US3855638A - Surgical prosthetic device with porous metal coating - Google Patents
Surgical prosthetic device with porous metal coating Download PDFInfo
- Publication number
- US3855638A US3855638A US00360954A US36095473A US3855638A US 3855638 A US3855638 A US 3855638A US 00360954 A US00360954 A US 00360954A US 36095473 A US36095473 A US 36095473A US 3855638 A US3855638 A US 3855638A
- Authority
- US
- United States
- Prior art keywords
- coating
- microns
- substrate
- metallic material
- bone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/082—Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
- C23C24/085—Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
- C23C24/087—Coating with metal alloys or metal elements only
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/306—Other specific inorganic materials not covered by A61L27/303 - A61L27/32
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/08—Muscles; Tendons; Ligaments
- A61F2/0811—Fixation devices for tendons or ligaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2/2875—Skull or cranium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/30004—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
- A61F2002/30011—Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in porosity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/30769—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth madreporic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2002/30968—Sintering
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0023—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00017—Iron- or Fe-based alloys, e.g. stainless steel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00029—Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00401—Coating made of iron, of stainless steel or of other Fe-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00407—Coating made of titanium or of Ti-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00413—Coating made of cobalt or of Co-based alloys
Definitions
- a novel surgical prosthetic device having many useful surgical applications comprises a composite structure.
- the composite consists of a solid metallic material substrate and a porous coating adhered to and extending at least partially over the surface of the substrate.
- the porous coating has certain critical characteristics, and the individual values depend on the end use to which the device is put. There are described a number of surgical and dental applications.
- This invention relates to surgical prosthetic devices.
- metal plates have been used which are secured to either side of the bone fracture.
- the plates are commonly secured to the bone by screws. While the plate in time becomes encapsulated in bone and body tissue, no bond is formed between the implant and the tissue. If one of the screws comes loose, the patient may have to undergo additional corrective surgery.
- a prosthetic device consisting of a metal substrate or base having a thin porous coating of metal overlying and bonded to the surface.
- the presence of the pores allows the soft or hard tissue to grow into the porous coating of the device and hence achieve incorporation into the body.
- the only method of forming the coating which is described in this prior art suggestion is the technique of plasma or flame spraying onto the metal substrate.
- the result of this process is a densely adherent layer of the sprayed metal on the substrate metal with no porosity or practically no porosity at the interface between the coating and the substrate and with gradually increasing porosity, including increasing pore size and decreasing density, from the interface to the surface of the coating.
- Plasma spraying is a well known technique and generally is employed where it is desired to achieve a low porosity coating, often entirely pore free. Very thin plasma coatings therefore tend to be very dense and a progressive increase in pore size and decrease in density is a commonly-known result. If plasma spraying is continued eventually a uniform pore size of the coating is achieved, but the thickness of the coating required is at least ten thousands of an inch.
- Another prior art suggestion involves the provision of a prosthetic device constructed of porous ceramic material.
- This material is structurally weak and attempts to overcome this defect involve filling the bulk of the device with resin material, leaving a porous surface area.
- the presence of the resin may increase the strength of the central portion of the device, the surface region remains weak.
- the presence of resin material degradable by body fluids would lead to unsatisfactory use in the human body.
- the maximum pore size for the ceramic is indicated to be 50 microns, and much smaller sizes are preferredv If the .pore size were greater than 50 microns, then the structure would become too weak for effective use.
- the surgical prosthetic device of the present invention has a unique construction which overcomes the weakness problems associated with the prior art devices, as disscused above.
- the surgical prosthetic device of the invention comprises a composite structure consisting of a solid metallic material substrate and a porous coating adhered to and extending at least partially over the surface of the substrate.
- the porous coating on the surface of the substrate has several parameters, described in detail below, which are essential to the provision of a satisfactory device free from the defects of the prior art devices.
- the porous coating consists of a plurality of small discrete particles of metallic material bonded together at their points of contact with each other to define a plurality of connected interstitial pores in the coating.
- the particles are of the same metallic material as the metallic material from which the substrate is formed. It is essential that this be the case otherwise corrosion at the substrate-coating interface may occur due to a cell action with body fluids.
- the metallic material from which the substrate and coating are formed is one which is not corroded or otherwise degraded by the body fluids of the patient.
- suitable materials include austenitic stainless steel, titanium, titanium alloys and cobalt alloys.
- the cobalt alloy VITALLIUM (Trademark) has been found to be especially useful.
- the metal particles are bonded to one another and to the substrate in such a manner that particle-to-particle separation and particle-to-substrate separation would require a shear stress greater than the transverse shear stress required for bone fracture.
- the composite structure is stronger than bone and hence is free from the interfacial shearing encountered by the prior art and discussed in detail above and also is free from intracoating failure.
- both the pore and pore size distribution are substantially uniform from the coating-substrate interface to the surface of the coating. This uniformity of pore and pore size distribu' tion through the coating results in a substantial uniformity of strength through the thickness of the coating and ensures ingrowth of tissue and its calcification through the entire thickness of the layer to the interface with the substrate.
- the interstitial pore size In order for the porous adherent coating to be able to sustain bone, or other hard tissue growth, it is essential that theinterstitial pore size exceed about 50 microns. Generally, the interstitial pore size is between about 50 and lOO microns, although larger pore sizes up to about 200 microns may be employed. Since the particles in the powder from which the coating is formed are not usually of uniform size, the pore sizes vary somewhat throughout the coating, although their distribution is substantially uniform.
- the interstitial pore size may be less than 50 microns, down to about microns.
- the porosity of the surface coating not exceed about 40 percent and be at least about 10 percent. It is only be controlling the porosity within this range at the pore sizes recited above that it is possible to provide a surgical prosthetic device that has an overall strength greater than the shear strength of bone and at the same allow for ingrowth of tissue. At porosities below about 10 percent, there are insufficient pores in the surface to provide sufficient ingrowth whereby upon later calcification a strong mechanical fixation is achieved. At porosities above about 40 percent the overall mechanical strength falls below the required level.
- the pore size and porosity values are achieved by controlling the manner of formation of the coating and the particle size of the material used in the coating formation.
- the depth of the porous coating on the surface of the substrate and the ratio of depth of coating to depth of substrate may vary over a wide range between essential limits.
- the lower limit of thickness is about I00 microns, which is the thickness of surface coating required to sustain bone tissue ingrowth with good mechanical interlocking in the pores, generally equivalent to about 2 to 3 monolayers of particles, while the upper limit of thickness is about 1,000 microns which is dictated by the strength considerations discussed above.
- a depth of about 500 microns is used on about a A1 inch round substrate, using from +325 to -1OO mesh particle coatings.
- the substrate 10 and the coating 12 each are formed of VITALLIUM.
- the coating 12 is formed of from +325 to l0() mesh powder and a plurality of interconnected interstitial pores filled with bone tissue is provided. The pores and pore size distribution are substantially uniform through the depth of the coating 12.
- a dogs femur 14 is situation adjacent the coating 12 and the ingrowth of bone tissue 16 can be seen.
- the growth of bone tissue is throughout the depth of the coating to the substrate surface.
- the ingrowth of the bone tissue was woven and lamullar together and had the architectural configuration of adult compact bone with osteone formation. Since the appearance of tissue elements may be deceptive by reflection under the optical microscope, further testing by way of electron microprobe scan analyses of the porous coating 12 was carried out. Probing from the bone 14 across the coating 12 to the substrate 10 showed the calcium and phosphorus contents of the tissue ingrowth 16 to be the same as that of the femur 14.
- the micrograph shows no untoward reaction of the bone tissue 16 to the metal of the coating 12. This observation is significant in view of the large surface area of metal exposed to possible reaction in an open pored structure.
- the surgical prosthetic device of the invention has a number of uses.
- the implant may be used to bridge the gap between bone ends caused by removal of a portion of the bone.
- the removal of the portion may be due to irreparable shattering, a cancerous growth or the like.
- the implant generally in the form of a cylindrical rod, is positioned within the bone ends. At least those areas of the implant in contact with and adjacent the bone ends are provided with the porous adherent coating. The presence of the porous adherent coating allows bone or hard tissue to grow into the surface of the implant, so that the implant is incorporated'into the bone and the implant thereby is secured to the bone ends.
- the implant of the invention by the presence of the porous adherent coating allows bone or hard tissue to grow into the surface of the implant, so that the implant is incorporated into the bone and a much stronger joint is provided.
- a porous adherent coating also may be provided on the surface of the implant, so that body (or soft) tissue may grow into the surface. Therefore, the implant is not only encapsulated in the body, but is incorporated into the bone and soft tissue of the patient. In this way, a very rigid structure is obtained.
- the implant in the form of a plate, may be secured by screws, either side of the break.
- the implant in the form of an elongated cylindrical rod, may be secured within the bone ends.
- a further use of the surgical prosthetic device of the invention lies in artifical joints, for example, a hip prosthesis.
- artifical joints When artifical joints are included in the body, it is necessary that they be affixed in the joint socket and this has been achieved using cements. In some joints, such as the hip joint, the stresses at certain positions are greater than at others and it may be desired to utilize adhesion achieved other than by the use of cements.
- the artifical joints may be constructed in accordance with the present invention.
- the coating may be provided on the substrates, if desired, only at those positions where the joint will be subjected to high stress.
- the bone tissue of the socket grows into the surface coating and thereby more tightly binds the prosthesis.
- Cement is used to position the prosthesis in the socket and cement may be employed additionally at the areas of the porous coating.
- the entire prosthesis may be formed as a composite and it has been found that the use of a cement, such as methyl methacrylate, together with the porous surface gives rise to a much enhanced adhesion of the prosthesis to the socket as compared to use ofa cement in the absence of a porous surface.
- the increased surface area and morphology of the implant occasioned by the presence of the porous coating provides the enhanced adhesion.
- a further application of the implant of the invention is in a McIntosh arthroplasty of the knee.
- an additional use of the implant of the invention is in the affixing of artificial limbs, etc. to amputees.
- the implant usually as an elongated rod, is secured in the bone of the stump.
- an adherent porous coating is provided in accordance with this invention. The presence of the coating allows bone tissue to grow into the surface of the implant and rigidly secure the implant therein.
- the rod projects from the stump and after the implant is securely affixed to the bone, the artificial limb then may be secured to the projecting portion.
- the implant is provided with a porous surface.
- the soft body tissue at the surface of the stump therefore, may grow into the surface of the implant at the point where it projects from the stump and thereby the surface of the skin is sealed to the implant. In the absence of the porous coating of the invention, such a seal does not form and infection of the stump may occur.
- the pore size of the porous coating in at least the area of the implant adjacent the bone stump should exceed 50 microns.
- the implant of the invention may be used in brain surgery, to replace bone removed from the cranium during a brain operation.
- the surgical prosthetic device of the invention in this embodiment assumes the form of a circular disc, or other shape, conforming in size to the hole formed in the skull, with a porous adherent coating formed around the peripheral areas where the device engages the skull bone. Bone tissue grows from the skull into the porous surface, and the disc thereby is incorporated into the skull.
- the implant of the invention in the form of a staple may be used in the rejoining of tendon, muscle or other soft tissue to bone, for example, in a shoulder.
- the staple consists of a substrate and a coating, the coating being formed to sustain the growth of bone and soft tissue therein.
- the implant may be formed with different forms of coating, one area sustaining bone tissue growth and the other soft tissue growth. It is possible to employ a smaller interstitial pore size for soft tissue growth, as discussed above, down to about 20 microns, as compared to the pore size for bone tissue growth where an interstitial pore size exceeding about 50 microns is required.
- the implant may be anchored to the mandible and at the point of projection of the implant through the gingival, a porous coating is provided. Gum tissue grows into the coating and thereby seals the gum surface. In this way, the collection of foreign substances, causing infection, at the implant-gingival interface is prevented.
- the area of the implant adjacent the mandible may be provided with a coating, in accordance with the present invention, in order to more securely anchor the implant to the jaw bone by bone tissue ingrowth.
- the implant of the present invention also may be employed to provide a quick-release valve secured to the body surface of a patient for connecting internal parts of the body to external treatment devices.
- the implant generally consists of a ring of metal having a peripheral porous coating adjacent the areas of attachment to the patients body surface. Since the growth of body tissue into the surface takes time, temporary securement of the implant may be achieved in any desired manner, such as by the use of sutures.
- the ring is formed so that efficient connection between internal parts of the body and devices external of the body may be provided, the particular form depending on the end use.
- the surgical prosthetic device of the invention may be formed in any convenient manner.
- the porous coating may be formed by diffusion bonding of the particles and the surface.
- metallic particles such as VI- TALLlUM, having particle sizes from +325 to 100 mesh in this technique.
- 325 mesh powder when bone tissue ingrowth and calcification is to be sustained since the interstitial pore sizes of coatings formed from such powder drop below 50 microns. implants including coatings formed from such 325 mesh powder are useful, however, where soft tissue ingrowth is to be sustained, provided that the interstitial pore size does not fall below microns.
- One convenient powder metallurgy technique for forming the coating in the device of the present invention utilizes a slurry of metallic powder suspended in aqueous solution with organic binders.
- the slurry may be held in a mold around the area of the substrate to which it is desired to impart the porous coating.
- the slurry may be of a consistency to be selfsupporting on the surface.
- the slurry is heated to remove the water and finally sintered in an inert or reducing atmosphere, such as hydrogen, to burn off the organic binder and fuse the particles together and to the substrate.
- an inert or reducing atmosphere such as hydrogen
- VlTALLlUM powder of from +325 to lOO mesh particle size requires to be heated at about 2,200F for at least 2 hours in a dry hydrogen atmosphere to provide a satisfactory product. Longer sintering times produces a stronger product.
- the coating may be formed in any other desired manner, for example, from the metallic powder.
- a depression may be formed in the surface of the substrate, free flowing metallic powder, in the absence of organic binder, may be poured into the depression and the powder tired to produce the coating.
- a VlTALLiUM coating may be fired at 2,l00 to 2, l 50F for about one hour to give the strength.
- the coating then is machined and fired again at about 2,200F for at least 2 hours, sometimes for as long as 8 hours, depending on the strength requirements of the final coating.
- the mold may be subjected to pressure during whole or part of the firing operation.
- the porous surface may be treated with a variety of materials prior to implant in the body. These materials may include materials to promote the growth of hard or soft tissues or with antibiotics.
- both the substrate and the powder are sintered to achieve diffusion bonding between the metal particles and between the metal particles and the substrate, and hence the thermal stresses encountered by the prior art by the use of flame spraying are avoided.
- the product of the invention is superior to the prior art in terms of overall strength and ability to sustain satisfactory interlocking ingrowth of both bone and soft tissues.
- EXAMPLE 1 This example illustrates the formation of a surgical prosthetic device of the invention.
- a VlTALLIUM rod of A inch diameter was degreased and cleaned.
- An aqueous VITALLIUM powder slurry consisting of 74 parts by weight of +325 mesh atomized VITALLlUM powder, 25 parts by weight of an aqueous solution of 1 percent methylcellulose, 1 part by weight of a 2 /2 percent aqueous solution of dioctyl sodium sulfosuccinate and 0.25 parts by weight of ammonium hydroxide was made up. This slurry was applied to the degreased and cleaned Vl- TALLIUM rod to a depth of 1/32 inch.
- the coated rod was sintered at 2,200F in a dry hydrogen atmosphere of 99.99 percent purity for approximately two hours.
- the product was cooled in the hydrogen atmosphere. Examination of the product indicated that the spherical powder particles had fused at each contact point between themselves and the rod and an interior communicating substantially uniform pore structure with pore sizes ranging from 50 to micron was evident.
- a push-out test designed to measure h f r VITALLIUM coating Bufied VITALLIUM Stainless SlcCl quired to dislodge the implant from the cortical bone +325 mesh P P P was carried out in the following way.
- An lnstron tester 1740 530 580 with a compression cell and specially designed adaptor 15 2180 5 15 595 was used to apply compressive loading directly to the 5138 2 :8 implant.
- the specimens were trimmed so that there was no cement adherent to the said particles being of a size and being spaced from each other to establish an average interstitial pore size of from about 20 microns to about 200 microns substantially uniformly distributed throughout said coating and a coating porosity of between about and about 40 percent.
- said solid substrate has two of said porous coatings of said metallic material adhered to and each extending partially over the surface of said substrate to said thickness, one of said porous coatings having an average interstitial pore size below about 50 microns for the ingrowth of soft tissue and the other of said porous coatings having an average interstitial pore size above about 50 microns for the in growth of hard tissue.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
A novel surgical prosthetic device having many useful surgical applications comprises a composite structure. The composite consists of a solid metallic material substrate and a porous coating adhered to and extending at least partially over the surface of the substrate. The porous coating has certain critical characteristics, and the individual values depend on the end use to which the device is put. There are described a number of surgical and dental applications.
Description
United States Patent 11 1 [111 3,855,638 Pilliar 1 Dec. 24, 1974 [54] SURGICAL PROSTHETIC DEVICE WITH 3,314,420 4/1967 Smith et a1 128/92 C OU METAL COATING 3,605,123 9/1971 Hahn 3/1 Inventor: Robert M. Pilliar, Toronto, Ontario,
Canada Assignee: Ontario Research Foundation,
Sheridan Park, Ontario, Canada Filed: May 16, 1973 Appl. No; 360,954
Related US. Application Data Continuationin-part of Ser. No. 148,316, June 1, 1971, abandoned.
Foreign Application Priority Data June 4, 1970 Great Britain 27110/70 Feb. 4, 1971 Great Britain 3964/71 US. Cl. 3/1, 128/92 C, 128/334 R,
128/92 D, 32/10 A Int. Cl. A6lf 1/24 Field of Search. 3/1; 128/92 C, 92 BC, 92 CA,
128/334 R, 92 R, 92 D; 32/10 A; 117/71 M' References Cited UNITED STATES PATENTS Haboush 128/92 CA OTHER PUBLICATIONS Sintered Fiber Metal Composites as a Basis for Attachment of Implants to Bone by V. Galante et al., The Journal of Bone & Joint Surgery, Vol. 53-A, No. 1, January 1971, pages 1011l4.
Primary Examiner-Ronald L. Frinks Attorney, Agent, or Firm-Sim & McBurney [57] ABSTRACT A novel surgical prosthetic device having many useful surgical applications comprises a composite structure. The composite consists of a solid metallic material substrate and a porous coating adhered to and extending at least partially over the surface of the substrate. The porous coating has certain critical characteristics, and the individual values depend on the end use to which the device is put. There are described a number of surgical and dental applications.
10 Claims, 1 Drawing Figure SURGICAL PROSTHETIC DEVICE WITH POROUS METAL COATING REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of application Ser. No. 148,316 filed June 1, 1971, now abandoned.
FIELD OF INVENTION This invention relates to surgical prosthetic devices.
BACKGROUND TO THE INVENTION The use of surgical prosthetic devices, otherwise known as implants, is well known in various surgical applications, such as reconstructive surgery, for example, in the replacement of hip joints or the like. These applications generally involve the use of an implant constructed of metal or alloy which substantially is not corroded or otherwise degraded by body fluids. These prior art implants, however, suffer from a number of defects.
Typically, in the setting of broken bones metal plates have been used which are secured to either side of the bone fracture. The plates are commonly secured to the bone by screws. While the plate in time becomes encapsulated in bone and body tissue, no bond is formed between the implant and the tissue. If one of the screws comes loose, the patient may have to undergo additional corrective surgery.
Suggestions have been made in the prior art to provide surgical prosthetic devices which are capable of permanent incorporation into the body, usually the bone with bonding between the implant and the tissues.
In one prior art suggestion, there is described a prosthetic device consisting of a metal substrate or base having a thin porous coating of metal overlying and bonded to the surface. The presence of the pores allows the soft or hard tissue to grow into the porous coating of the device and hence achieve incorporation into the body.
The only method of forming the coating which is described in this prior art suggestion is the technique of plasma or flame spraying onto the metal substrate. The result of this process is a densely adherent layer of the sprayed metal on the substrate metal with no porosity or practically no porosity at the interface between the coating and the substrate and with gradually increasing porosity, including increasing pore size and decreasing density, from the interface to the surface of the coating.
While this technique may be effective in providing a porous coating on a metal substrate, nevertheless the technique results in a very serious defect in the finished prosthetic device. In tests designed to show the ingrowth of tissue into the coated surface of the device a pin, having the coating thereon, after embedding in a bone for a period of time was subjected to a pull-out test. This pull-out test resulted in shearing at the interface between the coating and the base metal. This result indicates that the overall strength of the device is less than the bone. Quite clearly, the provision of a device weaker than the bone to which it is attached could result in failure of the device due to shearing at the interface with harmful and painful consequences for a patient who is treated using such a device.
