
2. Description of the Prior Art in the past refractory lining for hot metal furnaces and ladles have been constructed of refractory brick laid up with mortar. With repeated use the lining eroded away until a thin remaining lining was replaced with a new lining or refractory brick laid up with mortar. Moreover, during the period of normal service life, certain areas of severe wear require patching by removing the affected areas and relaying new brick.
The successful use of the so-called pneumatic gun in the construction industry for the placement of concrete was soon followed by attempts to use the gun for the application of refractory walls and linings of metallurgical furnaces and ladles. Although those attempts proved successful for the application of refractory linings to cold ladles and furnaces, most attempts to apply refractory linings to hot furnaces, such as at about 200 F. or more, have been unsuccessful. In metallurgical ladles. especially iron and steel ladles, attempts to reline them hot have been totally unsuccessful.
As a result the advantages of quickly applying a reliner by the use ofa pneumatic gun in a relatively short time to hot ladles and furnaces have been defeated by the inability to make the lining without waiting for the walls to cool to at least below about 350 F. Accordingly, a furnace or ladle has been out of operation for long periods of time while cooling down to the necessary temperature for the replacement or repair of the lining.
Associated with the foregoing has been the problem of the application of conventional compositions for replacement linings. They simply have not been applicable by centrifugal means to hot walls of metallurgical furnaces and ladles. One difficulty with conventional compositions has been the necessity of mixing large amounts of water with the conventional materials for the primary purpose of cooling the interface between the old lining and the newly applied material to a temperature below which steam forms. As amatter of fact, conventional materials usually rely upon mechanical structures such as cracks or crevices in the old wall to support the reliner material. When applied to a smooth vertical wall, the adherence with the reliner is uncertain and usually subject to premature failure.
When conventional compositions of refractory linings are applied to cold surfaces, the lining must contain enough initial moisture to provide for coalescence ofthe composition as it travels from the impeller or gun to the wall and to provide for bonding of the components forming the lining after their placement. In general, the range of the water content of conventional mixes is from about 10% to 20% by weight. As a result it has been necessary to carefully dry the newly applied liner before the furnace or ladle can be returned to ser- For example, it has been found that when a liner in a steel ladle having a thickness of from 4 to 6 inches is applied cold, a period of from 6 to 15 hours is neces sary to reduce the moisture content to an acceptable level to create sufficient bond strength to meet the loading requirements of the ferrostatic head. Similarly, in soaking pits and preheat furnaces, the heating times required are of the order of from 24 to 72 hours. Without those drying and, heating programs the performance of the applied lining was uncertain.
Most of the commercially available refractory materials applied by pneumatic guns or impellers or relining purposes have contained high alumina cement or other bonding agents that provide room temperature structural strength. Most refractories placed as linings on furnace ladies and soaking pits as applied by so-called gunning' or other techniques have been applied at low temperatures compared to the metallurgical furnace operating temperatures. Attempts to apply con- 7 ventional refractory materials by pneumatic guns or centrifugal impellers at elevated temperatures have resulted in excessive rebound loss such as from 20% to of the total material applied. As a result large quantities of refractory material are lost until the surface on which the material is applied is sufficiently cool to prevent steam formation and thus to permit a buildup to begin. v V
The major use of mechanical or pneumatic means for the application of refractory linings has been for structures that have been precooled to room temperature in order to avoid the loss of most of the material applied and to avoid shrinkage defects.
Moreover, it has been found that when molten steel at temperatures of from 2,800 to 3,000 F. is poured into a ladle after the drying, a section through the wall indicates the development of three distinct zones; namely, an inner fusion zone with highly viscous glasslike characteristics, an intermediate zone of sintered, solid phase reaction compounds that provide -.the strength of durability for the refractory liner, and an outer cold zone that does not reach a temperature high enough to initiate sintering. The cold zone has a strength gradient extending to the cold face of the furnace or ladle having a minimum value at some distance from the sintered zone. Since most metallurgical furnaces and ladles are subject to cyclical temperature changes of an extreme range, the creation of the three zones through the wall generates problems involving their different properties of thermal expansion, thermal conduction and strength.
In summary, the cold refractory placement methods involve a number ofdifficulties including extended periods of time for drying the applied refractory, lack of practical means for determining when allof the moisture has been removed from the refractory mass, shrinkage conducive to cracking of the applied refractory mass, and the formation of three distinct zones upon heating having different properties throughout the refractory mass which upon cyclical temperature changes causes premature failure.