This defect of this device is a direct result of its method of manufacture. Plasma spraying is a well known technique and generally is employed where it is desired to achieve a low porosity coating, often entirely pore free. Very thin plasma coatings therefore tend to be very dense and a progressive increase in pore size and decrease in density is a commonly-known result. If plasma spraying is continued eventually a uniform pore size of the coating is achieved, but the thickness of the coating required is at least ten thousands of an inch.
Another result of plasma or flame spraying is that a very hot molten mass impinges onto a relatively cold substrate surface causing the setting up of considerable interfacial thermal stresses which result in an inherent weakness which manifests itself in the interfacial shearing action observed in tests.
Another prior art suggestion involves the provision of a prosthetic device constructed of porous ceramic material. This material is structurally weak and attempts to overcome this defect involve filling the bulk of the device with resin material, leaving a porous surface area. Although the presence of the resin may increase the strength of the central portion of the device, the surface region remains weak. Further, the presence of resin material degradable by body fluids would lead to unsatisfactory use in the human body. In addition, the maximum pore size for the ceramic is indicated to be 50 microns, and much smaller sizes are preferredv If the .pore size were greater than 50 microns, then the structure would become too weak for effective use. A consequence of this pore size limitation will become apparent hereinafter in the discussion of the present invention SUMMARY OF INVENTION The surgical prosthetic device of the present invention has a unique construction which overcomes the weakness problems associated with the prior art devices, as disscused above. The surgical prosthetic device of the invention comprises a composite structure consisting of a solid metallic material substrate and a porous coating adhered to and extending at least partially over the surface of the substrate. The porous coating on the surface of the substrate has several parameters, described in detail below, which are essential to the provision of a satisfactory device free from the defects of the prior art devices.
The porous coating consists of a plurality of small discrete particles of metallic material bonded together at their points of contact with each other to define a plurality of connected interstitial pores in the coating. The particles are of the same metallic material as the metallic material from which the substrate is formed. It is essential that this be the case otherwise corrosion at the substrate-coating interface may occur due to a cell action with body fluids.
The metallic material from which the substrate and coating are formed is one which is not corroded or otherwise degraded by the body fluids of the patient. Examples of suitable materials include austenitic stainless steel, titanium, titanium alloys and cobalt alloys. The cobalt alloy VITALLIUM (Trademark) has been found to be especially useful.
BRIEF DESCRIPTION OF DRAWING The accompanying drawing is a photomicrograph of the surface structure of an implantin accordance with one embodiment of the invention after four months implantation in a dog femur.
DETAILED DESCRIPTION OF INVENTION In the surgical prosthetic device of the invention, the metal particles are bonded to one another and to the substrate in such a manner that particle-to-particle separation and particle-to-substrate separation would require a shear stress greater than the transverse shear stress required for bone fracture. Thus, in the present invention, the composite structure is stronger than bone and hence is free from the interfacial shearing encountered by the prior art and discussed in detail above and also is free from intracoating failure.
In the present invention, therefore, when tissue ingrowth and tissue ossification is complete, break away of the coated part of the prosthetic device will occur by a bone fracture rather than a fracture within the coating itself or at the coating-substrate interface.
Another essential parameter of the coating which assists in the provision of a superior product is the pore and pore size distribution through the depth of the coating. In the present invention. both the pore and pore size distribution are substantially uniform from the coating-substrate interface to the surface of the coating. This uniformity of pore and pore size distribu' tion through the coating results in a substantial uniformity of strength through the thickness of the coating and ensures ingrowth of tissue and its calcification through the entire thickness of the layer to the interface with the substrate.
These latter conditions are in contrast to the structure of the prior art where there is a progressive increase in pore size and porosity from the coatingsubstrate interface to the surface. The prior art therefore lacks uniformity of strength throughout the thickness of the layer and further does not allow the ingrowth of tissue through the whole depth of the layer, resulting in a less-satisfactory incorporation into the body.
It also is essential to control the interstitial pore size and the coating porosity within critical limits, although variations between the limits may be made depending on the individual requirements. The critical limits depend on the application to which the implant is to be put.
In order for the porous adherent coating to be able to sustain bone, or other hard tissue growth, it is essential that theinterstitial pore size exceed about 50 microns. Generally, the interstitial pore size is between about 50 and lOO microns, although larger pore sizes up to about 200 microns may be employed. Since the particles in the powder from which the coating is formed are not usually of uniform size, the pore sizes vary somewhat throughout the coating, although their distribution is substantially uniform.
Where the ingrowth of soft tissue only is to be sustained, the interstitial pore size may be less than 50 microns, down to about microns.
This finding of essential pore sizes for ingrowth of tissue contrasts markedly with one of the prior art suggestions mentioned above wherein the maximum pore size indicated is 50 microns, with the preferred range being considerably less. This prior art device therefore is capable only of sustaining ingrowth of soft tissue and in its preferred aspects is incapable of sustaining even soft tissue ingrowth. 7
Further, it is essential that the porosity of the surface coating not exceed about 40 percent and be at least about 10 percent. It is only be controlling the porosity within this range at the pore sizes recited above that it is possible to provide a surgical prosthetic device that has an overall strength greater than the shear strength of bone and at the same allow for ingrowth of tissue. At porosities below about 10 percent, there are insufficient pores in the surface to provide sufficient ingrowth whereby upon later calcification a strong mechanical fixation is achieved. At porosities above about 40 percent the overall mechanical strength falls below the required level. The pore size and porosity values are achieved by controlling the manner of formation of the coating and the particle size of the material used in the coating formation.
The depth of the porous coating on the surface of the substrate and the ratio of depth of coating to depth of substrate may vary over a wide range between essential limits. The lower limit of thickness is about I00 microns, which is the thickness of surface coating required to sustain bone tissue ingrowth with good mechanical interlocking in the pores, generally equivalent to about 2 to 3 monolayers of particles, while the upper limit of thickness is about 1,000 microns which is dictated by the strength considerations discussed above. Typically, a depth of about 500 microns is used on about a A1 inch round substrate, using from +325 to -1OO mesh particle coatings.
Referring now to the accompanying photomicrograph there is shown a 250 times magnification of an elongated substrate 10 of circular cross-section and a porous adherent coating 12. The substrate 10 and the coating 12 each are formed of VITALLIUM. The coating 12 is formed of from +325 to l0() mesh powder and a plurality of interconnected interstitial pores filled with bone tissue is provided. The pores and pore size distribution are substantially uniform through the depth of the coating 12.
A dogs femur 14 is situation adjacent the coating 12 and the ingrowth of bone tissue 16 can be seen. The growth of bone tissue is throughout the depth of the coating to the substrate surface. The ingrowth of the bone tissue was woven and lamullar together and had the architectural configuration of adult compact bone with osteone formation. Since the appearance of tissue elements may be deceptive by reflection under the optical microscope, further testing by way of electron microprobe scan analyses of the porous coating 12 was carried out. Probing from the bone 14 across the coating 12 to the substrate 10 showed the calcium and phosphorus contents of the tissue ingrowth 16 to be the same as that of the femur 14. These observations confirm that the coating 12 was not only penetrated by living tissue but it was sufficiently porous to allow the infiltration of bone growth.
The micrograph shows no untoward reaction of the bone tissue 16 to the metal of the coating 12. This observation is significant in view of the large surface area of metal exposed to possible reaction in an open pored structure.
The surgical prosthetic device of the invention has a number of uses. For example, the implant may be used to bridge the gap between bone ends caused by removal of a portion of the bone. The removal of the portion may be due to irreparable shattering, a cancerous growth or the like.
The implant, generally in the form of a cylindrical rod, is positioned within the bone ends. At least those areas of the implant in contact with and adjacent the bone ends are provided with the porous adherent coating. The presence of the porous adherent coating allows bone or hard tissue to grow into the surface of the implant, so that the implant is incorporated'into the bone and the implant thereby is secured to the bone ends.
The implant of the invention by the presence of the porous adherent coating allows bone or hard tissue to grow into the surface of the implant, so that the implant is incorporated into the bone and a much stronger joint is provided.
When the implant is used in this bridging role, in those areas between the bone ends, a porous adherent coating also may be provided on the surface of the implant, so that body (or soft) tissue may grow into the surface. Therefore, the implant is not only encapsulated in the body, but is incorporated into the bone and soft tissue of the patient. In this way, a very rigid structure is obtained.
The process of growth of bone tissue into the porous adherent coating takes some time and it is necessary to provide an initial affixing ofthe bone ends and the plate to position the implant for ingrowth of the bone tissue. In the case of bone setting, the implant, in the form of a plate, may be secured by screws, either side of the break. In the case where the implant is used as a bridge between bone ends, the implant, in the form of an elongated cylindrical rod, may be secured within the bone ends.
A further use of the surgical prosthetic device of the invention lies in artifical joints, for example, a hip prosthesis. When artifical joints are included in the body, it is necessary that they be affixed in the joint socket and this has been achieved using cements. In some joints, such as the hip joint, the stresses at certain positions are greater than at others and it may be desired to utilize adhesion achieved other than by the use of cements.
The artifical joints may be constructed in accordance with the present invention. The coating may be provided on the substrates, if desired, only at those positions where the joint will be subjected to high stress. As in the case of the bridging of bone, the bone tissue of the socket grows into the surface coating and thereby more tightly binds the prosthesis. Cement is used to position the prosthesis in the socket and cement may be employed additionally at the areas of the porous coating. The entire prosthesis may be formed as a composite and it has been found that the use of a cement, such as methyl methacrylate, together with the porous surface gives rise to a much enhanced adhesion of the prosthesis to the socket as compared to use ofa cement in the absence of a porous surface.
In this case, the increased surface area and morphology of the implant occasioned by the presence of the porous coating provides the enhanced adhesion. A further application of the implant of the invention is in a McIntosh arthroplasty of the knee.
An additional use of the implant of the invention is in the affixing of artificial limbs, etc. to amputees. In this embodiment, the implant, usually as an elongated rod, is secured in the bone of the stump. In the area of the implant adjacent the bone, an adherent porous coating is provided in accordance with this invention. The presence of the coating allows bone tissue to grow into the surface of the implant and rigidly secure the implant therein. The rod projects from the stump and after the implant is securely affixed to the bone, the artificial limb then may be secured to the projecting portion.
At least at the portion of the rod adjacent the body surface, the implant is provided with a porous surface. The soft body tissue at the surface of the stump, therefore, may grow into the surface of the implant at the point where it projects from the stump and thereby the surface of the skin is sealed to the implant. In the absence of the porous coating of the invention, such a seal does not form and infection of the stump may occur.
In common with the embodiments discussed above, certain parameters are necessary for the coating in the area of the fixture to the bone in order to sustain bone tissue growth into the coating and the discussion above with reference to the implant used in the setting of bone applies equally here. In particular, the pore size of the porous coating in at least the area of the implant adjacent the bone stump should exceed 50 microns.
The implant of the invention may be used in brain surgery, to replace bone removed from the cranium during a brain operation. The surgical prosthetic device of the invention in this embodiment assumes the form of a circular disc, or other shape, conforming in size to the hole formed in the skull, with a porous adherent coating formed around the peripheral areas where the device engages the skull bone. Bone tissue grows from the skull into the porous surface, and the disc thereby is incorporated into the skull.
The implant of the invention in the form of a staple may be used in the rejoining of tendon, muscle or other soft tissue to bone, for example, in a shoulder. The staple consists of a substrate and a coating, the coating being formed to sustain the growth of bone and soft tissue therein. The implant may be formed with different forms of coating, one area sustaining bone tissue growth and the other soft tissue growth. It is possible to employ a smaller interstitial pore size for soft tissue growth, as discussed above, down to about 20 microns, as compared to the pore size for bone tissue growth where an interstitial pore size exceeding about 50 microns is required.
Another area of use of the present invention is in dentistry. The implant may be anchored to the mandible and at the point of projection of the implant through the gingival, a porous coating is provided. Gum tissue grows into the coating and thereby seals the gum surface. In this way, the collection of foreign substances, causing infection, at the implant-gingival interface is prevented.
The area of the implant adjacent the mandible may be provided with a coating, in accordance with the present invention, in order to more securely anchor the implant to the jaw bone by bone tissue ingrowth.
The implant of the present invention also may be employed to provide a quick-release valve secured to the body surface of a patient for connecting internal parts of the body to external treatment devices. The implant generally consists of a ring of metal having a peripheral porous coating adjacent the areas of attachment to the patients body surface. Since the growth of body tissue into the surface takes time, temporary securement of the implant may be achieved in any desired manner, such as by the use of sutures.
' The ring is formed so that efficient connection between internal parts of the body and devices external of the body may be provided, the particular form depending on the end use.
It will be seen that a novel surgical prosthetic device is provided which has many useful surgical applications and which has many advantages over prior art methods. The enhanced strength of implant to bone or soft tissue provided by the porous adherent surface represents a significant advance in surgery.
The surgical prosthetic device of the invention may be formed in any convenient manner. For example, the porous coating may be formed by diffusion bonding of the particles and the surface. Typically, it is possible to provide a porous adherent coating having the desired characteristics by using metallic particles, such as VI- TALLlUM, having particle sizes from +325 to 100 mesh in this technique. It is not possible to use 325 mesh powder when bone tissue ingrowth and calcification is to be sustained since the interstitial pore sizes of coatings formed from such powder drop below 50 microns. implants including coatings formed from such 325 mesh powder are useful, however, where soft tissue ingrowth is to be sustained, provided that the interstitial pore size does not fall below microns.
One convenient powder metallurgy technique for forming the coating in the device of the present invention utilizes a slurry of metallic powder suspended in aqueous solution with organic binders. The slurry may be held in a mold around the area of the substrate to which it is desired to impart the porous coating. Alternatively, the slurry may be of a consistency to be selfsupporting on the surface.
The slurry is heated to remove the water and finally sintered in an inert or reducing atmosphere, such as hydrogen, to burn off the organic binder and fuse the particles together and to the substrate.
The particle size of the metallic powder and the conditions of formation of the porous coating are controlled to provide the desired interstitial pore size, porosity, strength and depth of coating. For a typical implant of the invention, employing a VlTALLlUM substrate, VlTALLlUM powder of from +325 to lOO mesh particle size requires to be heated at about 2,200F for at least 2 hours in a dry hydrogen atmosphere to provide a satisfactory product. Longer sintering times produces a stronger product.
A study of the effect of firing time on the properties of VITALLIUM powder coating (+325 mesh) at a firing temperature of about 2,200F has indicated a relationship between the density of the coating and the sintering time. The density is related to the porosity and the shear strength of the final coating, and the shear strength therefore varies with sintering time. The results are indicated in the following Table I:
(Average values for samples formed by coating and slurry methods.)
Under certain circumstances, it may be desired to machine the coating to a particular shape and this may be achieved by firing the coating to a strength at which the coating is machinable, machining the coating to the desired shape and then firing the machined coating to the final forms.
The coating may be formed in any other desired manner, for example, from the metallic powder. A depression may be formed in the surface of the substrate, free flowing metallic powder, in the absence of organic binder, may be poured into the depression and the powder tired to produce the coating.
In a typical two-stage operation, a VlTALLiUM coating may be fired at 2,l00 to 2, l 50F for about one hour to give the strength. The coating then is machined and fired again at about 2,200F for at least 2 hours, sometimes for as long as 8 hours, depending on the strength requirements of the final coating.
Where a slurry is used, the mold may be subjected to pressure during whole or part of the firing operation.
It is possible to provide the same pore size at two different positions of tissue ingrowth but in certain circumstances it may be desirable to provide two different types of coating on the same implant.
After formation of the composite structure, if desired, the porous surface may be treated with a variety of materials prior to implant in the body. These materials may include materials to promote the growth of hard or soft tissues or with antibiotics.
In the present invention, both the substrate and the powder are sintered to achieve diffusion bonding between the metal particles and between the metal particles and the substrate, and hence the thermal stresses encountered by the prior art by the use of flame spraying are avoided.
The product of the invention is superior to the prior art in terms of overall strength and ability to sustain satisfactory interlocking ingrowth of both bone and soft tissues.
EXAMPLES The invention is illustrated by the following Examples:
EXAMPLE 1 This example illustrates the formation of a surgical prosthetic device of the invention.
A VlTALLIUM rod of A inch diameter was degreased and cleaned. An aqueous VITALLIUM powder slurry consisting of 74 parts by weight of +325 mesh atomized VITALLlUM powder, 25 parts by weight of an aqueous solution of 1 percent methylcellulose, 1 part by weight of a 2 /2 percent aqueous solution of dioctyl sodium sulfosuccinate and 0.25 parts by weight of ammonium hydroxide was made up. This slurry was applied to the degreased and cleaned Vl- TALLIUM rod to a depth of 1/32 inch.
After drying, the coated rod was sintered at 2,200F in a dry hydrogen atmosphere of 99.99 percent purity for approximately two hours. The product was cooled in the hydrogen atmosphere. Examination of the product indicated that the spherical powder particles had fused at each contact point between themselves and the rod and an interior communicating substantially uniform pore structure with pore sizes ranging from 50 to micron was evident.
9 EXAMPLE n Cylindrical rods cut from the product of Example 1 were implanted into the tibia of adult mongrel dogs. Drill holes were made at right angles to the longitudinal inferior pole of the rods and the samples were mounted in the lnstron machine of Example H for compression testing. The flat undersurface of the acrylic provided an ideal base for conducting the push-out test, care having axes of the tibial shafts and the implants were intro- 5 been taken in embedding the metal 0 ensure that the duced so as to penetrate only the medial cortex, the Compressive forces would be pp directly along the inner portion of the implant being free in the medullary long axis of the cavity The effective area of Contact between the VI The results are reproduced in the following TALLlUM coating and the bone was relatively small, being equal to the cortical surface exposed by the drill- BLE 11] hole.
A push-out test designed to measure h f r VITALLIUM coating Bufied VITALLIUM Stainless SlcCl quired to dislodge the implant from the cortical bone +325 mesh P P P was carried out in the following way. An lnstron tester 1740 530 580 with a compression cell and specially designed adaptor 15 2180 5 15 595 was used to apply compressive loading directly to the 5138 2 :8 implant. The specimen of bone was held rigidly in a 00 610 vice with care being taken to ensure that the line of acof the loading force was directly Perpendicular to It will be seen from these results that the implants that of the imPlamed rods- In h Case, a compression formed in accordance with prior art methods may be load was apphed at a rate of Inches per mmute and dislodged from the acrylic with a force of 500'to 600 the force recorded graphically. The force required to psi. In contrast, with the implant of the present invendlslodge the Implant was taken as that requlred to P tion, the implant could not be dislodged at all; instead duce the first movement of the The force P the acrylic cement shattered, breaking through the line area in P- was Calculated, affording an P of the implant without movement of the metal rod. lt sion of the shear strength of the interface between the is apparent, therefore, that the porous Surface provides bone and the implant materiah a greatly increased surface area for fixation and me- The P force was tested on Various samples chanical interlocking, with consequentially increased after first inserting into the bone and then after four adhesive power. The Cement ddheres much more months implantation. Parallel studies were carried out Strongly to the porous surface and this f t has i using the rods having Poreus Coatings formed from erable practical application in providing greater stabilmesh VITALUUM P By Way of Compari ity for the components of a total hip prosthesis or Mcson, test results on smooth VITALLIUM rods also were lmosh arthroplasty f the knee obtained. The results are reproduced in the following M difi i are possible within the Scope f the Table vention.
TABLE II +325 mesh VlTALLlUM 325 mesh VITALLIUM No coating psi psi VITALLIUM rod psi 0 time 4 months 0 time 4 months 0 time 4 months 148 l520 49 850 2l0 220 164 1670 66 930 240 220 180 l69O 74 1060 270 300 230 1740 90 1060 300 330 278 1780 98 1140 315 340 It will be seen from the results of this Table ll that im- What I claim is: plants of the +325 mesh VITALLIUM coated specimens showed a markedly enhanced bonding character- A Surgical Prosthetic device Comprising p i i i h h force i d to di l d those b i i ite structure consisting of a solid metallic material subh range f 1 500 to 1,800 pounds per square i h strate and a porous coating of said metallic material ad- Th -325 h VITALUUM coated specimens l hered to and extending at least partially over the surb d d b h degree ofenhancement ffi ti face of said substrate to a thickness of about 100 mi- 350 to 1 i i d was l I complete crons to about l,O00 microns, said metallic material trast to these results obtained with products of the in being Substantially non-corrodable n ngr a le vention, the implants formed only of VITALLIUM rod by body fluids, exhibited little or no change in bonding characteristics Said porous coating Consisting of a plurality of small Over a four'month period discrete generally ball-shaped particles of said me- EXAMPLE m tallic material bonded together at their points of contact with each other and said substrate to define Rods of meta] were embedded polymethylmeth' a plurality of connected, interstitial pores uniacrylate cement. The metals involved were VlTAL- f l distributed throughout said Coating LIUM having a coating of +325 mesh VlTALLlUM 65 powder, formed as outlined in Example 1, buffed Vl- TALLIUM and stainless steel.
After 24 hours immersion, the specimens were trimmed so that there was no cement adherent to the said particles being of a size and being spaced from each other to establish an average interstitial pore size of from about 20 microns to about 200 microns substantially uniformly distributed throughout said coating and a coating porosity of between about and about 40 percent.
2. The device of claim 1 wherein said average interstitial pore size is from about 50 to about 200 microns.
3. The device of claim 1 wherein said average interstitial pore size is from about 50 to about 100 microns.
7. The device of claim 6 wherein said particle sizes are from +325 mesh to lOO mesh.
8. The device of claim 2 wherein said coating is impregnated with bone-binding cement.
9. The device of claim 7 wherein said coating is provided to a depth of about 500 microns.
10. The device of claim 1 wherein said solid substrate has two of said porous coatings of said metallic material adhered to and each extending partially over the surface of said substrate to said thickness, one of said porous coatings having an average interstitial pore size below about 50 microns for the ingrowth of soft tissue and the other of said porous coatings having an average interstitial pore size above about 50 microns for the in growth of hard tissue.
Claims (10)
1. A SURGICAL PROSTHETIC DEVICE COMPRISING A COMPOSITE STRUCTURE CONSISTING OF A SOLID METALLIC MATERIAL SUBSTRATE AND A POROUS COATING OF SAID METALLIC MATERIAL ADHERD TO AND EXTENDING AT LEAST PARTIALLY OVER THE SURFACE OF SAID SUBSTRATE TO A THICKNESS OF ABOUT 100 MICRONS TO ABOUT 1,000 MICRONS, SAID METALLIC MATERIAL BEING SUBSTANTIALLY NON-CORRODABLE AND NON-DEGRADABLE BY BODY FLUIDS, SAID POROUS COATING CONSISTING OF A PLURALITY OF SMALL DISCRETE GENERALLY BALL-SHAPED PARTICLES OF SAID METALLIC MATERIAL BONDED TOGETHER AT THEIR POINTS OF CONTACT WITH EACH OTHER AND SAID SUBSTRATE TO DEFINE A PLURALITY OF CONNECTED, INTERSTITIAL PORES UNIFORMLY DISTRIBUTED THROUGHOUT SAID COATING, SAID PARTICLES BEING OF A SIZE AND BEING SPACED FROM EACH OTHER TO ESTABLISH AN AVERAGE INTERSTITIAL PORE SIZE OF FROM ABOUT 20 MICRONS TO ABOUT 200 MICRONS SUBSTANTIALLY UNIFORMLY DISTRIBUTED THROUGHOUT SAID COATING AND A COATING POROSITY OF BETWEEN ABOUT 10 AND ABOUT 40 PERCENT.
2. The device of claim 1 wherein said average interstitial pore size is from about 50 to about 200 microns.
3. The device of claim 1 wherein said average interstitial pore size is from about 50 to about 100 microns.
4. The device of claim 1 wherein said metallic material is selected from austenitic stainless steel, titanium, titanium alloys and cobalt alloys.
5. The device of claim 1 wherein said metallic material is VITALLIUM.
6. The device of claim 1 wherein said metallic material is VITALLIUM and said particles are of +325 mesh size.
7. The device of claim 6 wherein said particle sizes are from +325 mesh to -100 mesh.
8. The device of claim 2 wherein said coating is impregnated with bone-binding cement.
9. The device of claim 7 wherein said coating is provided to a depth of about 500 microns.
10. The device of claim 1 wherein said solid substrate has two of said porous coatings of said metallic material adhered to and each extending partially over the surface of said substrate to said thickness, one of said porous coatings having an average interstitial pore size below about 50 microns for the ingrowth of soft tissue and the other of said porous coatings having an average interstitial pore size above about 50 microns for the ingrowth of hard tissue.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2711070 | 1970-06-04 | ||
GB396471 | 1971-02-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3855638A true US3855638A (en) | 1974-12-24 |
Family
ID=26238722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00360954A Expired - Lifetime US3855638A (en) | 1970-06-04 | 1973-05-16 | Surgical prosthetic device with porous metal coating |
Country Status (5)
Country | Link |
---|---|
US (1) | US3855638A (en) |
CA (1) | CA962806A (en) |
CH (1) | CH540044A (en) |
DE (1) | DE2127843A1 (en) |
FR (1) | FR2095854A5 (en) |
Cited By (427)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3971134A (en) * | 1975-01-31 | 1976-07-27 | General Atomic Company | Carbon dental implant with artificial periodontal ligament |
DE2620631A1 (en) * | 1975-05-09 | 1976-11-11 | David C Macgregor | CARDIOVASCULAR PROSTHETIC DEVICES AND IMPLANTS WITH POROUS SYSTEMS |
US4011602A (en) * | 1975-10-06 | 1977-03-15 | Battelle Memorial Institute | Porous expandable device for attachment to bone tissue |
US4051598A (en) * | 1974-04-23 | 1977-10-04 | Meer Sneer | Dental implants |
US4073999A (en) * | 1975-05-09 | 1978-02-14 | Minnesota Mining And Manufacturing Company | Porous ceramic or metallic coatings and articles |
US4156943A (en) * | 1977-08-24 | 1979-06-05 | Collier John P | High-strength porous prosthetic device and process for making the same |
US4186486A (en) * | 1977-11-04 | 1980-02-05 | Maurice Gordon | Dental prosthesis |
US4206516A (en) * | 1976-12-15 | 1980-06-10 | Ontario Research Foundation | Surgical prosthetic device or implant having pure metal porous coating |
US4252525A (en) * | 1979-12-17 | 1981-02-24 | Child Frank W | Dental implant |
US4255820A (en) * | 1979-07-24 | 1981-03-17 | Rothermel Joel E | Artificial ligaments |
US4272855A (en) * | 1978-05-19 | 1981-06-16 | Sulzer Brothers Limited | Anchoring surface for a bone implant |
US4278091A (en) * | 1980-02-01 | 1981-07-14 | Howmedica, Inc. | Soft tissue retainer for use with bone implants, especially bone staples |
US4281669A (en) * | 1975-05-09 | 1981-08-04 | Macgregor David C | Pacemaker electrode with porous system |
US4291013A (en) * | 1978-10-09 | 1981-09-22 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Medicinally useful, shaped mass of collagen resorbable in the body |
US4292694A (en) * | 1980-06-25 | 1981-10-06 | Lord Corporation | Prosthesis anchoring means |
US4292695A (en) * | 1980-06-25 | 1981-10-06 | Lord Corporation | Prosthesis stem |
US4309488A (en) * | 1978-06-23 | 1982-01-05 | Battelle-Institut E.V. | Implantable bone replacement materials based on calcium phosphate ceramic material in a matrix and process for the production thereof |
US4322398A (en) * | 1978-02-20 | 1982-03-30 | Battelle Institut E.V. | Implantable drug depot and process for the production thereof |
US4351069A (en) * | 1979-06-29 | 1982-09-28 | Union Carbide Corporation | Prosthetic devices having sintered thermoplastic coatings with a porosity gradient |
US4355428A (en) * | 1976-07-02 | 1982-10-26 | S.A. Benoist Girard & Cie | Surgical prosthesis with grainy surface |
WO1983000282A1 (en) * | 1981-07-27 | 1983-02-03 | Battelle Development Corp | Production of porous coating on a prosthesis |
US4374669A (en) * | 1975-05-09 | 1983-02-22 | Mac Gregor David C | Cardiovascular prosthetic devices and implants with porous systems |
EP0075378A1 (en) * | 1981-09-18 | 1983-03-30 | Crucible Materials Corporation | Prosthesis device and method of manufacture |
WO1983002555A1 (en) * | 1982-01-21 | 1983-08-04 | Us Medical Corp | Prosthesis fixation to bone |
US4458366A (en) * | 1975-05-09 | 1984-07-10 | Macgregor David C | Artificial implantable blood pump |
US4479271A (en) * | 1981-10-26 | 1984-10-30 | Zimmer, Inc. | Prosthetic device adapted to promote bone/tissue ingrowth |
US4542539A (en) * | 1982-03-12 | 1985-09-24 | Artech Corp. | Surgical implant having a graded porous coating |
US4549319A (en) * | 1982-08-03 | 1985-10-29 | United States Medical Corporation | Artificial joint fixation to bone |
US4550448A (en) * | 1982-02-18 | 1985-11-05 | Pfizer Hospital Products Group, Inc. | Bone prosthesis with porous coating |
EP0162604A1 (en) * | 1984-04-25 | 1985-11-27 | Minnesota Mining And Manufacturing Company | Implant with attachment surface |
DE3445731A1 (en) * | 1984-12-14 | 1986-06-19 | Klaus Dr.med. Dr.med.habil. 8000 München Draenert | Material and use thereof |
WO1986003667A1 (en) * | 1984-12-14 | 1986-07-03 | Klaus Draenert | Occlusion device made of surgical material |
US4612160A (en) * | 1984-04-02 | 1986-09-16 | Dynamet, Inc. | Porous metal coating process and mold therefor |
US4673409A (en) * | 1984-04-25 | 1987-06-16 | Minnesota Mining And Manufacturing Company | Implant with attachment surface |
US4722870A (en) * | 1985-01-22 | 1988-02-02 | Interpore International | Metal-ceramic composite material useful for implant devices |
US4743256A (en) * | 1985-10-04 | 1988-05-10 | Brantigan John W | Surgical prosthetic implant facilitating vertebral interbody fusion and method |
WO1989000413A1 (en) * | 1987-07-20 | 1989-01-26 | Stone Kevin R | Prosthetic meniscus |
US4834757A (en) * | 1987-01-22 | 1989-05-30 | Brantigan John W | Prosthetic implant |
US4834756A (en) * | 1982-02-18 | 1989-05-30 | Pfizer Hospital Products Group, Inc. | Bone prosthesis with porous coating |
US4851008A (en) * | 1988-02-01 | 1989-07-25 | Orthomet, Inc. | Bone implant prosthesis with substantially stress-free outer surface |
US4865603A (en) * | 1988-02-04 | 1989-09-12 | Joint Medical Products Corporation | Metallic prosthetic devices having micro-textured outer surfaces |
DE3918967A1 (en) * | 1988-06-10 | 1989-12-21 | Haruyuki Kawahara | FRAMELESS AND CORELESS POROESES ENOSSAL IMPLANT |
US4904265A (en) * | 1988-09-09 | 1990-02-27 | Boehringer Mannheim Corporation | Cementless acetabular implant |
US4904260A (en) * | 1987-08-20 | 1990-02-27 | Cedar Surgical, Inc. | Prosthetic disc containing therapeutic material |
US4934381A (en) * | 1975-05-09 | 1990-06-19 | Macgregor David C | Porous carbon pacemaker electrode |
US4938769A (en) * | 1989-05-31 | 1990-07-03 | Shaw James A | Modular tibial prosthesis |
US4997445A (en) * | 1989-12-08 | 1991-03-05 | Zimmer, Inc. | Metal-backed prosthetic implant with enhanced bonding of polyethylene portion to metal base |
US5004476A (en) * | 1989-10-31 | 1991-04-02 | Tulane University | Porous coated total hip replacement system |
US5007934A (en) * | 1987-07-20 | 1991-04-16 | Regen Corporation | Prosthetic meniscus |
US5007931A (en) * | 1990-05-04 | 1991-04-16 | Boehringer Mannheim Corporation | Porous coated prosthesis |
US5013324A (en) * | 1987-08-24 | 1991-05-07 | Zimmer, Inc. | Prosthetic implant with wrapped porous surface |
US5018285A (en) * | 1987-08-24 | 1991-05-28 | Zimmer, Inc. | Method of constructing prosthetic implant with wrapped porous surface |
US5032445A (en) * | 1984-07-06 | 1991-07-16 | W. L. Gore & Associates | Methods and articles for treating periodontal disease and bone defects |
US5035713A (en) * | 1990-02-12 | 1991-07-30 | Orthopaedic Research Institute, Inc. | Surgical implants incorporating re-entrant material |
US5047056A (en) * | 1990-02-16 | 1991-09-10 | Pfizer, Inc. | Canine hip prosthesis |
US5080672A (en) * | 1988-11-03 | 1992-01-14 | John Bellis | Method of applying a fully alloyed porous metallic coating to a surface of a metallic prosthesis component and product produced thereby |
US5080671A (en) * | 1987-11-25 | 1992-01-14 | Uri Oron | Method of treating a metal prosthetic device prior to surgical implantation to enhance bone growth relative thereto following implantation |
US5093179A (en) * | 1989-04-05 | 1992-03-03 | Scantlebury Todd V | Methods and articles for treating periodontal disease and bone defects |
US5098434A (en) * | 1990-11-28 | 1992-03-24 | Boehringer Mannheim Corporation | Porous coated bone screw |
US5108438A (en) * | 1989-03-02 | 1992-04-28 | Regen Corporation | Prosthetic intervertebral disc |
US5108432A (en) * | 1990-06-24 | 1992-04-28 | Pfizer Hospital Products Group, Inc. | Porous fixation surface |
US5108435A (en) * | 1989-09-28 | 1992-04-28 | Pfizer Hospital Products Group, Inc. | Cast bone ingrowth surface |
US5116374A (en) * | 1989-03-02 | 1992-05-26 | Regen Corporation | Prosthetic meniscus |
US5158574A (en) * | 1987-07-20 | 1992-10-27 | Regen Corporation | Prosthetic meniscus |
US5192324A (en) * | 1982-02-18 | 1993-03-09 | Howmedica Inc. | Bone prosthesis with porous coating |
US5201766A (en) * | 1985-09-11 | 1993-04-13 | Smith & Nephew Richards Inc. | Prosthetic device with porous matrix and method of manufacture |
US5222983A (en) * | 1990-09-13 | 1993-06-29 | Thera Patent Gmbh & Co. | Implantable prosthesis |
US5258043A (en) * | 1987-07-20 | 1993-11-02 | Regen Corporation | Method for making a prosthetic intervertebral disc |
US5282863A (en) * | 1985-06-10 | 1994-02-01 | Charles V. Burton | Flexible stabilization system for a vertebral column |
US5306311A (en) * | 1987-07-20 | 1994-04-26 | Regen Corporation | Prosthetic articular cartilage |
US5344457A (en) * | 1986-05-19 | 1994-09-06 | The University Of Toronto Innovations Foundation | Porous surfaced implant |
US5360452A (en) * | 1991-05-20 | 1994-11-01 | Depuy Inc. | Enhanced fixation system for a prosthetic implant |
US5368881A (en) * | 1993-06-10 | 1994-11-29 | Depuy, Inc. | Prosthesis with highly convoluted surface |
US5383931A (en) * | 1992-01-03 | 1995-01-24 | Synthes (U.S.A.) | Resorbable implantable device for the reconstruction of the orbit of the human skull |
US5387243A (en) * | 1992-11-23 | 1995-02-07 | Zimmer, Inc. | Method for converting a cementable implant to a press fit implant |
WO1995032623A1 (en) * | 1994-05-27 | 1995-12-07 | Regen Biologics, Inc. | Meniscal augmentation device |
US5480444A (en) * | 1994-06-02 | 1996-01-02 | Incavo; Stephen J. | Hybrid tibial tray knee prosthesis |
US5489306A (en) * | 1995-01-03 | 1996-02-06 | Gorski; Jerrold M. | Graduated porosity implant for fibro-osseous integration |
US5496372A (en) * | 1992-04-17 | 1996-03-05 | Kyocera Corporation | Hard tissue prosthesis including porous thin metal sheets |
US5522894A (en) * | 1984-12-14 | 1996-06-04 | Draenert; Klaus | Bone replacement material made of absorbable beads |
WO1996016611A1 (en) | 1994-11-30 | 1996-06-06 | Implant Innovations, Inc. | Implant surface preparation |
US5607480A (en) * | 1993-11-10 | 1997-03-04 | Implant Innovations, Inc. | Surgically implantable prosthetic devices |
US5639237A (en) * | 1995-06-08 | 1997-06-17 | Fontenot; Mark G | Dental prosthesis having indentations |
WO1997021393A1 (en) | 1995-12-08 | 1997-06-19 | Calcitek, Inc. | Dental implant having multiple tectured surfaces |
US5645591A (en) * | 1990-05-29 | 1997-07-08 | Stryker Corporation | Synthetic bone matrix |
US5672284A (en) * | 1994-04-18 | 1997-09-30 | Zimmer, Inc. | Method of making orthopaedic implant by welding |
US5702483A (en) * | 1994-10-06 | 1997-12-30 | Kwong; Louis M. | Debris isolating prosthetic hip joint |
US5735902A (en) * | 1987-07-20 | 1998-04-07 | Regen Biologics, Inc. | Hand implant device |
US5741253A (en) * | 1988-06-13 | 1998-04-21 | Michelson; Gary Karlin | Method for inserting spinal implants |
US5769781A (en) * | 1995-11-13 | 1998-06-23 | Chappuis; James L. | Protector retractor |
US5773789A (en) * | 1994-04-18 | 1998-06-30 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous metal pad |
US5772661A (en) * | 1988-06-13 | 1998-06-30 | Michelson; Gary Karlin | Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine |
US5797909A (en) * | 1988-06-13 | 1998-08-25 | Michelson; Gary Karlin | Apparatus for inserting spinal implants |
WO1998048077A1 (en) * | 1997-04-21 | 1998-10-29 | Forschungszentrum Jülich GmbH | Thin, fine pored metal layer |
US5843172A (en) * | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US5863201A (en) * | 1994-11-30 | 1999-01-26 | Implant Innovations, Inc. | Infection-blocking dental implant |
US5876454A (en) * | 1993-05-10 | 1999-03-02 | Universite De Montreal | Modified implant with bioactive conjugates on its surface for improved integration |
US5885299A (en) * | 1994-09-15 | 1999-03-23 | Surgical Dynamics, Inc. | Apparatus and method for implant insertion |
US5961554A (en) * | 1996-12-31 | 1999-10-05 | Janson; Frank S | Intervertebral spacer |
US5973222A (en) * | 1994-04-18 | 1999-10-26 | Bristol-Myers Squibb Co. | Orthopedic implant having a porous metal pad |
WO1999054524A1 (en) * | 1998-04-17 | 1999-10-28 | Gkn Sinter Metals Gmbh | Method for producing an openly porous sintered metal film |
US5986169A (en) * | 1997-12-31 | 1999-11-16 | Biorthex Inc. | Porous nickel-titanium alloy article |
WO1999058167A1 (en) * | 1998-05-14 | 1999-11-18 | Hayes Medical, Inc. | Implant with composite coating |
US6031148A (en) * | 1990-12-06 | 2000-02-29 | W. L. Gore & Associates, Inc. | Implantable bioabsorbable article |
US6049054A (en) * | 1994-04-18 | 2000-04-11 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous metal pad |
US6096038A (en) * | 1988-06-13 | 2000-08-01 | Michelson; Gary Karlin | Apparatus for inserting spinal implants |
US6095817A (en) * | 1999-02-24 | 2000-08-01 | Sulzer Calcitek Inc. | Dental implant having multiple textured surfaces |
EP0875217A3 (en) * | 1997-04-15 | 2000-08-30 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US6120502A (en) * | 1988-06-13 | 2000-09-19 | Michelson; Gary Karlin | Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis |
US6123705A (en) * | 1988-06-13 | 2000-09-26 | Sdgi Holdings, Inc. | Interbody spinal fusion implants |
US6132674A (en) * | 1995-10-12 | 2000-10-17 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous surface |
US6149650A (en) * | 1988-06-13 | 2000-11-21 | Michelson; Gary Karlin | Threaded spinal implant |
US6193761B1 (en) * | 1995-07-07 | 2001-02-27 | Depuy Orthopaedics, Inc. | Implantable prosthesis with metallic porous bead preforms applied during casting |
US6210412B1 (en) | 1988-06-13 | 2001-04-03 | Gary Karlin Michelson | Method for inserting frusto-conical interbody spinal fusion implants |
US6224595B1 (en) | 1995-02-17 | 2001-05-01 | Sofamor Danek Holdings, Inc. | Method for inserting a spinal implant |
US6405078B1 (en) | 1999-01-15 | 2002-06-11 | Biosense Webster, Inc. | Porous irrigated tip electrode catheter |
EP1216668A2 (en) | 2000-12-14 | 2002-06-26 | Depuy Orthopaedics, Inc. | Prosthesis with feature aligned to trabeculae |