Because of the three zone structure developed with conventionally compounded refractory compositions, it has been necessary to apply excess thickness of repair lining to provide a 'sintered zone sufficiently strong to meet the structural requirement encountered during useage. For example, an extremely thin layer applied to a surface would represent the minimal strength characteristics of that material during drying and would be too fragile to serve as a reline surface. Thicker layers would be required to allow normal attrition to take place and still have sufficient thickness left to permit formation of the fused, sintered, and dried zones.
' A further problem with conventional methods of pneumatic or mechanical gunning is the determination of how thick a relining has been applied. Those conversant with pneumatically placed refractory materials know that variation in thickness to i is the rule rather than the exception because the application is made normally and controlled visually, An exception to the preceding statement is the technique used in slingering ladles where a certrally located form is used to form an annular space between the ladle shell and the form.
However, a general statement can be made regarding all conventional systems, e.g., brick linings, cold pneumatically gunned linings, or mechanically slingered ladle repair or construction techniques. All rely upon the total consumption of the refractory lining and subsequent tearing out of the lining when it has eroded so thin that it is unsafe. In other words, the initial lining thickness must be so great that the capacity of the ladle is curtailed as compared to the optimum thickness of lining compatible with safety standards, heat balance, and maximization of ladle capacity. The curtailment in overall capacity canresult in lost production ranging from 8 to 17%. This loss results from using a ladle until the lining has worn dangerously thin, tearing out the old lining, relining, and then drying for an extended period of time usually hours. Capacity has been sacrificed to give a few extra charges. It is better to determine the optimim wall thickness and then repair the ladle cyclically and'perpe'tually maintaining maximum charge weight and minimum down time for the ladle.
SUMMARY OF THE INVENTION In accordance with this invention it has been found that the foregoing difficulties may be overcome by a method 'for applying a refractory mixture which method comprises the steps of lowering a centrifugal impeller vertically into a furnace or ladle to be relined, which furnace or ladle has a temperature of from about 400 to 2,800" F., rotating the impeller as it is moved vertically, either upwardly or downwardly, while feeding the refractory mixture through the rotating ends of the impeller to cause the refractory mixture to be deposited as a lining upon the walls of the furnace or ladle to a thickness that is dependent upon the rate of feed of the composition and upon the vertical movement of the impeller, whereby maximum adherence is obtained through meltingof the organic binder present in the refractory mixture and moisture removal is indicated by a change of color of the lining.
The invention also includes a mixture of refractory compositions for lining having a thickness of from about Va inch to 10 inches or more and which lining may be uniformly and consistently applied as a repair or replacement'lining on an existing metallurgical furnace or ladle at temperature of from about 400 to about 2,800 F., and which mixture having a particle size of about 8 mesh is composed of, by weight, from about 4% to about 4% organic binders, from about 40% to of clay, and from about 28% to 58% quartzite.
DESCRIPTION OF THE DRAWINGS For a better understanding of the nature of this invention reference is made to the drawings in which:
FIG. 1 is a vertical sectional view through a metallurgical ladle showing one type of centrifugal impeller disposed therein, and
FIG. 2 is an enlarged, fragmentary, sectional view through the ladle and repaired lining in condition ready for use.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The process of the present invention comprises the steps of:
1. setting up a ladle to be relined in an upright positron;
2. introducing a centrifugal impeller vertically and substantially axially into a ladle;
3. rotating the impeller at a sufficient speed to apply a mixture of refractory material upon the innersurface of the ladle at a rate depending upon the desired thickness and rate of vertical movement of the impeller; and 4. holding the ladle for a period of time sufficient to expell any included moisture and to allow the organic binder in the mixture to melt and carbonize.
After a heat of liquid metal is poured from a ladle, the ladle is normally inverted to pour out any remaining slag. Thereafter, the stopper rod and nozzle are removed and replaced. The ladle is then ready for reuse, after allowing sufficient time for a reset nozzle to dry out. When the ladle has been used a sufficient number of times, such as 15 to 20 heats, the lining is normally worn thin enough to require replacement. After 70% of the normal lining life has been used, the process of the present invention is employed to apply replacement lining on the inner surface of the ladle.
As shown in FIG. 1 a ladle 10 is placed upright. The ladle 10 includes a bottom wall 12 and a circular side wall 14 which walls are normally composed of metal plates fabricated to the desired shape. The usedv ladle 10 also includes a remaining refractory lining 16 which is snugly disposed against the inner surface of the wall 14. The bottom wall 12 also includes a lining 18.
The process of the present invention begins with the lowering of a centrifugal impeller, generally indicated at 20, intothe open upper end of the ladle 10. The upper end of the impeller 20 usually includes a ring 22 for attachment onto the hook of an overhead crane. In addition, the impeller 20 includes rotating means such as a motor 24, with-a rotatible. shaft 26 having at least two similar branch portions 28 extending preferably in opposite directions of each other. The shaft 26 is a conduit through which the mixture of refractory material direction (up or down), the lining is preferably applied by lowering the impeller until the arms 28 are disposed near the bottom wall 12. With the shaft 26 substantially coaxially disposed with regard to the vertical wall 13, the shaft is then rotated, as indicated by the arrow 34, and the impeller is lifted as indicated by the arrow 36, at a speed calculated to apply the lining 32 to the desired thickness. The thickness of the lining 32 may vary from about inch up to 6 inches. Greater thicknesses such as up to l0 inches may also be applied where necessary.
The temperature of the ladle including the remaining lining 16, the lining 18 as well as the outer walls 12 and 14 may vary from as low as 400 F. up to about 3,000 F. during application of the lining 32.
The refractory mixture as initially applied for forming the lining 32 contains three basic constituents including organic binders, clay and quartzite. The organic binders may include such materials as pitch, tar, rosins, polyvinylchlorides and polyethyltetachloride. Such binders have melting points of from about 250 to 400 F. The particle size of the binders is preferably less than inch. The organic binders are present in an amount varying from about 1.5% to 4%, by weight, of the total mixture. The purpose of the organic binders is to replace most of the water present in prior existing mixtures which were applied to cold surfaces after a ladle had been cooled to, say, 100 F. By eliminating all or substantially all, of the water content of the mixture,
' the explosions, resulting from steam created when molten steel contacts the newly applied refractory, are avoided. The organic binders, however, are provided in an amount less than 4% of the total mixture which melts upon impingement on the hot surface of the ladle and therefore forms a tacky surface for holding subsequently applied materials impinging in the same area. The heat causes binders to carbonize and leaves a mozaic structure of crystalline carbon intermixed with the other constitutents of the lining which when applied in particle form provide a mechanical structure which is bonded betweenthe old lining l6 and the new lining 32.
Clay is present in an amount varying from 40% to 70%, by weight, of the total mixture. The preferred clay materials are alumina and silica compounds. The clay compounds have wet strength as initially applied and the clay compacts itself in place to hold the entire mixture until all of the organic binders melt and carbonize to form the mozaic of crystalline carbon which provides the basic strength of the new lining 32.
Quartzite is present in an amount varying from 28% to 58%, by weight, of the entire composition. Typical quartzite compounds include 98% of silica (SiO with about 0.5% of alumina (A1 0 The quartzite acts as a filler.
Water may be added to the mixture of the organic binders, clay, and quartzite either by pre-mixing or during passage of the mixture through the impeller. The amount of water may vary from about 4% to 6%, by weight, of the total mixture. It is noted that clay compounds ordinarily contain about 4% water in various forms, such as water of hydration and crystallition, which when supplemented by the addition of from 4% to 6% of water, totals approximately 10% water for the entire mixture. Higher amounts of water often cause steam explosions.
As the mixture leaves the impeller and travels across the-ladle, the latent heat of the ladle causes much of the water to evaporate before it impinges upon the ladle wall. Sufficient water is retained, however, to cause the clay to function as a bonding agent until the lining composition is completely formed.
When the mixture of refractory composition first strikes the hot surface of the ladle lining l6, the heat in the lining immediately causes the organic binders to melt and form a sticky or tacky basis for subsequent particles which adhere in place on the tacky binders. However, after a buildup of the lining 32, the initial lining serves as a heat insullator. At that time the wet clay,
having the property of plasticity, serves as the primary bonding agent for a buildup of particles of the mixture which thereafter accumulate to the desired thickness as the impeller proceeds vertically.
Ultimately, however, the latent heat in the ladle lining 16 overcomes the insulating effect of the initial organic binder layer and causes more and more of the subsequently applied organic binder particle to melt. At the same time the water is evaporated and driven out of the new lining 32. As the effect'of the heat continues to work on the lining 32, the water is evaporated and the organic binders continue to melt outwardly. Meanwhile, the first applied portions of organic binders carbonize and form a mozaic structure of crystalline carbon intermixed with the alumina and silica particles in the quartzite and clay. The resulting structure includes a continuous phase of mozaic carbon and the clay containing the spaced particles of silica of the quartzite which is the discontinuous phase.
During the formation of the ultimate structure of the lining 32, the lining undergoes a color change which indicates to an observer when the final structure of the lining 32 is completly formed. When the refractory composition is initially applied, 'it has a light gray appearance. When all of the water is evaporated, the appearance changes to a dark gray color which signals water has been evaporated. Subsequently, when the organic binders carbonize, the color of the lining again changes to a light beige appearance which is indicative of the complete formation of the lining 32. Those color changes occur very rapidly, on the order of about 10 to 15 minutes, depending upon the thickness and temperature of the ladle when the lining is applied.
The final structure of a typical lining 32 is shown in FIG. 2. The lining 32, being disposed on the priorexisting lining 16, is typically applied to a thickness varying from about inch to about 1% inches. Greater thickness of up to 10 inches, however, may be applied where desirable.
By the proper selection of the components to be combined the refractory composition is prepared and adhered to hot surfaces immediately without relying upon the mass cooling effect of water and material as was the case with conventional refractory materials.