WO2002049548A1 (en) * | 2000-12-21 | 2002-06-27 | Yuichi Mori | Indwelling instrument |
US6419704B1 (en) | 1999-10-08 | 2002-07-16 | Bret Ferree | Artificial intervertebral disc replacement methods and apparatus |
US20020106611A1 (en) * | 2001-01-19 | 2002-08-08 | Sutapa Bhaduri | Metal part having a dense core and porous periphery, biocompatible prosthesis and microwave sintering |
US20020128718A1 (en) * | 1999-08-13 | 2002-09-12 | Ferree Bret A. | Method of providing cells and other biologic materials for transplantation |
US20020128630A1 (en) * | 1999-08-13 | 2002-09-12 | Ferree Bret A. | Method and apparatus for providing nutrition to intervertebral disc tissue |
US6454804B1 (en) | 1999-10-08 | 2002-09-24 | Bret A. Ferree | Engineered tissue annulus fibrosis augmentation methods and apparatus |
US6466818B1 (en) | 1999-01-15 | 2002-10-15 | Biosense Webster, Inc. | Porous irrigated tip electrode catheter |
US20020151981A1 (en) * | 1999-10-14 | 2002-10-17 | Ferree Bret A. | Transplantation of engineered meniscus tissue to the intervertebral disc |
US20020156532A1 (en) * | 1999-10-08 | 2002-10-24 | Ferree Bret A. | Supplementing engineered annulus tissues with autograft or allograft tendons |
US20020156533A1 (en) * | 1999-10-08 | 2002-10-24 | Ferree Bret A. | Natural and synthetic supplements to engineered annulus and disc tissues |
US20020165542A1 (en) * | 1999-10-08 | 2002-11-07 | Ferree Bret A. | Annulus fibrosis augmentation methods and apparatus |
WO2002092881A2 (en) * | 2001-05-12 | 2002-11-21 | Gkn Sinter Metals Gmbh | Method for producing at least partially coated bodies with a coating consisting of a sinterable material |
US6491723B1 (en) | 1996-02-27 | 2002-12-10 | Implant Innovations, Inc. | Implant surface preparation method |
US20030026788A1 (en) * | 1999-10-08 | 2003-02-06 | Ferree Bret A. | Use of extracellular matrix tissue to preserve cultured cell phenotype |
US6520996B1 (en) | 1999-06-04 | 2003-02-18 | Depuy Acromed, Incorporated | Orthopedic implant |
WO2003013396A1 (en) * | 2001-08-11 | 2003-02-20 | Stanmore Implants Worldwide Ltd. | Surgical implant |
US20030074076A1 (en) * | 1999-10-08 | 2003-04-17 | Ferree Bret A. | Artificial intervertebral disc replacements with endplates |
US6572654B1 (en) | 2000-10-04 | 2003-06-03 | Albert N. Santilli | Intervertebral spacer |
US6585647B1 (en) | 1998-07-21 | 2003-07-01 | Alan A. Winder | Method and means for synthetic structural imaging and volume estimation of biological tissue organs |
EP1338256A1 (en) | 2002-02-26 | 2003-08-27 | DePuy Products, Inc. | Acetabular component with removable screw hole plugs |
US20030171818A1 (en) * | 2002-01-25 | 2003-09-11 | Lewallen David G. | Modular acetabular anti-protrusio cage and porous ingrowth cup combination |
US20030180518A1 (en) * | 2000-03-29 | 2003-09-25 | Dirk Rogowski | Sintered shaped body, whose surface comprises a porous layer and a method for the production thereof |
US20030191536A1 (en) * | 1999-10-08 | 2003-10-09 | Ferree Bret A. | Artificial intervertebral disc replacements incorporating reinforced wall sections |
US20030199887A1 (en) * | 2002-04-23 | 2003-10-23 | David Ferrera | Filamentous embolization device and method of use |
US6652765B1 (en) | 1994-11-30 | 2003-11-25 | Implant Innovations, Inc. | Implant surface preparation |
US20030232124A1 (en) * | 2002-06-18 | 2003-12-18 | Medlin Dana J. | Method for attaching a porous metal layer to a metal substrate |
US20030236521A1 (en) * | 2002-06-21 | 2003-12-25 | Scott Brown | Prosthesis cutting guide, cutting tool and method |
US20030236522A1 (en) * | 2002-06-21 | 2003-12-25 | Jack Long | Prosthesis cavity cutting guide, cutting tool and method |
US6673075B2 (en) | 2001-02-23 | 2004-01-06 | Albert N. Santilli | Porous intervertebral spacer |
WO2004002544A1 (en) * | 2002-06-27 | 2004-01-08 | Plus Endoprothetik Ag | Open-pored metal coating for joint replacement implants and method for production thereof |
US6702855B1 (en) * | 1999-01-29 | 2004-03-09 | Institut Straumann Ag | Osteophilic implants |
US20040054414A1 (en) * | 2002-09-18 | 2004-03-18 | Trieu Hai H. | Collagen-based materials and methods for augmenting intervertebral discs |
US6709462B2 (en) | 2002-01-11 | 2004-03-23 | Mayo Foundation For Medical Education And Research | Acetabular shell with screw access channels |
US20040059418A1 (en) * | 2002-09-18 | 2004-03-25 | Mckay William F. | Natural tissue devices and methods of implantation |
US20040064189A1 (en) * | 2002-09-27 | 2004-04-01 | Maroney Brian John | Concave resurfacing prosthesis |
US20040093092A1 (en) * | 1999-10-08 | 2004-05-13 | Ferree Bret A. | Rotator cuff repair using engineered tissues |
US6755866B2 (en) | 2002-08-20 | 2004-06-29 | Depuy Products, Inc. | Prosthetic stem with bearings |
US6758849B1 (en) | 1995-02-17 | 2004-07-06 | Sdgi Holdings, Inc. | Interbody spinal fusion implants |
KR100441765B1 (en) * | 2001-11-14 | 2004-07-27 | 한국과학기술연구원 | Ti-BASED ALLOY BIOMATERIALS WITH ULTRA FINE BIOACTIVE POROUS SURFACE AND MANUFACTURING METHOD THEREOF |
US6770074B2 (en) | 1988-06-13 | 2004-08-03 | Gary Karlin Michelson | Apparatus for use in inserting spinal implants |
US20040162619A1 (en) * | 2001-08-27 | 2004-08-19 | Zimmer Technology, Inc. | Tibial augments for use with knee joint prostheses, method of implanting the tibial augment, and associated tools |
EP1449544A1 (en) * | 2003-02-24 | 2004-08-25 | Depuy Products, Inc. | Metallic implants having roughened surfaces and methods for producing the same |
US20040167633A1 (en) * | 2003-02-24 | 2004-08-26 | Depuy Products, Inc. | Metallic implants having roughened surfaces and methods for producing the same |
US20040172019A1 (en) * | 1999-10-08 | 2004-09-02 | Ferree Bret A. | Reinforcers for artificial disc replacement methods and apparatus |
US6797007B1 (en) * | 1998-03-25 | 2004-09-28 | Ceramtec Ag Innovative Ceramic Engineering | Press fit connection between prosthesis components of joint prostheses |
US20040193276A1 (en) * | 2003-03-31 | 2004-09-30 | Maroney Brian J. | Modular articulating surface replacement prosthesis |
US20040193168A1 (en) * | 2003-03-31 | 2004-09-30 | Long Jack F. | Arthroplasty instruments and associated method |
US20040193175A1 (en) * | 2003-03-31 | 2004-09-30 | Maroney Brian J | Arthroplasty sizing gauge |
EP1464305A2 (en) | 2003-03-31 | 2004-10-06 | Depuy Products, Inc. | Orthopaedic joint replacement prosthesis |
US6805898B1 (en) | 2000-09-28 | 2004-10-19 | Advanced Cardiovascular Systems, Inc. | Surface features of an implantable medical device |
EP1470802A1 (en) | 2003-03-31 | 2004-10-27 | Depuy Products, Inc. | Articulating surface replacement prosthesis |
US20040260396A1 (en) * | 1999-10-08 | 2004-12-23 | Ferree Bret A. | Artificial disc and joint replacements with modular cushioning components |
US20050043801A1 (en) * | 2003-08-21 | 2005-02-24 | Trieu Hai H. | Allogenic/xenogenic implants and methods for augmenting or repairing intervertebral discs |
US6875213B2 (en) | 1993-06-10 | 2005-04-05 | Sdgi Holdings, Inc. | Method of inserting spinal implants with the use of imaging |
US20050075709A1 (en) * | 2003-02-18 | 2005-04-07 | Medtronic, Inc. | Biomedical electrode of enhanced surface area |
US20050102034A1 (en) * | 1998-05-14 | 2005-05-12 | E. Hayes Daniel E.Jr. | Bimetal acetabular component construct for hip joint prosthesis |
US20050118344A1 (en) * | 2003-12-01 | 2005-06-02 | Pacetti Stephen D. | Temperature controlled crimping |
US6923810B1 (en) | 1988-06-13 | 2005-08-02 | Gary Karlin Michelson | Frusto-conical interbody spinal fusion implants |
US20050177162A1 (en) * | 2002-07-23 | 2005-08-11 | Fondel Finance B.V. | Supporting element for attachment to bone |
US6932308B2 (en) | 2000-10-25 | 2005-08-23 | Exogen, Inc. | Transducer mounting assembly |
US20050184134A1 (en) * | 2002-06-18 | 2005-08-25 | Zimmer Technology, Inc. | Method for attaching a porous metal layer to a metal substrate |
US20050209597A1 (en) * | 2004-03-05 | 2005-09-22 | Long Jack F | Surface replacement extractor device and associated method |
US20050220853A1 (en) * | 2004-04-02 | 2005-10-06 | Kinh-Luan Dao | Controlled delivery of therapeutic agents from medical articles |
US20050240274A1 (en) * | 2002-07-25 | 2005-10-27 | Jan Hall | Arrangement for increasing the stress resistance of implants, and one such implant |
US20050267585A1 (en) * | 2004-05-26 | 2005-12-01 | Sidebotham Christopher G | Canine acetabular cup |
EP1639966A1 (en) | 2004-09-27 | 2006-03-29 | DePuy Products, Inc. | Glenoid augment |
EP1639967A1 (en) | 2004-09-27 | 2006-03-29 | DePuy Products, Inc. | Modular glenoid prosthesis |
US20060149390A1 (en) * | 2003-03-31 | 2006-07-06 | Long Jack F | Punch, implant and associated method |
US20060178749A1 (en) * | 2005-02-10 | 2006-08-10 | Zimmer Technology, Inc. | Modular porous implant |
US20060190091A1 (en) * | 2005-02-22 | 2006-08-24 | Taiyen Biotech Co. Ltd. | Bone implants |
US20060198943A1 (en) * | 2005-03-03 | 2006-09-07 | Biomet Manufacturing Corp. | Acetabular shell system and method for making |
US7108663B2 (en) | 1997-02-06 | 2006-09-19 | Exogen, Inc. | Method and apparatus for cartilage growth stimulation |
EP1711128A2 (en) * | 2004-01-16 | 2006-10-18 | Osteobiologics, Inc. | Bone-tendon-bone implant |
US20060282166A1 (en) * | 2005-06-09 | 2006-12-14 | Sdgi Holdings, Inc. | Compliant porous coating |
US20060293758A1 (en) * | 2005-06-23 | 2006-12-28 | Depuy Products, Inc. | Implants with textured surface and methods for producing the same |
US7189262B2 (en) | 1998-05-14 | 2007-03-13 | Hayes Medical, Inc. | Bimetal tibial component construct for knee joint prosthesis |
US7208222B2 (en) | 2003-07-24 | 2007-04-24 | Viasys Healthcare Inc. | Assembled non-random foams |
US7211060B1 (en) | 1998-05-06 | 2007-05-01 | Exogen, Inc. | Ultrasound bandages |
DE102005052354A1 (en) * | 2005-11-02 | 2007-05-03 | Plus Orthopedics Ag | Open-pore biocompatible surface layer for application to an implant comprises a coherent pore network and has a defined surface area |
US20070179618A1 (en) * | 2006-01-31 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc |
US20070243312A1 (en) * | 2006-04-06 | 2007-10-18 | C3 Materials Corp. | Microstructure applique and method for making same |
US7291149B1 (en) | 1995-06-07 | 2007-11-06 | Warsaw Orthopedic, Inc. | Method for inserting interbody spinal fusion implants |
US20080065226A1 (en) * | 2003-03-31 | 2008-03-13 | Depuy Products, Inc. | Prosthetic implant, trial and associated method |
US20080081007A1 (en) * | 2006-09-29 | 2008-04-03 | Mott Corporation, A Corporation Of The State Of Connecticut | Sinter bonded porous metallic coatings |
US20080110957A1 (en) * | 2006-11-13 | 2008-05-15 | Warsaw Orthopedic, Inc. | Variable angle surgical staple inserter |
US20080161847A1 (en) * | 2006-12-28 | 2008-07-03 | Orthovita, Inc. | Non-resorbable implantable guides and methods of use |
US7410469B1 (en) | 1999-05-21 | 2008-08-12 | Exogen, Inc. | Apparatus and method for ultrasonically and electromagnetically treating tissue |
EP1958650A1 (en) * | 2005-12-05 | 2008-08-20 | Mitsubishi Materials Corporation | Medical device and method of modifying the surface of medical device |
US7429249B1 (en) | 1999-06-14 | 2008-09-30 | Exogen, Inc. | Method for cavitation-induced tissue healing with low intensity ultrasound |
US7429248B1 (en) | 2001-08-09 | 2008-09-30 | Exogen, Inc. | Method and apparatus for controlling acoustic modes in tissue healing applications |
US20080243260A1 (en) * | 2007-03-30 | 2008-10-02 | Lee Jordan S | Mobile bearing assembly having a non-planar interface |
US20080243259A1 (en) * | 2007-03-30 | 2008-10-02 | Lee Jordan S | Mobile bearing insert having offset dwell point |
US20080243263A1 (en) * | 2007-03-30 | 2008-10-02 | Lee Jordan S | Mobile bearing assembly having multiple articulation interfaces |
US20080243261A1 (en) * | 2007-03-30 | 2008-10-02 | Wyss Joseph G | Mobile bearing assembly having a closed track |
US20080243262A1 (en) * | 2007-03-30 | 2008-10-02 | Lee Jordan S | Mobile bearing assembly |
US7431722B1 (en) | 1995-02-27 | 2008-10-07 | Warsaw Orthopedic, Inc. | Apparatus including a guard member having a passage with a non-circular cross section for providing protected access to the spine |
US7435260B2 (en) | 1999-08-13 | 2008-10-14 | Ferree Bret A | Use of morphogenetic proteins to treat human disc disease |
EP1997524A1 (en) | 2007-05-31 | 2008-12-03 | DePuy Products, Inc. | Sintered coatings for implantable prosthesis |
EP2008622A1 (en) | 2007-06-27 | 2008-12-31 | DePuy Products, Inc. | Osteogenic prostheses |
EP2011903A2 (en) | 2007-07-06 | 2009-01-07 | DePuy Products, Inc. | Etching solution and method of its manufacturing as well as method of etching metal surfaces and microtextured implants made using such a method |
US20090036995A1 (en) * | 2007-07-31 | 2009-02-05 | Zimmer, Inc. | Joint space interpositional prosthetic device with internal bearing surfaces |
US7491205B1 (en) | 1988-06-13 | 2009-02-17 | Warsaw Orthopedic, Inc. | Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine |
US20090088858A1 (en) * | 2004-12-23 | 2009-04-02 | Plus Orthopedics Ag | Method Of Surface Finishing A Bone Implant |
US20090112315A1 (en) * | 2007-10-29 | 2009-04-30 | Zimmer, Inc. | Medical implants and methods for delivering biologically active agents |
US7534254B1 (en) | 1988-06-13 | 2009-05-19 | Warsaw Orthopedic, Inc. | Threaded frusto-conical interbody spinal fusion implants |
US7544208B1 (en) | 2004-05-03 | 2009-06-09 | Theken Spine, Llc | Adjustable corpectomy apparatus |
US20090220564A1 (en) * | 2005-08-19 | 2009-09-03 | Baumbach William R | Methods of treating and preventing acute myocardial infarction |
US7597715B2 (en) | 2005-04-21 | 2009-10-06 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US7608105B2 (en) | 1994-09-15 | 2009-10-27 | Howmedica Osteonics Corp. | Methods of inserting conically-shaped fusion cages |
US20090292365A1 (en) * | 2008-05-22 | 2009-11-26 | Depuy Products, Inc. | Implants With Roughened Surfaces |
US7628764B2 (en) | 1997-02-14 | 2009-12-08 | Exogen, Inc. | Ultrasonic treatment for wounds |
US20090306673A1 (en) * | 2006-11-10 | 2009-12-10 | Fondel Finance B.V. | Kit and method for fixating a prosthesis or part thereof and/or filling osseous defects |
US7635447B2 (en) | 2006-02-17 | 2009-12-22 | Biomet Manufacturing Corp. | Method and apparatus for forming porous metal implants |
US20090326674A1 (en) * | 2008-06-30 | 2009-12-31 | Depuy Products, Inc. | Open Celled Metal Implants With Roughened Surfaces and Method for Roughening Open Celled Metal Implants |
US20090326667A1 (en) * | 2008-06-30 | 2009-12-31 | Williams John L | Orthopaedic femoral component having controlled condylar curvature |
US20090326665A1 (en) * | 2008-06-30 | 2009-12-31 | Wyss Joseph G | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US20090326664A1 (en) * | 2008-06-30 | 2009-12-31 | Wagner Christel M | Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature |
US20100036500A1 (en) * | 2008-06-30 | 2010-02-11 | Heldreth Mark A | Orthopaedic knee prosthesis having controlled condylar curvature |
US20100042214A1 (en) * | 2008-08-13 | 2010-02-18 | Nebosky Paul S | Drug delivery implants |
US20100042167A1 (en) * | 2008-08-13 | 2010-02-18 | Nebosky Paul S | Orthopaedic screws |
US20100042213A1 (en) * | 2008-08-13 | 2010-02-18 | Nebosky Paul S | Drug delivery implants |
US20100042215A1 (en) * | 2008-08-13 | 2010-02-18 | Stalcup Gregory C | Orthopaedic implant |
US20100042226A1 (en) * | 2008-08-13 | 2010-02-18 | Nebosky Paul S | Orthopaedic implant with spatially varying porosity |
US20100063594A1 (en) * | 2007-09-28 | 2010-03-11 | Hazebrouck Stephen A | Fixed-bearing knee prosthesis having interchangeable components |
US7713307B1 (en) * | 1999-05-31 | 2010-05-11 | Nobel Biocare Ab (Publ.) | Layer arranged on implant for bone or tissue structure |
US20100125335A1 (en) * | 2008-11-20 | 2010-05-20 | Daley Robert J | Methods and apparatus for replacing biological joints using bone cement in a suspended state |
US20100125303A1 (en) * | 2008-11-20 | 2010-05-20 | Daley Robert J | Methods and apparatus for replacing biological joints using bone mineral substance in a suspended state |
US7731981B2 (en) | 2002-11-15 | 2010-06-08 | Warsaw Orthopedic, Inc. | Collagen-based materials and methods for treating synovial joints |
US20100145452A1 (en) * | 2001-08-27 | 2010-06-10 | Zimmer, Inc. | Prosthetic implant support structure |
US20100161065A1 (en) * | 2008-12-23 | 2010-06-24 | Depuy Products, Inc. | Shoulder Prosthesis with Vault-Filling Structure having Bone-Sparing Configuration |
US7744627B2 (en) * | 2002-06-17 | 2010-06-29 | Tyco Healthcare Group Lp | Annular support structures |
US7744651B2 (en) | 2002-09-18 | 2010-06-29 | Warsaw Orthopedic, Inc | Compositions and methods for treating intervertebral discs with collagen-based materials |
US20100217338A1 (en) * | 2009-02-24 | 2010-08-26 | Wright Medical Technology, Inc. | Patient Specific Surgical Guide Locator and Mount |
US20100222891A1 (en) * | 2003-11-18 | 2010-09-02 | Depuy Products, Inc. | Modular implant system with fully porous coated sleeve |
US7789841B2 (en) | 1997-02-06 | 2010-09-07 | Exogen, Inc. | Method and apparatus for connective tissue treatment |
EP2226408A1 (en) | 2009-02-19 | 2010-09-08 | DePuy Products, Inc. | Rough porous constructs |
US7796791B2 (en) | 2002-11-07 | 2010-09-14 | Conformis, Inc. | Methods for determining meniscal size and shape and for devising treatment |
EP2241288A1 (en) | 2009-04-15 | 2010-10-20 | DePuy Products, Inc. | Surface textured titanium-containing articles |
US20100268227A1 (en) * | 2009-04-15 | 2010-10-21 | Depuy Products, Inc. | Methods and Devices for Bone Attachment |
US20100268330A1 (en) * | 2009-04-15 | 2010-10-21 | Depuy Products, Inc. | Methods and Devices for Implants with Calcium Phosphate |
WO2010122281A1 (en) * | 2009-04-24 | 2010-10-28 | Depuy International Limited | Surgical prostheses |