The range of recommended compositions is extensive and embraces basic, acid, and neutral refractory materials which combine the bonding effect of clay together with that of the organic binders; namely, hydrocarbonsodium silicate, hydrocarbon-phosphate, hydrocarbonchromic acid, hydrocarbon-clay, hydrocarbon-silica, hydrocarbon-alumina, and the lime. A synthesis of all of those bonds is fundamental to the adherence of the refractory composition as it is applied.
Although the thickness of the lining applied may vary from V4 inch to 10 inches or more, it has been found nents for different applications. The organic binder content has an operative range from about to about 4%, with good results being from 1 to 2.5%, and with the optimumcontent being about 2%. by weight.
The control of refractory properties depends on the desired Al O content of the mixture, as follows:
that the usual thickness to be applied isfrom about Mixture Ago, inch to 1% inches per application. A lining having a Steel Iadle 8 10% thlckncss'varymg from about A inch to 1V2 inches l8 5 Soaking pit and reheat furnace lO- 12W useful for at least two heats before relining is required. ladle and cPe 14% An iron ladle operating normally between 2,300 and 2,600 F. may receive smaller quantities and lesser b gg ip l t 1S i t gz thicknesses of lining than steel ladles operating at from y a c Con lammg 0 2 e mlx ures a e e 2,750 to 2,900 F. Moreover, steel operations produc- 1O g i f h d f d ing predominatly low carbon rimmed grades show noryplca.exdmp es t granges an pre erre Q P mal ladle lining erosion of about V4 inch per heat. Smons of the Organic bmder Clay and quarmte m- Therefore, a lining thickness of /2 inch per application vowed are Set forth m Table as follows: using the process of this invention give a minimum of TABLE ll two heats service before another application of the linl5 Composition Range mg IS required. Initial results indicate that three or four (weight heats from a /2 lnch'thrck lining are possible. li g 0 For a comparison of the time required to replace a i i ain: Clay Quanmc lining by the process of this invention with the pro- S! H d1 8 l0 2 40 50 47) 48 58 51 cesses well known in the art including (1) conventional 20 i 10:12 2 50:60 38-48 brick and mortar'lmmgs, (2) cold ladle gunning, and lron ladle (3) cold slingered ladle lining, reference is made to and OPmg 2 (65) 3348 (33) Table I as follows: (Parenthctical figures are preferred percentages) TABLE 1 Time for Replacing Ladle Linings Hot Brick & Cold Cold Ladle Mortar Slinger Gun 7 Method Method Method Method Cooling & Preparation 4 O 6+ hrs. 6+ hrs. 0 Reline Per Ladle 10 min. 8 hrs. 4 hrs, 8 hrs.
Reline Per Heat 5 do. 24 min. 10 min. 1.6 2 hrs.
Drying Per Ladle l5 do. hrs. l5 hrs. 15 hrs.
Drying Per Heat 7.5 do. min. 45 min. 3.0 3.75 hrs.
Total Delay Per Heat 12.5 do. 1 hr.,27 min. 1 hr., 15 min. 4.6 5.75 hrs.
It is deemed readily apparentthat the process of this The use of mixtures of-refractory compositions where invention provides a replacement lining for a ladl m 1 organic binders replace the dominant portion of water Period of l'hlhlltest)er heat) wh a y as used in prior conventional refractory compositions reduces th that a lafhe out ervlce as satisfies the prior-existing problems of replacingthe linpared w the tlmes requlred for h g uhd'ef Pflot ing of a furnace,- ladle, or soaking pit in a minimum of conventional methods- The Conventional brick and time so that the equipment is back in service as soon as mortar type of lining requires the use of preburned possible ladle brick and mortar lard by hand to form a lining in- 45 side the ladle. 'Cold gunning involves shooting a ladle The t p fh and Process of the Present interior with pneumatic equipment'to a thickness of aph ptovldies Posltlve adherence of the refractory proximately 1% inch. The latter must be repeated every tetlat PPh hot Surfaces and p f a .0010! four or five heats for efficient operation. The cold slin- Change lhdlcatloh h the Water Content 18 t gering process of lining ladles involves installation of a ty pl y dlslpated- Thus, thehot metallurglcal f actory handling plant and-shop space for inst 11 equipment [5 not cooled unduely and 1t, therefore, does tion of slingering machinery. The capital investment is not require subsequent lengthly heating periods to rehigh and the process is costly especially if all brick layturn it to operating temperatures. More ve h probers h b removed d th system b ks d wn, lems associated with the conventional three zone lining Heretofore, this invention has been described as a cture are eliminated by the proper application proprocess for applying replacement lining to steel ladles. cedures of this invention.
It is understood, however, that the process may also be What 15 claimed is:
used for applying similar linings to the walls of various types of metallurgical vessels, such as soaking pits and 1. A refractory composition suitable for application furnaces. Because of the differences in temperature of use at temperatures ranging from about 400 F. to operation of ladles, soaking pits, and furnaces variaabout 2,800 F. and being capable of being applied to tions in the mixture of the refractory material are inhot vessels by projection, the composition consisting volved. essentially of, by weight, from about 3 4% to about 4% The mixture contains different amounts of compoof organic material selected from a group consisting of pitch, tar, rosins, polyvinylchloride, polyethyltetrachloride, and mixtures thereof, from about 40% to about of bonding clay, and from about 28% to about 58% of quartzite.
43% of quartzite.
6. The composition of claim 1 wherein there is about 1% to about 2.5% of organic binder, from about 60% to about 70% of clay, and from about 28% to about 38% of quartzite.
7. The composition of claim 6 wherein there is about 2% of organic binder, about 65% of clay, and about 33% of quartzite.
8. The composition of claim 1 wherein there is from to about 60% of clay, and from about 38% to about 10 about 4% to about 6% water.
48% of quartzite.
5. The composition of claim 4 wherein there is about 2% of organic binder, about 55% of clay, and about 9. The composition of claim 8 wherein there is about 5% water,