EP2251046A2 (en) | 2009-04-15 | 2010-11-17 | DePuy Products, Inc. | Nanotextured cobalt-chromium alloy articles |
US20100298944A1 (en) * | 2007-12-08 | 2010-11-25 | Depuy International Limited | Implant assembly |
US7850452B2 (en) | 2005-04-27 | 2010-12-14 | Biomet 3I, Llc | Pre-stressed implant component and assembly |
US20110008754A1 (en) * | 2009-07-10 | 2011-01-13 | Bassett Jeffrey A | Patient-Specific Implants With Improved Osseointegration |
WO2011004217A1 (en) * | 2009-07-07 | 2011-01-13 | Eurocoating S.P.A. | Process for depositing a coating on metal or non- metal items, and item obtained therefrom |
US7881768B2 (en) | 1998-09-14 | 2011-02-01 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
US20110029092A1 (en) * | 2009-05-21 | 2011-02-03 | Depuy Products, Inc. | Prosthesis with surfaces having different textures and method of making the prosthesis |
US20110029093A1 (en) * | 2001-05-25 | 2011-02-03 | Ray Bojarski | Patient-adapted and improved articular implants, designs and related guide tools |
EP2292188A2 (en) | 2002-11-27 | 2011-03-09 | Conformis, Inc. | Patient selectable surgical tools |
US20110069059A1 (en) * | 2009-09-18 | 2011-03-24 | Hyunjae Lee | Regulator and organic light emitting diode display using the same |
US7918876B2 (en) | 2003-03-24 | 2011-04-05 | Theken Spine, Llc | Spinal implant adjustment device |
US7923068B2 (en) | 2007-02-12 | 2011-04-12 | Lotus Applied Technology, Llc | Fabrication of composite materials using atomic layer deposition |
US20110085929A1 (en) * | 2009-10-08 | 2011-04-14 | Biomet Manufacturing Corp. | Method of bonding porous metal to metal substrates |
US7927335B2 (en) | 2004-09-27 | 2011-04-19 | Depuy Products, Inc. | Instrument for preparing an implant support surface and associated method |
WO2011048138A1 (en) | 2009-10-22 | 2011-04-28 | Depuy International Limited | A medical implant device |
US7935118B2 (en) | 2002-06-21 | 2011-05-03 | Depuy Products, Inc. | Prosthesis removal cutting guide, cutting tool and method |
EP2316387A1 (en) | 2009-10-30 | 2011-05-04 | DePuy Products, Inc. | Cutting guide for use in a joint replacement procedure |
EP2324799A2 (en) | 2004-11-24 | 2011-05-25 | Conformis, Inc. | Patient selectable knee joint arthroplasty devices |
EP2335654A1 (en) | 2003-11-25 | 2011-06-22 | Conformis, Inc. | Patient selectable knee joint arthoplasty devices |
US7981158B2 (en) | 2001-05-25 | 2011-07-19 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US20110190902A1 (en) * | 2010-01-29 | 2011-08-04 | Depuy Products, Inc. | Methods and devices for implants with improved cement adhesion |
US20110196502A1 (en) * | 2010-02-05 | 2011-08-11 | Walls James A | Methods of Using Water-Soluble Inorganic Compounds for Implants |
US8021432B2 (en) | 2005-12-05 | 2011-09-20 | Biomet Manufacturing Corp. | Apparatus for use of porous implants |
US8036729B2 (en) | 1998-09-14 | 2011-10-11 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
US8066778B2 (en) | 2005-04-21 | 2011-11-29 | Biomet Manufacturing Corp. | Porous metal cup with cobalt bearing surface |
US8066708B2 (en) | 2001-05-25 | 2011-11-29 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
EP2397110A1 (en) | 2003-06-25 | 2011-12-21 | BIEDERMANN MOTECH GmbH | Tissue integration design for seamless implant fixation |
US8114156B2 (en) * | 2008-05-30 | 2012-02-14 | Edwin Burton Hatch | Flexibly compliant ceramic prosthetic meniscus for the replacement of damaged cartilage in orthopedic surgical repair or reconstruction of hip, knee, ankle, shoulder, elbow, wrist and other anatomical joints |
US8118779B2 (en) | 2006-06-30 | 2012-02-21 | Warsaw Orthopedic, Inc. | Collagen delivery device |
US8123814B2 (en) | 2001-02-23 | 2012-02-28 | Biomet Manufacturing Corp. | Method and appartus for acetabular reconstruction |
US8122582B2 (en) | 2001-05-25 | 2012-02-28 | Conformis, Inc. | Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty |
US8172897B2 (en) | 1997-04-15 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Polymer and metal composite implantable medical devices |
US20120129133A1 (en) * | 2008-01-09 | 2012-05-24 | Kaigler Sr Darnell | Implant pellets and methods for performing bone augmentation and preservation |
US8206451B2 (en) | 2008-06-30 | 2012-06-26 | Depuy Products, Inc. | Posterior stabilized orthopaedic prosthesis |
US8231683B2 (en) | 2009-12-08 | 2012-07-31 | Depuy Products, Inc. | Shoulder prosthesis assembly having glenoid rim replacement structure |
US8234097B2 (en) | 2001-05-25 | 2012-07-31 | Conformis, Inc. | Automated systems for manufacturing patient-specific orthopedic implants and instrumentation |
US8251700B2 (en) | 2003-05-16 | 2012-08-28 | Biomet 3I, Llc | Surface treatment process for implants made of titanium alloy |
US8265730B2 (en) | 1998-09-14 | 2012-09-11 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and preventing damage |
US8266780B2 (en) | 2005-04-21 | 2012-09-18 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
USD667542S1 (en) | 2009-02-06 | 2012-09-18 | Kleiner Jeffrey B | Spinal distraction instrument |
WO2012129018A1 (en) | 2011-03-18 | 2012-09-27 | Depuy Products, Inc. | Combination reamer/drill bit for shoulder arthroplasty |
WO2012129021A1 (en) | 2011-03-18 | 2012-09-27 | Depuy Products, Inc. | Revision glenoid device and method |
US8277510B2 (en) | 2008-02-06 | 2012-10-02 | Kleiner Intellectual Property, Llc | Tools and methods for spinal fusion |
US8292967B2 (en) | 2005-04-21 | 2012-10-23 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
WO2012153092A1 (en) | 2011-05-12 | 2012-11-15 | Finsbury (Development) Ltd | A package |
US8337507B2 (en) | 2001-05-25 | 2012-12-25 | Conformis, Inc. | Methods and compositions for articular repair |
US20130006354A1 (en) * | 2010-02-26 | 2013-01-03 | Limacorporate Spa | Integrated prosthetic element |
US20130013081A1 (en) * | 2007-07-09 | 2013-01-10 | Astra Tech Ab | Nanosurface |
US8366748B2 (en) | 2008-12-05 | 2013-02-05 | Kleiner Jeffrey | Apparatus and method of spinal implant and fusion |
US8399619B2 (en) | 2006-06-30 | 2013-03-19 | Warsaw Orthopedic, Inc. | Injectable collagen material |
US8439926B2 (en) | 2001-05-25 | 2013-05-14 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
RU2483840C2 (en) * | 2011-06-10 | 2013-06-10 | Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет | Method of making porous coating on metallic implants |
USD684693S1 (en) | 2002-08-22 | 2013-06-18 | Zimmer, Inc. | Prosthetic implant support structure |
US8465548B2 (en) | 2010-11-24 | 2013-06-18 | DePuy Synthes Products, LLC | Modular glenoid prosthesis |
US8480750B2 (en) | 2010-11-24 | 2013-07-09 | DePuy Synthes Products, LLC | Modular glenoid prosthesis |
US8500740B2 (en) | 2006-02-06 | 2013-08-06 | Conformis, Inc. | Patient-specific joint arthroplasty devices for ligament repair |
EP2623050A1 (en) | 2012-02-01 | 2013-08-07 | DePuy Products, Inc. | Instrument for use in shoulder arthroplasty |
US8556983B2 (en) | 2001-05-25 | 2013-10-15 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
US8586125B2 (en) | 1999-09-03 | 2013-11-19 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of an implantable medical device |
US8602290B2 (en) | 2007-10-10 | 2013-12-10 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US8617242B2 (en) | 2001-05-25 | 2013-12-31 | Conformis, Inc. | Implant device and method for manufacture |
US8623026B2 (en) | 2006-02-06 | 2014-01-07 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief |
US8632600B2 (en) | 2007-09-25 | 2014-01-21 | Depuy (Ireland) | Prosthesis with modular extensions |
US8682052B2 (en) | 2008-03-05 | 2014-03-25 | Conformis, Inc. | Implants for altering wear patterns of articular surfaces |
US8685031B2 (en) | 2009-09-18 | 2014-04-01 | Spinal Surgical Strategies, Llc | Bone graft delivery system |
US8709089B2 (en) | 2002-10-07 | 2014-04-29 | Conformis, Inc. | Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces |
US8715359B2 (en) | 2009-10-30 | 2014-05-06 | Depuy (Ireland) | Prosthesis for cemented fixation and method for making the prosthesis |
US8727203B2 (en) | 2010-09-16 | 2014-05-20 | Howmedica Osteonics Corp. | Methods for manufacturing porous orthopaedic implants |
US8735773B2 (en) | 2007-02-14 | 2014-05-27 | Conformis, Inc. | Implant device and method for manufacture |
US8764836B2 (en) | 2011-03-18 | 2014-07-01 | Lieven de Wilde | Circular glenoid method for shoulder arthroplasty |
US8771354B2 (en) | 2011-10-26 | 2014-07-08 | George J. Picha | Hard-tissue implant |
US8771365B2 (en) | 2009-02-25 | 2014-07-08 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs, and related tools |
US8808303B2 (en) | 2009-02-24 | 2014-08-19 | Microport Orthopedics Holdings Inc. | Orthopedic surgical guide |
US8858634B2 (en) | 2008-11-04 | 2014-10-14 | Mayo Foundation For Medical Education And Research | Soft tissue attachment device |
US8900317B2 (en) | 2011-05-20 | 2014-12-02 | Zimmer, Inc. | Stabilizing prosthesis support structure |
US8906028B2 (en) | 2009-09-18 | 2014-12-09 | Spinal Surgical Strategies, Llc | Bone graft delivery device and method of using the same |
US8951260B2 (en) | 2001-05-25 | 2015-02-10 | Conformis, Inc. | Surgical cutting guide |
USD723682S1 (en) | 2013-05-03 | 2015-03-03 | Spinal Surgical Strategies, Llc | Bone graft delivery tool |
US8998996B2 (en) | 2012-09-20 | 2015-04-07 | Depuy (Ireland) | Knee prosthesis system with standard and distal offset joint line |
US9011547B2 (en) | 2010-01-21 | 2015-04-21 | Depuy (Ireland) | Knee prosthesis system |
US9020788B2 (en) | 1997-01-08 | 2015-04-28 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
EP2865466A1 (en) * | 2013-10-22 | 2015-04-29 | Linde Aktiengesellschaft | Method for modifying the surface structure of a metal body |
US20150118650A1 (en) * | 2012-04-06 | 2015-04-30 | Limacorporate Spa | Prosthetic Element for Bone Extremities Such as Fingers or Toes, or for Teeth, and Corresponding Production Method |
US9044326B2 (en) | 2001-08-27 | 2015-06-02 | Zimmer, Inc. | Femoral augments for use with knee joint prosthesis |
US9060877B2 (en) | 2009-09-18 | 2015-06-23 | Spinal Surgical Strategies, Llc | Fusion cage with combined biological delivery system |
US9119723B2 (en) | 2008-06-30 | 2015-09-01 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis assembly |
US9149750B2 (en) | 2006-09-29 | 2015-10-06 | Mott Corporation | Sinter bonded porous metallic coatings |
US9168145B2 (en) | 2008-06-30 | 2015-10-27 | Depuy (Ireland) | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US9173694B2 (en) | 2009-09-18 | 2015-11-03 | Spinal Surgical Strategies, Llc | Fusion cage with combined biological delivery system |
US9186193B2 (en) | 2009-09-18 | 2015-11-17 | Spinal Surgical Strategies, Llc | Fusion cage with combined biological delivery system |
US9204967B2 (en) | 2007-09-28 | 2015-12-08 | Depuy (Ireland) | Fixed-bearing knee prosthesis having interchangeable components |
US9226830B2 (en) | 2011-03-18 | 2016-01-05 | DePuy Synthes Products, Inc. | Device and method for retroversion correction for shoulder arthroplasty |
US9247943B1 (en) | 2009-02-06 | 2016-02-02 | Kleiner Intellectual Property, Llc | Devices and methods for preparing an intervertebral workspace |
USD750249S1 (en) | 2014-10-20 | 2016-02-23 | Spinal Surgical Strategies, Llc | Expandable fusion cage |
US9271811B1 (en) | 2003-02-27 | 2016-03-01 | Philip Scott Lyren | Method for forming a dental implant with porous body |
US9286686B2 (en) | 1998-09-14 | 2016-03-15 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and assessing cartilage loss |
US9308091B2 (en) | 2001-05-25 | 2016-04-12 | Conformis, Inc. | Devices and methods for treatment of facet and other joints |
US9320603B2 (en) | 2012-09-20 | 2016-04-26 | Depuy (Ireland) | Surgical instrument system with multiple lengths of broaches sharing a common geometry |
US9339585B2 (en) | 2014-04-03 | 2016-05-17 | Kennametal Inc. | Porous coating for surgical orthopedic implants |
US9408699B2 (en) | 2013-03-15 | 2016-08-09 | Smed-Ta/Td, Llc | Removable augment for medical implant |
US9486226B2 (en) | 2012-04-18 | 2016-11-08 | Conformis, Inc. | Tibial guides, tools, and techniques for resecting the tibial plateau |
US9492280B2 (en) | 2000-11-28 | 2016-11-15 | Medidea, Llc | Multiple-cam, posterior-stabilized knee prosthesis |
US9532879B2 (en) | 2012-09-20 | 2017-01-03 | Depuy Ireland Unlimited Company | Femoral knee prosthesis system with augments and multiple lengths of sleeves sharing a common geometry |
US9539069B2 (en) | 2012-04-26 | 2017-01-10 | Zimmer Dental, Inc. | Dental implant wedges |
US9554877B2 (en) * | 2012-07-31 | 2017-01-31 | Zimmer, Inc. | Dental regenerative device made of porous metal |
WO2017027910A1 (en) | 2015-08-14 | 2017-02-23 | The University Of Sydney | Connexin 45 inhibition for therapy |
US9603711B2 (en) | 2001-05-25 | 2017-03-28 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US9629729B2 (en) | 2009-09-18 | 2017-04-25 | Spinal Surgical Strategies, Llc | Biological delivery system with adaptable fusion cage interface |
US9649117B2 (en) | 2009-02-24 | 2017-05-16 | Microport Orthopedics Holdings, Inc. | Orthopedic surgical guide |
US9675471B2 (en) | 2012-06-11 | 2017-06-13 | Conformis, Inc. | Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components |
US9681966B2 (en) | 2013-03-15 | 2017-06-20 | Smed-Ta/Td, Llc | Method of manufacturing a tubular medical implant |
US9700431B2 (en) | 2008-08-13 | 2017-07-11 | Smed-Ta/Td, Llc | Orthopaedic implant with porous structural member |
US9724203B2 (en) | 2013-03-15 | 2017-08-08 | Smed-Ta/Td, Llc | Porous tissue ingrowth structure |
USD797290S1 (en) | 2015-10-19 | 2017-09-12 | Spinal Surgical Strategies, Llc | Bone graft delivery tool |
US9763679B2 (en) | 2011-03-18 | 2017-09-19 | DePuy Synthes Products, Inc. | Combination driver/anti-rotation handle for shoulder arthroplasty |
US9949837B2 (en) | 2013-03-07 | 2018-04-24 | Howmedica Osteonics Corp. | Partially porous bone implant keel |
US10028851B2 (en) | 1997-04-15 | 2018-07-24 | Advanced Cardiovascular Systems, Inc. | Coatings for controlling erosion of a substrate of an implantable medical device |
US10034707B2 (en) | 2014-12-30 | 2018-07-31 | Biosense Webster (Israel) Ltd. | Catheter with irrigated tip electrode with porous substrate and high density surface micro-electrodes |
EP3357459A1 (en) | 2017-02-03 | 2018-08-08 | Spinal Surgical Strategies, LLC | Bone graft delivery device with positioning handle |
WO2018165400A1 (en) | 2017-03-10 | 2018-09-13 | Applied Medical Research, Inc. | Hard-tissue implant comprising a bulk implant, a face, pillars, slots, and at least one support member |
US10085839B2 (en) | 2004-01-05 | 2018-10-02 | Conformis, Inc. | Patient-specific and patient-engineered orthopedic implants |
US10182923B2 (en) | 2015-01-14 | 2019-01-22 | Stryker European Holdings I, Llc | Spinal implant with porous and solid surfaces |
US10245159B1 (en) | 2009-09-18 | 2019-04-02 | Spinal Surgical Strategies, Llc | Bone graft delivery system and method for using same |
US10271959B2 (en) | 2009-02-11 | 2019-04-30 | Howmedica Osteonics Corp. | Intervertebral implant with integrated fixation |
USD853560S1 (en) | 2008-10-09 | 2019-07-09 | Nuvasive, Inc. | Spinal implant insertion device |
US10376372B2 (en) | 2003-02-14 | 2019-08-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10433974B2 (en) | 2003-06-30 | 2019-10-08 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
US10537666B2 (en) | 2015-05-18 | 2020-01-21 | Stryker European Holdings I, Llc | Partially resorbable implants and methods |
AU2016243847B2 (en) * | 2015-03-18 | 2020-03-26 | Zimmer Gmbh | Implant configured for hammertoe and small bone fixation |
US10603182B2 (en) | 2015-01-14 | 2020-03-31 | Stryker European Holdings I, Llc | Spinal implant with fluid delivery capabilities |
US10835388B2 (en) | 2017-09-20 | 2020-11-17 | Stryker European Operations Holdings Llc | Spinal implants |
US10842645B2 (en) | 2008-08-13 | 2020-11-24 | Smed-Ta/Td, Llc | Orthopaedic implant with porous structural member |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US10966840B2 (en) | 2010-06-24 | 2021-04-06 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US10973652B2 (en) | 2007-06-26 | 2021-04-13 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US10973656B2 (en) | 2009-09-18 | 2021-04-13 | Spinal Surgical Strategies, Inc. | Bone graft delivery system and method for using same |
US11065126B2 (en) | 2018-08-09 | 2021-07-20 | Stryker European Operations Holdings Llc | Interbody implants and optimization features thereof |
US11123173B2 (en) | 2019-09-11 | 2021-09-21 | Gary A. Zwick | Implant comprising first and second sets of pillars for attaching a tendon or a ligament to a hard tissue |
US11141276B2 (en) | 2017-01-20 | 2021-10-12 | Biomet Manufacturing, Llc | Modular augment component |
US11213397B2 (en) | 2009-05-21 | 2022-01-04 | Depuy Ireland Unlimited Company | Prosthesis with surfaces having different textures and method of making the prosthesis |
US11273050B2 (en) | 2006-12-07 | 2022-03-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11278427B2 (en) | 2018-04-10 | 2022-03-22 | Gary A. Zick, Trustee Of The Everest Trust Uta April 20, 2017 | Spinal interbody cage comprising top and bottom faces with mesh structures, pillars and slots |
US11324606B2 (en) | 2017-03-10 | 2022-05-10 | Gary A. Zwick | Spinal interbody cage comprising a bulk interbody cage, a top face, a bottom face, pillars, and slots |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US20220175432A1 (en) * | 2020-12-04 | 2022-06-09 | Industrial Technology Research Institute | Bone screw |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US11446155B2 (en) | 2017-05-08 | 2022-09-20 | Medos International Sarl | Expandable cage |
US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US11497619B2 (en) | 2013-03-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
US11596522B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable intervertebral cages with articulating joint |