Claims (9)

1. A REFRACTORY COMPISITION SUITABLE FOR APPLICATION USE AT TEMPERATURES RANNING FROM ABOUT 400*F. TO ABOUT 2,800*F. AND BEING CAPABLE OF BEING APPLIED TO HOT VESSELS BY PROJECTTION, THE COMPOSITION CONSISTING ESSENTIALLY OF, BY WEIGHT, FROM ABOUT 1/4% TO ABOUT 4% OF ORGANIC MATERIAL SELECTED FROM A GROUP CONSISTING OF PITCH, TAR, RESONS, POLYVINYLCHLORIDE, POLYETHYLTERTRACHLORIDE, AND MIXTURES THEREOF, FROM ABOUT 40% TO ABOUT 70% OF BONDING CLAY, AND FROM ABOUT 28% TO ABOUT 58% OF QUARTZITE.
2. The composition of claim 1 wherein there is from about 1.0% to about 2.5% of organic material from about 40% to about 50% of clay, and from about 41% to about 60% of quartzite.
3. The composition of claim 2 wherein there is about 2% of organic binder, about 47% of clay, and about 51% of quartzite.
4. The composition of claim 1 wherein there is about 1.5% to about 2% of organic binder, from about 50% to about 60% of clay, and from about 38% to about 48% of quartzite.
5. The composition of claim 4 wherein there is about 2% of organic binder, about 55% of clay, and about 43% of quartzite.
6. The composition of claim 1 wherein there is about 1% to about 2.5% of organic binder, from about 60% to about 70% of clay, and from about 28% to about 38% of quartzite.
7. The composition of claim 6 wherein there is about 2% of organic binder, about 65% of clay, and about 33% of quartzite.
8. The composition of claim 1 wherein there is from about 4% to about 6% water.
9. The composition of claim 8 wherein there is about 5% water.
US00320893A 1970-10-01 1973-01-04 Refractory lining for hot metallurgical ladles, soaking pits and furnaces Expired - Lifetime US3856538A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US320894A US3897256A (en) 1973-01-04 1973-01-04 Refractory lining mixture for hot metallurgical vessels
US00320893A US3856538A (en) 1970-10-01 1973-01-04 Refractory lining for hot metallurgical ladles, soaking pits and furnaces
IN1952/CAL/73A IN139945B (en) 1973-01-04 1973-08-24
JP48125058A JPS4999707A (en) 1973-01-04 1973-11-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7705970A 1970-10-01 1970-10-01
US00320893A US3856538A (en) 1970-10-01 1973-01-04 Refractory lining for hot metallurgical ladles, soaking pits and furnaces