US11602438B2 (en) | 2008-04-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11607321B2 (en) | 2009-12-10 | 2023-03-21 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US11654033B2 (en) | 2010-06-29 | 2023-05-23 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US11666455B2 (en) | 2009-09-18 | 2023-06-06 | Spinal Surgical Strategies, Inc., A Nevada Corporation | Bone graft delivery devices, systems and kits |
DE102021132139A1 (en) | 2021-12-07 | 2023-06-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Method of making a porous sheet or body |
US11690724B2 (en) * | 2019-10-31 | 2023-07-04 | Beijing Ak Medical Co., Ltd | Metal-ceramic composite joint prosthesis and applications and manufacturing method thereof |
US11737881B2 (en) | 2008-01-17 | 2023-08-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11911287B2 (en) | 2010-06-24 | 2024-02-27 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US12011355B2 (en) * | 2005-12-06 | 2024-06-18 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
US12108959B2 (en) | 2019-05-29 | 2024-10-08 | Wright Medical Technology, Inc. | Preparing a tibia for receiving tibial implant component of a replacement ankle |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2806609C2 (en) | 1978-02-16 | 1980-03-13 | Anton Dr. 4400 Muenster Haerle | Osteosynthesis aids |
SU848004A1 (en) * | 1979-01-04 | 1981-07-23 | Всесоюзный Научно-Исследовательскийи Испытательный Институт Медицинскойтехники | Joining element for fixation of bone tissue |
DE2928007A1 (en) * | 1979-07-11 | 1981-01-15 | Riess Guido Dr | BONE IMPLANT BODY FOR PROSTHESES AND BONE CONNECTORS AND METHOD FOR THE PRODUCTION THEREOF |
FR2585946B1 (en) * | 1985-08-12 | 1990-05-11 | Epinette Jean Alain | COTYLOIDAL HIP PROSTHESIS COMPONENT, TO BE IMPLANTED WITHOUT CEMENT |
US4668290A (en) * | 1985-08-13 | 1987-05-26 | Pfizer Hospital Products Group Inc. | Dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization |
DD251074A1 (en) * | 1986-07-21 | 1987-11-04 | Karl Marx Stadt Tech Hochschul | WEAR-FREE HIP JOINT PAN |
DE4224333C2 (en) * | 1992-07-23 | 1994-10-27 | Krupp Medizintechnik | Endoprosthesis and method of making an endoprosthesis |
DE102007031670B4 (en) * | 2006-08-04 | 2017-08-31 | Ceramtec Gmbh | Porous outer shell of metal cups to reduce cup deformations in Pressfit situations |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2668531A (en) * | 1952-02-15 | 1954-02-09 | Edward J Haboush | Prosthesis for hip joint |
US3314420A (en) * | 1961-10-23 | 1967-04-18 | Haeger Potteries Inc | Prosthetic parts and methods of making the same |
US3605123A (en) * | 1969-04-29 | 1971-09-20 | Melpar Inc | Bone implant |
-
1971
- 1971-05-28 CA CA114,165A patent/CA962806A/en not_active Expired
- 1971-06-03 CH CH812271A patent/CH540044A/en not_active IP Right Cessation
- 1971-06-03 FR FR7120115A patent/FR2095854A5/fr not_active Expired
- 1971-06-04 DE DE19712127843 patent/DE2127843A1/en active Pending
-
1973
- 1973-05-16 US US00360954A patent/US3855638A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2668531A (en) * | 1952-02-15 | 1954-02-09 | Edward J Haboush | Prosthesis for hip joint |
US3314420A (en) * | 1961-10-23 | 1967-04-18 | Haeger Potteries Inc | Prosthetic parts and methods of making the same |
US3605123A (en) * | 1969-04-29 | 1971-09-20 | Melpar Inc | Bone implant |
Non-Patent Citations (1)
Title |
---|
Sintered Fiber Metal Composites as a Basis for Attachment of Implants to Bone by V. Galante et al., The Journal of Bone & Joint Surgery, Vol. 53 A, No. 1, January 1971, pages 101 114. * |
Cited By (905)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4051598A (en) * | 1974-04-23 | 1977-10-04 | Meer Sneer | Dental implants |
US3971134A (en) * | 1975-01-31 | 1976-07-27 | General Atomic Company | Carbon dental implant with artificial periodontal ligament |
US4101984A (en) * | 1975-05-09 | 1978-07-25 | Macgregor David C | Cardiovascular prosthetic devices and implants with porous systems |
US4374669A (en) * | 1975-05-09 | 1983-02-22 | Mac Gregor David C | Cardiovascular prosthetic devices and implants with porous systems |
US4073999A (en) * | 1975-05-09 | 1978-02-14 | Minnesota Mining And Manufacturing Company | Porous ceramic or metallic coatings and articles |
US4355426A (en) * | 1975-05-09 | 1982-10-26 | Macgregor David C | Porous flexible vascular graft |
US4934381A (en) * | 1975-05-09 | 1990-06-19 | Macgregor David C | Porous carbon pacemaker electrode |
DE2620631A1 (en) * | 1975-05-09 | 1976-11-11 | David C Macgregor | CARDIOVASCULAR PROSTHETIC DEVICES AND IMPLANTS WITH POROUS SYSTEMS |
US4458366A (en) * | 1975-05-09 | 1984-07-10 | Macgregor David C | Artificial implantable blood pump |
US4281669A (en) * | 1975-05-09 | 1981-08-04 | Macgregor David C | Pacemaker electrode with porous system |
US4011602A (en) * | 1975-10-06 | 1977-03-15 | Battelle Memorial Institute | Porous expandable device for attachment to bone tissue |
US4355428A (en) * | 1976-07-02 | 1982-10-26 | S.A. Benoist Girard & Cie | Surgical prosthesis with grainy surface |
US4206516A (en) * | 1976-12-15 | 1980-06-10 | Ontario Research Foundation | Surgical prosthetic device or implant having pure metal porous coating |
US4156943A (en) * | 1977-08-24 | 1979-06-05 | Collier John P | High-strength porous prosthetic device and process for making the same |
US4186486A (en) * | 1977-11-04 | 1980-02-05 | Maurice Gordon | Dental prosthesis |
US4347234A (en) * | 1978-01-09 | 1982-08-31 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Medicinally useful, shaped mass of collagen resorbable in the body |
US4322398A (en) * | 1978-02-20 | 1982-03-30 | Battelle Institut E.V. | Implantable drug depot and process for the production thereof |
US4272855A (en) * | 1978-05-19 | 1981-06-16 | Sulzer Brothers Limited | Anchoring surface for a bone implant |
US4309488A (en) * | 1978-06-23 | 1982-01-05 | Battelle-Institut E.V. | Implantable bone replacement materials based on calcium phosphate ceramic material in a matrix and process for the production thereof |
US4291013A (en) * | 1978-10-09 | 1981-09-22 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Medicinally useful, shaped mass of collagen resorbable in the body |
US4351069A (en) * | 1979-06-29 | 1982-09-28 | Union Carbide Corporation | Prosthetic devices having sintered thermoplastic coatings with a porosity gradient |
US4255820A (en) * | 1979-07-24 | 1981-03-17 | Rothermel Joel E | Artificial ligaments |
US4252525A (en) * | 1979-12-17 | 1981-02-24 | Child Frank W | Dental implant |
US4278091A (en) * | 1980-02-01 | 1981-07-14 | Howmedica, Inc. | Soft tissue retainer for use with bone implants, especially bone staples |
US4292694A (en) * | 1980-06-25 | 1981-10-06 | Lord Corporation | Prosthesis anchoring means |
FR2485366A1 (en) * | 1980-06-25 | 1981-12-31 | Lord Corp | STEM, FORMING A BRANCH OF A HUMAN JOINT PROSTHESIS, CAPABLE OF SELF-SETTING IN A MEDIUM-BONE CHANNEL |
FR2485365A1 (en) * | 1980-06-25 | 1981-12-31 | Lord Corp | DEVICE FOR ANCHORING A HUMAN JOINT PROSTHESIS SEGMENT IN A BONE MEDIATION CHANNEL |
US4292695A (en) * | 1980-06-25 | 1981-10-06 | Lord Corporation | Prosthesis stem |
JPS58501160A (en) * | 1981-07-27 | 1983-07-21 | バッテル・デイベロプメント・コ−ポレ−シヨン | Prosthesis and method of forming a porous coating on its surface |
WO1983000282A1 (en) * | 1981-07-27 | 1983-02-03 | Battelle Development Corp | Production of porous coating on a prosthesis |
EP0075378A1 (en) * | 1981-09-18 | 1983-03-30 | Crucible Materials Corporation | Prosthesis device and method of manufacture |
US4479271A (en) * | 1981-10-26 | 1984-10-30 | Zimmer, Inc. | Prosthetic device adapted to promote bone/tissue ingrowth |
WO1983002555A1 (en) * | 1982-01-21 | 1983-08-04 | Us Medical Corp | Prosthesis fixation to bone |
US5441537A (en) * | 1982-02-18 | 1995-08-15 | Howmedica Inc. | Bone prosthesis with porous coating |
US4550448A (en) * | 1982-02-18 | 1985-11-05 | Pfizer Hospital Products Group, Inc. | Bone prosthesis with porous coating |
US5192324A (en) * | 1982-02-18 | 1993-03-09 | Howmedica Inc. | Bone prosthesis with porous coating |
US4834756A (en) * | 1982-02-18 | 1989-05-30 | Pfizer Hospital Products Group, Inc. | Bone prosthesis with porous coating |
US4542539A (en) * | 1982-03-12 | 1985-09-24 | Artech Corp. | Surgical implant having a graded porous coating |
US4549319A (en) * | 1982-08-03 | 1985-10-29 | United States Medical Corporation | Artificial joint fixation to bone |
US4612160A (en) * | 1984-04-02 | 1986-09-16 | Dynamet, Inc. | Porous metal coating process and mold therefor |
EP0162604A1 (en) * | 1984-04-25 | 1985-11-27 | Minnesota Mining And Manufacturing Company | Implant with attachment surface |
US4608052A (en) * | 1984-04-25 | 1986-08-26 | Minnesota Mining And Manufacturing Company | Implant with attachment surface |
US4673409A (en) * | 1984-04-25 | 1987-06-16 | Minnesota Mining And Manufacturing Company | Implant with attachment surface |
US5032445A (en) * | 1984-07-06 | 1991-07-16 | W. L. Gore & Associates | Methods and articles for treating periodontal disease and bone defects |
EP0511686A3 (en) * | 1984-12-14 | 1992-12-16 | Klaus Dr.Med. Draenert | Artificial bone and method for making it |
DE3445731A1 (en) * | 1984-12-14 | 1986-06-19 | Klaus Dr.med. Dr.med.habil. 8000 München Draenert | Material and use thereof |
EP0511686A2 (en) * | 1984-12-14 | 1992-11-04 | DRAENERT, Klaus, Dr.med. | Artificial bone and method for making it |
WO1986003671A1 (en) * | 1984-12-14 | 1986-07-03 | Klaus Draenert | Bone replacement material and utilization thereof |
WO1986003667A1 (en) * | 1984-12-14 | 1986-07-03 | Klaus Draenert | Occlusion device made of surgical material |
US5522894A (en) * | 1984-12-14 | 1996-06-04 | Draenert; Klaus | Bone replacement material made of absorbable beads |
US4722870A (en) * | 1985-01-22 | 1988-02-02 | Interpore International | Metal-ceramic composite material useful for implant devices |
US5282863A (en) * | 1985-06-10 | 1994-02-01 | Charles V. Burton | Flexible stabilization system for a vertebral column |
US5201766A (en) * | 1985-09-11 | 1993-04-13 | Smith & Nephew Richards Inc. | Prosthetic device with porous matrix and method of manufacture |
US4743256A (en) * | 1985-10-04 | 1988-05-10 | Brantigan John W | Surgical prosthetic implant facilitating vertebral interbody fusion and method |
US5344457A (en) * | 1986-05-19 | 1994-09-06 | The University Of Toronto Innovations Foundation | Porous surfaced implant |
US4878915A (en) * | 1987-01-22 | 1989-11-07 | Brantigan John W | Surgical prosthetic implant facilitating vertebral interbody fusion |
US4834757A (en) * | 1987-01-22 | 1989-05-30 | Brantigan John W | Prosthetic implant |
US5306311A (en) * | 1987-07-20 | 1994-04-26 | Regen Corporation | Prosthetic articular cartilage |
US5007934A (en) * | 1987-07-20 | 1991-04-16 | Regen Corporation | Prosthetic meniscus |
US6042610A (en) * | 1987-07-20 | 2000-03-28 | Regen Biologics, Inc. | Meniscal augmentation device |
US5624463A (en) * | 1987-07-20 | 1997-04-29 | Regen Biologics, Inc. | Prosthetic articular cartilage |
US5735902A (en) * | 1987-07-20 | 1998-04-07 | Regen Biologics, Inc. | Hand implant device |
US5681353A (en) * | 1987-07-20 | 1997-10-28 | Regen Biologics, Inc. | Meniscal augmentation device |
US4880429A (en) * | 1987-07-20 | 1989-11-14 | Stone Kevin R | Prosthetic meniscus |
US5258043A (en) * | 1987-07-20 | 1993-11-02 | Regen Corporation | Method for making a prosthetic intervertebral disc |
US5735903A (en) * | 1987-07-20 | 1998-04-07 | Li; Shu-Tung | Meniscal augmentation device |
WO1989000413A1 (en) * | 1987-07-20 | 1989-01-26 | Stone Kevin R | Prosthetic meniscus |
US5158574A (en) * | 1987-07-20 | 1992-10-27 | Regen Corporation | Prosthetic meniscus |
US4904260A (en) * | 1987-08-20 | 1990-02-27 | Cedar Surgical, Inc. | Prosthetic disc containing therapeutic material |
US5018285A (en) * | 1987-08-24 | 1991-05-28 | Zimmer, Inc. | Method of constructing prosthetic implant with wrapped porous surface |
US5013324A (en) * | 1987-08-24 | 1991-05-07 | Zimmer, Inc. | Prosthetic implant with wrapped porous surface |
US5080671A (en) * | 1987-11-25 | 1992-01-14 | Uri Oron | Method of treating a metal prosthetic device prior to surgical implantation to enhance bone growth relative thereto following implantation |
US4851008A (en) * | 1988-02-01 | 1989-07-25 | Orthomet, Inc. | Bone implant prosthesis with substantially stress-free outer surface |
US4865603A (en) * | 1988-02-04 | 1989-09-12 | Joint Medical Products Corporation | Metallic prosthetic devices having micro-textured outer surfaces |
DE3918967A1 (en) * | 1988-06-10 | 1989-12-21 | Haruyuki Kawahara | FRAMELESS AND CORELESS POROESES ENOSSAL IMPLANT |
US7534254B1 (en) | 1988-06-13 | 2009-05-19 | Warsaw Orthopedic, Inc. | Threaded frusto-conical interbody spinal fusion implants |
US7686805B2 (en) | 1988-06-13 | 2010-03-30 | Warsaw Orthopedic, Inc. | Methods for distraction of a disc space |
US5741253A (en) * | 1988-06-13 | 1998-04-21 | Michelson; Gary Karlin | Method for inserting spinal implants |
US6149650A (en) * | 1988-06-13 | 2000-11-21 | Michelson; Gary Karlin | Threaded spinal implant |
US7722619B2 (en) | 1988-06-13 | 2010-05-25 | Warsaw Orthopedic, Inc. | Method of maintaining distraction of a spinal disc space |
US8758344B2 (en) | 1988-06-13 | 2014-06-24 | Warsaw Orthopedic, Inc. | Spinal implant and instruments |
US7914530B2 (en) | 1988-06-13 | 2011-03-29 | Warsaw Orthopedic, Inc. | Tissue dilator and method for performing a spinal procedure |
US6264656B1 (en) | 1988-06-13 | 2001-07-24 | Gary Karlin Michelson | Threaded spinal implant |
US6923810B1 (en) | 1988-06-13 | 2005-08-02 | Gary Karlin Michelson | Frusto-conical interbody spinal fusion implants |
US6123705A (en) * | 1988-06-13 | 2000-09-26 | Sdgi Holdings, Inc. | Interbody spinal fusion implants |
US6120502A (en) * | 1988-06-13 | 2000-09-19 | Michelson; Gary Karlin | Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis |
US8734447B1 (en) | 1988-06-13 | 2014-05-27 | Warsaw Orthopedic, Inc. | Apparatus and method of inserting spinal implants |
US7491205B1 (en) | 1988-06-13 | 2009-02-17 | Warsaw Orthopedic, Inc. | Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine |
US6270498B1 (en) | 1988-06-13 | 2001-08-07 | Gary Karlin Michelson | Apparatus for inserting spinal implants |
US6096038A (en) * | 1988-06-13 | 2000-08-01 | Michelson; Gary Karlin | Apparatus for inserting spinal implants |
US7569054B2 (en) | 1988-06-13 | 2009-08-04 | Warsaw Orthopedic, Inc. | Tubular member having a passage and opposed bone contacting extensions |
US8353909B2 (en) | 1988-06-13 | 2013-01-15 | Warsaw Orthopedic, Inc. | Surgical instrument for distracting a spinal disc space |
US7452359B1 (en) | 1988-06-13 | 2008-11-18 | Warsaw Orthopedic, Inc. | Apparatus for inserting spinal implants |
US5772661A (en) * | 1988-06-13 | 1998-06-30 | Michelson; Gary Karlin | Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine |
US6770074B2 (en) | 1988-06-13 | 2004-08-03 | Gary Karlin Michelson | Apparatus for use in inserting spinal implants |
US8066705B2 (en) | 1988-06-13 | 2011-11-29 | Warsaw Orthopedic, Inc. | Instrumentation for the endoscopic correction of spinal disease |
US5797909A (en) * | 1988-06-13 | 1998-08-25 | Michelson; Gary Karlin | Apparatus for inserting spinal implants |
US6210412B1 (en) | 1988-06-13 | 2001-04-03 | Gary Karlin Michelson | Method for inserting frusto-conical interbody spinal fusion implants |
US8251997B2 (en) | 1988-06-13 | 2012-08-28 | Warsaw Orthopedic, Inc. | Method for inserting an artificial implant between two adjacent vertebrae along a coronal plane |
US4904265A (en) * | 1988-09-09 | 1990-02-27 | Boehringer Mannheim Corporation | Cementless acetabular implant |
US5080672A (en) * | 1988-11-03 | 1992-01-14 | John Bellis | Method of applying a fully alloyed porous metallic coating to a surface of a metallic prosthesis component and product produced thereby |
US5116374A (en) * | 1989-03-02 | 1992-05-26 | Regen Corporation | Prosthetic meniscus |
US5108438A (en) * | 1989-03-02 | 1992-04-28 | Regen Corporation | Prosthetic intervertebral disc |
US5093179A (en) * | 1989-04-05 | 1992-03-03 | Scantlebury Todd V | Methods and articles for treating periodontal disease and bone defects |
US4938769A (en) * | 1989-05-31 | 1990-07-03 | Shaw James A | Modular tibial prosthesis |
US5108435A (en) * | 1989-09-28 | 1992-04-28 | Pfizer Hospital Products Group, Inc. | Cast bone ingrowth surface |
US5004476A (en) * | 1989-10-31 | 1991-04-02 | Tulane University | Porous coated total hip replacement system |
US4997445A (en) * | 1989-12-08 | 1991-03-05 | Zimmer, Inc. | Metal-backed prosthetic implant with enhanced bonding of polyethylene portion to metal base |
US5035713A (en) * | 1990-02-12 | 1991-07-30 | Orthopaedic Research Institute, Inc. | Surgical implants incorporating re-entrant material |
US5047056A (en) * | 1990-02-16 | 1991-09-10 | Pfizer, Inc. | Canine hip prosthesis |
US5007931A (en) * | 1990-05-04 | 1991-04-16 | Boehringer Mannheim Corporation | Porous coated prosthesis |
US6605117B2 (en) | 1990-05-29 | 2003-08-12 | Stryker Corporation | Synthetic bone matrix |
US6468308B1 (en) | 1990-05-29 | 2002-10-22 | Stryker Corporation | Synthetic bone matrix |
US5645591A (en) * | 1990-05-29 | 1997-07-08 | Stryker Corporation | Synthetic bone matrix |
US5108432A (en) * | 1990-06-24 | 1992-04-28 | Pfizer Hospital Products Group, Inc. | Porous fixation surface |
US5222983A (en) * | 1990-09-13 | 1993-06-29 | Thera Patent Gmbh & Co. | Implantable prosthesis |
US5098434A (en) * | 1990-11-28 | 1992-03-24 | Boehringer Mannheim Corporation | Porous coated bone screw |
US6031148A (en) * | 1990-12-06 | 2000-02-29 | W. L. Gore & Associates, Inc. | Implantable bioabsorbable article |
US5360452A (en) * | 1991-05-20 | 1994-11-01 | Depuy Inc. | Enhanced fixation system for a prosthetic implant |
US5383931A (en) * | 1992-01-03 | 1995-01-24 | Synthes (U.S.A.) | Resorbable implantable device for the reconstruction of the orbit of the human skull |
US5732469A (en) * | 1992-04-17 | 1998-03-31 | Kyocera Corporation | Prosthesis and a method of making the same |
US5496372A (en) * | 1992-04-17 | 1996-03-05 | Kyocera Corporation | Hard tissue prosthesis including porous thin metal sheets |
US5387243A (en) * | 1992-11-23 | 1995-02-07 | Zimmer, Inc. | Method for converting a cementable implant to a press fit implant |
US5876454A (en) * | 1993-05-10 | 1999-03-02 | Universite De Montreal | Modified implant with bioactive conjugates on its surface for improved integration |
US6875213B2 (en) | 1993-06-10 | 2005-04-05 | Sdgi Holdings, Inc. | Method of inserting spinal implants with the use of imaging |
WO1994028826A1 (en) * | 1993-06-10 | 1994-12-22 | Depuy Inc. | Prosthesis with highly convoluted surface |
US7264622B2 (en) | 1993-06-10 | 2007-09-04 | Warsaw Orthopedic, Inc. | System for radial bone displacement |
US7326214B2 (en) | 1993-06-10 | 2008-02-05 | Warsaw Orthopedic, Inc. | Bone cutting device having a cutting edge with a non-extending center |
US7993347B1 (en) | 1993-06-10 | 2011-08-09 | Warsaw Orthopedic, Inc. | Guard for use in performing human interbody spinal surgery |
US5368881A (en) * | 1993-06-10 | 1994-11-29 | Depuy, Inc. | Prosthesis with highly convoluted surface |
US7399303B2 (en) | 1993-06-10 | 2008-07-15 | Warsaw Orthopedic, Inc. | Bone cutting device and method for use thereof |
US7887565B2 (en) | 1993-06-10 | 2011-02-15 | Warsaw Orthopedic, Inc. | Apparatus and method for sequential distraction |
US5607480A (en) * | 1993-11-10 | 1997-03-04 | Implant Innovations, Inc. | Surgically implantable prosthetic devices |
US5816811A (en) * | 1993-11-10 | 1998-10-06 | Implant Innovations, Inc. | Surgically implantable prosthetic devices |
US5973222A (en) * | 1994-04-18 | 1999-10-26 | Bristol-Myers Squibb Co. | Orthopedic implant having a porous metal pad |
US5773789A (en) * | 1994-04-18 | 1998-06-30 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous metal pad |
US6049054A (en) * | 1994-04-18 | 2000-04-11 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous metal pad |
US5672284A (en) * | 1994-04-18 | 1997-09-30 | Zimmer, Inc. | Method of making orthopaedic implant by welding |
US7935116B2 (en) | 1994-05-27 | 2011-05-03 | Gary Karlin Michelson | Implant for the delivery of electrical current to promote bone growth between adjacent bone masses |
US6605089B1 (en) | 1994-05-27 | 2003-08-12 | Gary Karlin Michelson | Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis |
US7455672B2 (en) | 1994-05-27 | 2008-11-25 | Gary Karlin Michelson | Method for the delivery of electrical current to promote bone growth between adjacent bone masses |
WO1995032623A1 (en) * | 1994-05-27 | 1995-12-07 | Regen Biologics, Inc. | Meniscal augmentation device |
US8206387B2 (en) | 1994-05-27 | 2012-06-26 | Michelson Gary K | Interbody spinal implant inductively coupled to an external power supply |
US5480444A (en) * | 1994-06-02 | 1996-01-02 | Incavo; Stephen J. | Hybrid tibial tray knee prosthesis |
US5683471A (en) * | 1994-06-02 | 1997-11-04 | Incavo; Stephen J. | Hybrid tibial tray knee prosthesis |
US5885299A (en) * | 1994-09-15 | 1999-03-23 | Surgical Dynamics, Inc. | Apparatus and method for implant insertion |
US7608105B2 (en) | 1994-09-15 | 2009-10-27 | Howmedica Osteonics Corp. | Methods of inserting conically-shaped fusion cages |
US5702483A (en) * | 1994-10-06 | 1997-12-30 | Kwong; Louis M. | Debris isolating prosthetic hip joint |
WO1996016611A1 (en) | 1994-11-30 | 1996-06-06 | Implant Innovations, Inc. | Implant surface preparation |
US8221499B2 (en) | 1994-11-30 | 2012-07-17 | Biomet 3I, Llc | Infection-blocking dental implant |
US7169317B2 (en) | 1994-11-30 | 2007-01-30 | Implant Innovations, Inc. | Implant surface preparation |
US5603338A (en) * | 1994-11-30 | 1997-02-18 | Innovative Implants, Inc. | Implant surface preparation utilizing acid treatment |
US7550091B2 (en) | 1994-11-30 | 2009-06-23 | Biomet 3I, Llc | Implant surface preparation |
US7547399B2 (en) | 1994-11-30 | 2009-06-16 | Biomet 3I, Llc | Implant surface preparation |
US6652765B1 (en) | 1994-11-30 | 2003-11-25 | Implant Innovations, Inc. | Implant surface preparation |
EP1488760A2 (en) | 1994-11-30 | 2004-12-22 | Implant Innovations, Inc. | Implant surface preparation |
US6969474B2 (en) | 1994-11-30 | 2005-11-29 | Implant Innovations, Inc. | Implant surface preparation |
US5863201A (en) * | 1994-11-30 | 1999-01-26 | Implant Innovations, Inc. | Infection-blocking dental implant |
US5876453A (en) * | 1994-11-30 | 1999-03-02 | Implant Innovations, Inc. | Implant surface preparation |
US7857987B2 (en) | 1994-11-30 | 2010-12-28 | Biomet 3I, Llc | Implant surface preparation |
US5489306A (en) * | 1995-01-03 | 1996-02-06 | Gorski; Jerrold M. | Graduated porosity implant for fibro-osseous integration |
US6224595B1 (en) | 1995-02-17 | 2001-05-01 | Sofamor Danek Holdings, Inc. | Method for inserting a spinal implant |
US6758849B1 (en) | 1995-02-17 | 2004-07-06 | Sdgi Holdings, Inc. | Interbody spinal fusion implants |
US7431722B1 (en) | 1995-02-27 | 2008-10-07 | Warsaw Orthopedic, Inc. | Apparatus including a guard member having a passage with a non-circular cross section for providing protected access to the spine |
US7207991B2 (en) | 1995-02-27 | 2007-04-24 | Warsaw Orthopedic, Inc. | Method for the endoscopic correction of spinal disease |
US8409292B2 (en) | 1995-06-07 | 2013-04-02 | Warsaw Orthopedic, Inc. | Spinal fusion implant |
US8057475B2 (en) | 1995-06-07 | 2011-11-15 | Warsaw Orthopedic, Inc. | Threaded interbody spinal fusion implant |
US7828800B2 (en) | 1995-06-07 | 2010-11-09 | Warsaw Orthopedic, Inc. | Threaded frusto-conical interbody spinal fusion implants |
US8679118B2 (en) | 1995-06-07 | 2014-03-25 | Warsaw Orthopedic, Inc. | Spinal implants |
US7691148B2 (en) | 1995-06-07 | 2010-04-06 | Warsaw Orthopedic, Inc. | Frusto-conical spinal implant |
US7291149B1 (en) | 1995-06-07 | 2007-11-06 | Warsaw Orthopedic, Inc. | Method for inserting interbody spinal fusion implants |
US7942933B2 (en) | 1995-06-07 | 2011-05-17 | Warsaw Orthopedic, Inc. | Frusto-conical spinal implant |
US8226652B2 (en) | 1995-06-07 | 2012-07-24 | Warsaw Orthopedic, Inc. | Threaded frusto-conical spinal implants |
US5639237A (en) * | 1995-06-08 | 1997-06-17 | Fontenot; Mark G | Dental prosthesis having indentations |
US6193761B1 (en) * | 1995-07-07 | 2001-02-27 | Depuy Orthopaedics, Inc. | Implantable prosthesis with metallic porous bead preforms applied during casting |
US6209621B1 (en) | 1995-07-07 | 2001-04-03 | Depuy Orthopaedics, Inc. | Implantable prostheses with metallic porous bead preforms applied during casting and method of forming the same |
US6132674A (en) * | 1995-10-12 | 2000-10-17 | Bristol-Myers Squibb Company | Method of making an orthopaedic implant having a porous surface |
US6544472B1 (en) | 1995-10-12 | 2003-04-08 | Zimmer, Inc. | Method of making an orthopaedic implant having a porous surface |
US5769781A (en) * | 1995-11-13 | 1998-06-23 | Chappuis; James L. | Protector retractor |
WO1997021393A1 (en) | 1995-12-08 | 1997-06-19 | Calcitek, Inc. | Dental implant having multiple tectured surfaces |
US5989027A (en) * | 1995-12-08 | 1999-11-23 | Sulzer Calcitek Inc. | Dental implant having multiple textured surfaces |
US6491723B1 (en) | 1996-02-27 | 2002-12-10 | Implant Innovations, Inc. | Implant surface preparation method |
US5961554A (en) * | 1996-12-31 | 1999-10-05 | Janson; Frank S | Intervertebral spacer |
US9020788B2 (en) | 1997-01-08 | 2015-04-28 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US7108663B2 (en) | 1997-02-06 | 2006-09-19 | Exogen, Inc. | Method and apparatus for cartilage growth stimulation |
US8123707B2 (en) | 1997-02-06 | 2012-02-28 | Exogen, Inc. | Method and apparatus for connective tissue treatment |
US7789841B2 (en) | 1997-02-06 | 2010-09-07 | Exogen, Inc. | Method and apparatus for connective tissue treatment |
US7628764B2 (en) | 1997-02-14 | 2009-12-08 | Exogen, Inc. | Ultrasonic treatment for wounds |
US6240616B1 (en) | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US5843172A (en) * | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US7699890B2 (en) | 1997-04-15 | 2010-04-20 | Advanced Cardiovascular Systems, Inc. | Medicated porous metal prosthesis and a method of making the same |
EP1527754A1 (en) * | 1997-04-15 | 2005-05-04 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
EP0875217A3 (en) * | 1997-04-15 | 2000-08-30 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US8007529B2 (en) | 1997-04-15 | 2011-08-30 | Advanced Cardiovascular Systems, Inc. | Medicated porous metal prosthesis |
US6723120B2 (en) | 1997-04-15 | 2004-04-20 | Advanced Cardiovascular Systems, Inc. | Medicated porous metal prosthesis |
US8172897B2 (en) | 1997-04-15 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Polymer and metal composite implantable medical devices |
US10028851B2 (en) | 1997-04-15 | 2018-07-24 | Advanced Cardiovascular Systems, Inc. | Coatings for controlling erosion of a substrate of an implantable medical device |
EP0875218A3 (en) * | 1997-04-15 | 2000-08-30 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
WO1998048077A1 (en) * | 1997-04-21 | 1998-10-29 | Forschungszentrum Jülich GmbH | Thin, fine pored metal layer |
US5986169A (en) * | 1997-12-31 | 1999-11-16 | Biorthex Inc. | Porous nickel-titanium alloy article |
US6797007B1 (en) * | 1998-03-25 | 2004-09-28 | Ceramtec Ag Innovative Ceramic Engineering | Press fit connection between prosthesis components of joint prostheses |
WO1999054524A1 (en) * | 1998-04-17 | 1999-10-28 | Gkn Sinter Metals Gmbh | Method for producing an openly porous sintered metal film |
US6652804B1 (en) | 1998-04-17 | 2003-11-25 | Gkn Sinter Metals Gmbh | Method for producing an openly porous sintered metal film |
US7211060B1 (en) | 1998-05-06 | 2007-05-01 | Exogen, Inc. | Ultrasound bandages |
US7850738B2 (en) | 1998-05-14 | 2010-12-14 | Hayes Jr Daniel E E | Bimetal acetabular component construct for hip joint prosthesis |
US7513912B2 (en) | 1998-05-14 | 2009-04-07 | Hayes Medical, Inc. | Bimetal tibial component construct for knee joint prosthesis |
US20060178751A1 (en) * | 1998-05-14 | 2006-08-10 | Despres Alfred S Iii | Implant with composite coating |
US7105030B2 (en) | 1998-05-14 | 2006-09-12 | Hayes Medical, Inc. | Implant with composite coating |
US8167954B2 (en) | 1998-05-14 | 2012-05-01 | Consensus Orthopedics, Inc. | Implant with composite coating |
US7445640B2 (en) | 1998-05-14 | 2008-11-04 | Hayes Medical, Inc. | Implant with composite coating |
US20090254191A1 (en) * | 1998-05-14 | 2009-10-08 | Despres Iii Alfred S | Implant with composite coating |
US20020016635A1 (en) * | 1998-05-14 | 2002-02-07 | Hayes Medical, Inc. | Implant with composite coating |
US7189262B2 (en) | 1998-05-14 | 2007-03-13 | Hayes Medical, Inc. | Bimetal tibial component construct for knee joint prosthesis |
WO1999058167A1 (en) * | 1998-05-14 | 1999-11-18 | Hayes Medical, Inc. | Implant with composite coating |
US20050102034A1 (en) * | 1998-05-14 | 2005-05-12 | E. Hayes Daniel E.Jr. | Bimetal acetabular component construct for hip joint prosthesis |
US20080021565A1 (en) * | 1998-05-14 | 2008-01-24 | Hayes Daniel E E Jr | Bimetal tibial component construct for knee joint prosthesis |
US6261322B1 (en) | 1998-05-14 | 2001-07-17 | Hayes Medical, Inc. | Implant with composite coating |
US6585647B1 (en) | 1998-07-21 | 2003-07-01 | Alan A. Winder | Method and means for synthetic structural imaging and volume estimation of biological tissue organs |
US8265730B2 (en) | 1998-09-14 | 2012-09-11 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and preventing damage |
US8306601B2 (en) | 1998-09-14 | 2012-11-06 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
US8112142B2 (en) | 1998-09-14 | 2012-02-07 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
US9286686B2 (en) | 1998-09-14 | 2016-03-15 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and assessing cartilage loss |
US8369926B2 (en) | 1998-09-14 | 2013-02-05 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
US7881768B2 (en) | 1998-09-14 | 2011-02-01 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
US8036729B2 (en) | 1998-09-14 | 2011-10-11 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
USRE43282E1 (en) | 1998-09-14 | 2012-03-27 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and devising treatment |
US8862202B2 (en) | 1998-09-14 | 2014-10-14 | The Board Of Trustees Of The Leland Stanford Junior University | Assessing the condition of a joint and preventing damage |
US6466818B1 (en) | 1999-01-15 | 2002-10-15 | Biosense Webster, Inc. | Porous irrigated tip electrode catheter |
US6405078B1 (en) | 1999-01-15 | 2002-06-11 | Biosense Webster, Inc. | Porous irrigated tip electrode catheter |
US6702855B1 (en) * | 1999-01-29 | 2004-03-09 | Institut Straumann Ag | Osteophilic implants |
US6095817A (en) * | 1999-02-24 | 2000-08-01 | Sulzer Calcitek Inc. | Dental implant having multiple textured surfaces |
US7410469B1 (en) | 1999-05-21 | 2008-08-12 | Exogen, Inc. | Apparatus and method for ultrasonically and electromagnetically treating tissue |
US8152856B2 (en) | 1999-05-31 | 2012-04-10 | Nobel Biocare Ab (Publ.) | Layer arranged on implant for bone or tissue structure, such an implant, and a method for application of the layer |
US7713307B1 (en) * | 1999-05-31 | 2010-05-11 | Nobel Biocare Ab (Publ.) | Layer arranged on implant for bone or tissue structure |
US6802867B2 (en) | 1999-06-04 | 2004-10-12 | Depuy Acromed, Inc. | Orthopedic implant |
US6520996B1 (en) | 1999-06-04 | 2003-02-18 | Depuy Acromed, Incorporated | Orthopedic implant |
US7429249B1 (en) | 1999-06-14 | 2008-09-30 | Exogen, Inc. | Method for cavitation-induced tissue healing with low intensity ultrasound |
US6793677B2 (en) | 1999-08-13 | 2004-09-21 | Bret A. Ferree | Method of providing cells and other biologic materials for transplantation |
US20020128630A1 (en) * | 1999-08-13 | 2002-09-12 | Ferree Bret A. | Method and apparatus for providing nutrition to intervertebral disc tissue |
US7435260B2 (en) | 1999-08-13 | 2008-10-14 | Ferree Bret A | Use of morphogenetic proteins to treat human disc disease |
US20020128718A1 (en) * | 1999-08-13 | 2002-09-12 | Ferree Bret A. | Method of providing cells and other biologic materials for transplantation |
US8586125B2 (en) | 1999-09-03 | 2013-11-19 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of an implantable medical device |
US20020156533A1 (en) * | 1999-10-08 | 2002-10-24 | Ferree Bret A. | Natural and synthetic supplements to engineered annulus and disc tissues |
US6648920B2 (en) | 1999-10-08 | 2003-11-18 | Bret A. Ferree | Natural and synthetic supplements to engineered annulus and disc tissues |
US20040093092A1 (en) * | 1999-10-08 | 2004-05-13 | Ferree Bret A. | Rotator cuff repair using engineered tissues |
US6969404B2 (en) | 1999-10-08 | 2005-11-29 | Ferree Bret A | Annulus fibrosis augmentation methods and apparatus |
US7060100B2 (en) | 1999-10-08 | 2006-06-13 | Ferree Bret A | Artificial disc and joint replacements with modular cushioning components |
US6454804B1 (en) | 1999-10-08 | 2002-09-24 | Bret A. Ferree | Engineered tissue annulus fibrosis augmentation methods and apparatus |
US6755863B2 (en) | 1999-10-08 | 2004-06-29 | Bret A. Ferree | Rotator cuff repair using engineered tissues |
US20020165542A1 (en) * | 1999-10-08 | 2002-11-07 | Ferree Bret A. | Annulus fibrosis augmentation methods and apparatus |
US20040172019A1 (en) * | 1999-10-08 | 2004-09-02 | Ferree Bret A. | Reinforcers for artificial disc replacement methods and apparatus |
US20020156532A1 (en) * | 1999-10-08 | 2002-10-24 | Ferree Bret A. | Supplementing engineered annulus tissues with autograft or allograft tendons |
US20030191536A1 (en) * | 1999-10-08 | 2003-10-09 | Ferree Bret A. | Artificial intervertebral disc replacements incorporating reinforced wall sections |
US20030026788A1 (en) * | 1999-10-08 | 2003-02-06 | Ferree Bret A. | Use of extracellular matrix tissue to preserve cultured cell phenotype |
US6419704B1 (en) | 1999-10-08 | 2002-07-16 | Bret Ferree | Artificial intervertebral disc replacement methods and apparatus |
US20040260396A1 (en) * | 1999-10-08 | 2004-12-23 | Ferree Bret A. | Artificial disc and joint replacements with modular cushioning components |
US20060235535A1 (en) * | 1999-10-08 | 2006-10-19 | Ferree Bret A | Artificial disc and joint replacements with modular cushioning components |
US7201776B2 (en) | 1999-10-08 | 2007-04-10 | Ferree Bret A | Artificial intervertebral disc replacements with endplates |
US7201774B2 (en) | 1999-10-08 | 2007-04-10 | Ferree Bret A | Artificial intervertebral disc replacements incorporating reinforced wall sections |
US20030074076A1 (en) * | 1999-10-08 | 2003-04-17 | Ferree Bret A. | Artificial intervertebral disc replacements with endplates |
US20020151981A1 (en) * | 1999-10-14 | 2002-10-17 | Ferree Bret A. | Transplantation of engineered meniscus tissue to the intervertebral disc |
US6648919B2 (en) | 1999-10-14 | 2003-11-18 | Bret A. Ferree | Transplantation of engineered meniscus tissue to the intervertebral disc |
US20030180518A1 (en) * | 2000-03-29 | 2003-09-25 | Dirk Rogowski | Sintered shaped body, whose surface comprises a porous layer and a method for the production thereof |
US7074479B2 (en) * | 2000-03-29 | 2006-07-11 | Ceramtec Ag Innovative Ceramic Engineering | Sintered shaped body, whose surface comprises a porous layer and a method for the production thereof |
US6805898B1 (en) | 2000-09-28 | 2004-10-19 | Advanced Cardiovascular Systems, Inc. | Surface features of an implantable medical device |
US20050033412A1 (en) * | 2000-09-28 | 2005-02-10 | Wu Steven Z. | Method of making an implantable medical device |
US7335314B2 (en) | 2000-09-28 | 2008-02-26 | Advanced Cardiovascular Systems Inc. | Method of making an implantable medical device |
US20050033411A1 (en) * | 2000-09-28 | 2005-02-10 | Wu Steven Z. | Surface features of an implantable medical device |