Publications (1)

Publication Number Publication Date
US3856538A true US3856538A (en) 1974-12-24

Family

ID=26758840

Family Applications (1)

Application Number Title Priority Date Filing Date
US00320893A Expired - Lifetime US3856538A (en) 1970-10-01 1973-01-04 Refractory lining for hot metallurgical ladles, soaking pits and furnaces

Country Status (1)

Country Link
US (1) US3856538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537412A1 (en) * 1984-10-22 1986-04-30 Shinagawa Refractories Co., Ltd., Tokio/Tokyo TWO-PIECE, SPRAYABLE, FIRE-RESISTANT MATERIAL
EP1431259A1 (en) * 2002-11-25 2004-06-23 Refractory Intellectual Property GmbH & Co. KG Non basic refractory mass and its use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3026212A (en) * 1959-09-25 1962-03-20 Gen Refractories Co Refractory product and method of manufacture
US3340075A (en) * 1964-12-16 1967-09-05 Cabot Corp Tar-bonded refractories containing pine tar

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3026212A (en) * 1959-09-25 1962-03-20 Gen Refractories Co Refractory product and method of manufacture
US3340075A (en) * 1964-12-16 1967-09-05 Cabot Corp Tar-bonded refractories containing pine tar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3537412A1 (en) * 1984-10-22 1986-04-30 Shinagawa Refractories Co., Ltd., Tokio/Tokyo TWO-PIECE, SPRAYABLE, FIRE-RESISTANT MATERIAL
EP1431259A1 (en) * 2002-11-25 2004-06-23 Refractory Intellectual Property GmbH & Co. KG Non basic refractory mass and its use

Similar Documents

Publication Publication Date Title
US3737489A (en) Method of applying refractory lining on hot metallurgical ladles,soaking pits and furnaces
CA1198571A (en) Monolithic refractory layer for metallurgical vessels and method of application
JPH0413308B2 (en)
US5073525A (en) Lightweight tundish refractory composition
US4102694A (en) Refractory material for repairing blast furnaces
US3897256A (en) Refractory lining mixture for hot metallurgical vessels
US4292082A (en) Unshaped refractories
US3836613A (en) Method of making liner in an induction melting furnace
US4060424A (en) Low temperature setting refractory cements
US3856538A (en) Refractory lining for hot metallurgical ladles, soaking pits and furnaces
US3687437A (en) Metallurgical furnaces or vessels
EP0434421B1 (en) Protective layer for linings in metallurgical furnaces and the like
EP0076577A1 (en) Molten metal transfer channels
US5366944A (en) Vibratable refractory compositions
EP0242769A2 (en) Dense refractor body for furnace linings
US4468780A (en) Method of lining a steel-making furnace
US3600480A (en) Process for repairing runners for handling molten metal
US2880098A (en) Refractory articles and compositions therefor
DE2447813A1 (en) METHOD AND MATERIAL FOR HEAT-RESISTANT LINING OF A METALLURGICAL CONTAINER AT INCREASED TEMPERATURES
US3259672A (en) Method of forming and maintaining refractory bottoms of open hearth furnaces for the manufacture of steel
US4366258A (en) Blast furnace with a refractory lining of concrete components
JPS5917072B2 (en) Massive refractories for hot-insertion repair
US4279845A (en) Process for coating the inner wall of a furnace or like apparatus
US2683032A (en) Basic lined cupola
US3678143A (en) Use of refractory parting layer to aid skull removal from furnace linings