US6572654B1 (en) | 2000-10-04 | 2003-06-03 | Albert N. Santilli | Intervertebral spacer |
US6932308B2 (en) | 2000-10-25 | 2005-08-23 | Exogen, Inc. | Transducer mounting assembly |
US9492280B2 (en) | 2000-11-28 | 2016-11-15 | Medidea, Llc | Multiple-cam, posterior-stabilized knee prosthesis |
US10188521B2 (en) | 2000-11-28 | 2019-01-29 | Medidea, Llc | Multiple-cam, posterior-stabilized knee prosthesis |
US6949124B2 (en) | 2000-12-14 | 2005-09-27 | Depuy Products, Inc. | Prosthesis with feature aligned to trabeculae |
US20040059427A1 (en) * | 2000-12-14 | 2004-03-25 | Serbousek Jon C. | Prosthesis with feature aligned to trabeculae |
EP1216668A2 (en) | 2000-12-14 | 2002-06-26 | Depuy Orthopaedics, Inc. | Prosthesis with feature aligned to trabeculae |
US6652591B2 (en) | 2000-12-14 | 2003-11-25 | Depuy Orthopaedics, Inc. | Prosthesis with feature aligned to trabeculae |
US7214246B2 (en) | 2000-12-14 | 2007-05-08 | Depuy Orthopaedics, Inc. | Prosthesis with feature aligned to trabeculae |
WO2002049548A1 (en) * | 2000-12-21 | 2002-06-27 | Yuichi Mori | Indwelling instrument |
US20050032025A1 (en) * | 2001-01-19 | 2005-02-10 | Sutapa Bhaduri | Metal part having a dense core and porous periphery, biocompatible prosthesis and microwave sintering |
US20020106611A1 (en) * | 2001-01-19 | 2002-08-08 | Sutapa Bhaduri | Metal part having a dense core and porous periphery, biocompatible prosthesis and microwave sintering |
US20050025656A1 (en) * | 2001-01-19 | 2005-02-03 | Sutapa Bhaduri | Metal part having a dense core and porous periphery, biocompatible prosthesis and microwave sintering |
US6673075B2 (en) | 2001-02-23 | 2004-01-06 | Albert N. Santilli | Porous intervertebral spacer |
US8551181B2 (en) | 2001-02-23 | 2013-10-08 | Biomet Manufacturing, Llc | Method and apparatus for acetabular reconstruction |
US9375316B2 (en) | 2001-02-23 | 2016-06-28 | Biomet Manufacturing, Llc. | Method and apparatus for acetabular reconstruction |
US8123814B2 (en) | 2001-02-23 | 2012-02-28 | Biomet Manufacturing Corp. | Method and appartus for acetabular reconstruction |
WO2002092881A2 (en) * | 2001-05-12 | 2002-11-21 | Gkn Sinter Metals Gmbh | Method for producing at least partially coated bodies with a coating consisting of a sinterable material |
WO2002092881A3 (en) * | 2001-05-12 | 2003-04-10 | Gkn Sinter Metals Gmbh | Method for producing at least partially coated bodies with a coating consisting of a sinterable material |
US8951260B2 (en) | 2001-05-25 | 2015-02-10 | Conformis, Inc. | Surgical cutting guide |
US8083745B2 (en) | 2001-05-25 | 2011-12-27 | Conformis, Inc. | Surgical tools for arthroplasty |
US9579110B2 (en) | 2001-05-25 | 2017-02-28 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8439926B2 (en) | 2001-05-25 | 2013-05-14 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8480754B2 (en) | 2001-05-25 | 2013-07-09 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US8062302B2 (en) | 2001-05-25 | 2011-11-22 | Conformis, Inc. | Surgical tools for arthroplasty |
US7981158B2 (en) | 2001-05-25 | 2011-07-19 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US9700971B2 (en) | 2001-05-25 | 2017-07-11 | Conformis, Inc. | Implant device and method for manufacture |
US9495483B2 (en) | 2001-05-25 | 2016-11-15 | Conformis, Inc. | Automated Systems for manufacturing patient-specific orthopedic implants and instrumentation |
US9439767B2 (en) | 2001-05-25 | 2016-09-13 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US9387079B2 (en) | 2001-05-25 | 2016-07-12 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US8529630B2 (en) | 2001-05-25 | 2013-09-10 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US9775680B2 (en) | 2001-05-25 | 2017-10-03 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US8545569B2 (en) | 2001-05-25 | 2013-10-01 | Conformis, Inc. | Patient selectable knee arthroplasty devices |
US8551102B2 (en) | 2001-05-25 | 2013-10-08 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US9877790B2 (en) | 2001-05-25 | 2018-01-30 | Conformis, Inc. | Tibial implant and systems with variable slope |
US8551103B2 (en) | 2001-05-25 | 2013-10-08 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US9358018B2 (en) | 2001-05-25 | 2016-06-07 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US8551169B2 (en) | 2001-05-25 | 2013-10-08 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US9333085B2 (en) | 2001-05-25 | 2016-05-10 | Conformis, Inc. | Patient selectable knee arthroplasty devices |
US9308091B2 (en) | 2001-05-25 | 2016-04-12 | Conformis, Inc. | Devices and methods for treatment of facet and other joints |
US9295482B2 (en) | 2001-05-25 | 2016-03-29 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8066708B2 (en) | 2001-05-25 | 2011-11-29 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8551099B2 (en) | 2001-05-25 | 2013-10-08 | Conformis, Inc. | Surgical tools for arthroplasty |
US8377129B2 (en) | 2001-05-25 | 2013-02-19 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US8556907B2 (en) | 2001-05-25 | 2013-10-15 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US8556983B2 (en) | 2001-05-25 | 2013-10-15 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
US8366771B2 (en) | 2001-05-25 | 2013-02-05 | Conformis, Inc. | Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty |
US8556906B2 (en) | 2001-05-25 | 2013-10-15 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US20110029093A1 (en) * | 2001-05-25 | 2011-02-03 | Ray Bojarski | Patient-adapted and improved articular implants, designs and related guide tools |
US9216025B2 (en) | 2001-05-25 | 2015-12-22 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US8561278B2 (en) | 2001-05-25 | 2013-10-22 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US9186254B2 (en) | 2001-05-25 | 2015-11-17 | Conformis, Inc. | Patient selectable knee arthroplasty devices |
US8562611B2 (en) | 2001-05-25 | 2013-10-22 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US8460304B2 (en) | 2001-05-25 | 2013-06-11 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US9186161B2 (en) | 2001-05-25 | 2015-11-17 | Conformis, Inc. | Surgical tools for arthroplasty |
US8234097B2 (en) | 2001-05-25 | 2012-07-31 | Conformis, Inc. | Automated systems for manufacturing patient-specific orthopedic implants and instrumentation |
US8562618B2 (en) | 2001-05-25 | 2013-10-22 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US9125673B2 (en) | 2001-05-25 | 2015-09-08 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US9125672B2 (en) | 2001-05-25 | 2015-09-08 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US9107679B2 (en) | 2001-05-25 | 2015-08-18 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8568480B2 (en) | 2001-05-25 | 2013-10-29 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US8568479B2 (en) | 2001-05-25 | 2013-10-29 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US9107680B2 (en) | 2001-05-25 | 2015-08-18 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8585708B2 (en) | 2001-05-25 | 2013-11-19 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US9084617B2 (en) | 2001-05-25 | 2015-07-21 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US9072531B2 (en) | 2001-05-25 | 2015-07-07 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US9066728B2 (en) | 2001-05-25 | 2015-06-30 | Conformis, Inc. | Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty |
US9055953B2 (en) | 2001-05-25 | 2015-06-16 | Conformis, Inc. | Methods and compositions for articular repair |
US8617172B2 (en) | 2001-05-25 | 2013-12-31 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US9023050B2 (en) | 2001-05-25 | 2015-05-05 | Conformis, Inc. | Surgical tools for arthroplasty |
US8617242B2 (en) | 2001-05-25 | 2013-12-31 | Conformis, Inc. | Implant device and method for manufacture |
US8998915B2 (en) | 2001-05-25 | 2015-04-07 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US8105330B2 (en) | 2001-05-25 | 2012-01-31 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8974539B2 (en) | 2001-05-25 | 2015-03-10 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US8641716B2 (en) | 2001-05-25 | 2014-02-04 | Conformis, Inc. | Joint arthroplasty devices and surgical tools |
US8657827B2 (en) | 2001-05-25 | 2014-02-25 | Conformis, Inc. | Surgical tools for arthroplasty |
US8951259B2 (en) | 2001-05-25 | 2015-02-10 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8945230B2 (en) | 2001-05-25 | 2015-02-03 | Conformis, Inc. | Patient selectable knee joint arthroplasty devices |
US9603711B2 (en) | 2001-05-25 | 2017-03-28 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US8926706B2 (en) | 2001-05-25 | 2015-01-06 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US8906107B2 (en) | 2001-05-25 | 2014-12-09 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs and related tools |
US8882847B2 (en) | 2001-05-25 | 2014-11-11 | Conformis, Inc. | Patient selectable knee joint arthroplasty devices |
US8690945B2 (en) | 2001-05-25 | 2014-04-08 | Conformis, Inc. | Patient selectable knee arthroplasty devices |
US8343218B2 (en) | 2001-05-25 | 2013-01-01 | Conformis, Inc. | Methods and compositions for articular repair |
US8337501B2 (en) | 2001-05-25 | 2012-12-25 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8337507B2 (en) | 2001-05-25 | 2012-12-25 | Conformis, Inc. | Methods and compositions for articular repair |
US8122582B2 (en) | 2001-05-25 | 2012-02-28 | Conformis, Inc. | Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty |
US8768028B2 (en) | 2001-05-25 | 2014-07-01 | Conformis, Inc. | Methods and compositions for articular repair |
US7429248B1 (en) | 2001-08-09 | 2008-09-30 | Exogen, Inc. | Method and apparatus for controlling acoustic modes in tissue healing applications |
AU2002321451B2 (en) * | 2001-08-11 | 2007-03-01 | Stanmore Implants Worldwide Ltd. | Surgical implant |
US20040243237A1 (en) * | 2001-08-11 | 2004-12-02 | Paul Unwin | Surgical implant |
US7241313B2 (en) * | 2001-08-11 | 2007-07-10 | Stanmore Implants Worldwide Limited | Surgical implant |
WO2003013396A1 (en) * | 2001-08-11 | 2003-02-20 | Stanmore Implants Worldwide Ltd. | Surgical implant |
KR100889650B1 (en) | 2001-08-11 | 2009-03-19 | 스탠모어 임플란츠 월드와이드 리미티드 | Surgical implant |
US9907664B2 (en) | 2001-08-27 | 2018-03-06 | Zimmer, Inc. | Methods for augmenting a tibial component of a knee joint prosthesis |
US9265614B2 (en) | 2001-08-27 | 2016-02-23 | Zimmer, Inc. | Method of implanting the tibial augment |
US20100145452A1 (en) * | 2001-08-27 | 2010-06-10 | Zimmer, Inc. | Prosthetic implant support structure |
US8728168B2 (en) | 2001-08-27 | 2014-05-20 | Zimmer, Inc. | Prosthetic implant support structure |
US10806587B2 (en) | 2001-08-27 | 2020-10-20 | Zimmer, Inc. | Prosthetic implant support structure |
US20110066252A1 (en) * | 2001-08-27 | 2011-03-17 | Zimmer, Inc. | Prosthetic implant support structure |
US9539096B2 (en) | 2001-08-27 | 2017-01-10 | Zimmer, Inc. | Methods for supporting a prosthetic implant in a patient |
US8506645B2 (en) | 2001-08-27 | 2013-08-13 | Zimmer, Inc. | Tibial augments for use with knee joint prostheses |
US10893947B2 (en) | 2001-08-27 | 2021-01-19 | Zimmer, Inc. | Femoral augments for use with knee joint prosthesis |
US10085841B2 (en) | 2001-08-27 | 2018-10-02 | Zimmer, Inc. | Femoral implant systems |
US9713532B2 (en) | 2001-08-27 | 2017-07-25 | Zimmer, Inc. | Method for augmenting femoral components of knee joint prosthesis |
US8535385B2 (en) | 2001-08-27 | 2013-09-17 | Zimmer, Inc. | Prosthetic implant support structure |
US10092404B2 (en) | 2001-08-27 | 2018-10-09 | Zimmer, Inc. | Prosthetic implant support structure |
US20040162619A1 (en) * | 2001-08-27 | 2004-08-19 | Zimmer Technology, Inc. | Tibial augments for use with knee joint prostheses, method of implanting the tibial augment, and associated tools |
US10646346B2 (en) | 2001-08-27 | 2020-05-12 | Zimmer, Inc. | Prosthetic implant support structure |
US10098743B2 (en) | 2001-08-27 | 2018-10-16 | Zimmer, Inc. | Prosthetic implant support structure |
US9044326B2 (en) | 2001-08-27 | 2015-06-02 | Zimmer, Inc. | Femoral augments for use with knee joint prosthesis |
US10201426B2 (en) | 2001-08-27 | 2019-02-12 | Zimmer, Inc. | Prosthetic implant support structure |
US10653526B2 (en) | 2001-08-27 | 2020-05-19 | Zimmer, Inc. | Prosthetic implant support structure |
KR100441765B1 (en) * | 2001-11-14 | 2004-07-27 | 한국과학기술연구원 | Ti-BASED ALLOY BIOMATERIALS WITH ULTRA FINE BIOACTIVE POROUS SURFACE AND MANUFACTURING METHOD THEREOF |
US6709462B2 (en) | 2002-01-11 | 2004-03-23 | Mayo Foundation For Medical Education And Research | Acetabular shell with screw access channels |
US20030171818A1 (en) * | 2002-01-25 | 2003-09-11 | Lewallen David G. | Modular acetabular anti-protrusio cage and porous ingrowth cup combination |
US6908486B2 (en) | 2002-01-25 | 2005-06-21 | Mayo Foundation For Medical Education And Research | Modular acetabular anti-protrusio cage and porous ingrowth cup combination |
EP1338256A1 (en) | 2002-02-26 | 2003-08-27 | DePuy Products, Inc. | Acetabular component with removable screw hole plugs |
US20030163203A1 (en) * | 2002-02-26 | 2003-08-28 | Nycz Jeffrey H. | Acetabular component with removable screw hole plugs |
US20030199887A1 (en) * | 2002-04-23 | 2003-10-23 | David Ferrera | Filamentous embolization device and method of use |
US7744627B2 (en) * | 2002-06-17 | 2010-06-29 | Tyco Healthcare Group Lp | Annular support structures |
US9351729B2 (en) | 2002-06-17 | 2016-05-31 | Covidien Lp | Annular support structures |
US8257391B2 (en) | 2002-06-17 | 2012-09-04 | Tyco Healthcare Group Lp | Annular support structures |
US8551138B2 (en) | 2002-06-17 | 2013-10-08 | Covidien Lp | Annular support structures |
US20050184134A1 (en) * | 2002-06-18 | 2005-08-25 | Zimmer Technology, Inc. | Method for attaching a porous metal layer to a metal substrate |
US6945448B2 (en) * | 2002-06-18 | 2005-09-20 | Zimmer Technology, Inc. | Method for attaching a porous metal layer to a metal substrate |
US20110132974A1 (en) * | 2002-06-18 | 2011-06-09 | Zimmer, Inc. | Method for attaching porous metal layer to a metal substrate |
US20050242162A1 (en) * | 2002-06-18 | 2005-11-03 | Medlin Dana J | Method for attaching a porous metal layer to a metal substrate |
US7918382B2 (en) * | 2002-06-18 | 2011-04-05 | Zimmer Technology, Inc. | Method for attaching a porous metal layer to a metal substrate |
US8985430B2 (en) | 2002-06-18 | 2015-03-24 | Zimmer, Inc. | Method for attaching a porous metal layer to a metal substrate |
US9656358B2 (en) | 2002-06-18 | 2017-05-23 | Zimmer, Inc. | Method for attaching a porous metal layer to a metal substrate |
US20030232124A1 (en) * | 2002-06-18 | 2003-12-18 | Medlin Dana J. | Method for attaching a porous metal layer to a metal substrate |
US8191760B2 (en) | 2002-06-18 | 2012-06-05 | Zimmer Technology, Inc. | Method for attaching porous metal layer to a metal substrate |
US7935118B2 (en) | 2002-06-21 | 2011-05-03 | Depuy Products, Inc. | Prosthesis removal cutting guide, cutting tool and method |
US8545507B2 (en) | 2002-06-21 | 2013-10-01 | DePuy Synthes Products, LLC | Prosthesis removal cutting guide, cutting tool and method |
US8211113B2 (en) | 2002-06-21 | 2012-07-03 | Depuy Products, Inc. | Prosthesis cutting guide, cutting tool and method |
US8491596B2 (en) | 2002-06-21 | 2013-07-23 | Depuy Products, Inc. | Method for removal of bone |
US20030236522A1 (en) * | 2002-06-21 | 2003-12-25 | Jack Long | Prosthesis cavity cutting guide, cutting tool and method |
US20030236521A1 (en) * | 2002-06-21 | 2003-12-25 | Scott Brown | Prosthesis cutting guide, cutting tool and method |
CN1318101C (en) * | 2002-06-27 | 2007-05-30 | 内用假肢股份公司 | Open-pored metal coating for joint replacement implants and method for production thereof |
WO2004002544A1 (en) * | 2002-06-27 | 2004-01-08 | Plus Endoprothetik Ag | Open-pored metal coating for joint replacement implants and method for production thereof |
US20060100716A1 (en) * | 2002-06-27 | 2006-05-11 | Reto Lerf | Open-pored metal coating for joint replacement implants and method for production thereof |
US20050177162A1 (en) * | 2002-07-23 | 2005-08-11 | Fondel Finance B.V. | Supporting element for attachment to bone |
US9855116B2 (en) | 2002-07-25 | 2018-01-02 | Nobel Biocare Services Ag | Arrangement for increasing the stress resistance of implants and one such implant |
US20090024220A1 (en) * | 2002-07-25 | 2009-01-22 | Nobel Biocare Ab (Publ.) | Arrangement for increasing the stress resistance of implants and one such implant |
US20050240274A1 (en) * | 2002-07-25 | 2005-10-27 | Jan Hall | Arrangement for increasing the stress resistance of implants, and one such implant |
US8771361B2 (en) * | 2002-07-25 | 2014-07-08 | Nobel Biocare Services Ag | Arrangement for increasing the stress resistance of implants and one such implant |
US6755866B2 (en) | 2002-08-20 | 2004-06-29 | Depuy Products, Inc. | Prosthetic stem with bearings |
USD684693S1 (en) | 2002-08-22 | 2013-06-18 | Zimmer, Inc. | Prosthetic implant support structure |
US20040059418A1 (en) * | 2002-09-18 | 2004-03-25 | Mckay William F. | Natural tissue devices and methods of implantation |
US20050197707A1 (en) * | 2002-09-18 | 2005-09-08 | Trieu Hai H. | Collagen-based materials and methods for augmenting intervertebral discs |
US7887593B2 (en) | 2002-09-18 | 2011-02-15 | Warsaw Orthopedic, Inc. | Method of implanting natural tissue within the vertebral disc nucleus space using a drawstring |
US7713303B2 (en) | 2002-09-18 | 2010-05-11 | Warsaw Orthopedic, Inc. | Collagen-based materials and methods for augmenting intervertebral discs |
US20040054414A1 (en) * | 2002-09-18 | 2004-03-18 | Trieu Hai H. | Collagen-based materials and methods for augmenting intervertebral discs |
US7744651B2 (en) | 2002-09-18 | 2010-06-29 | Warsaw Orthopedic, Inc | Compositions and methods for treating intervertebral discs with collagen-based materials |
US8673015B2 (en) | 2002-09-27 | 2014-03-18 | DePuy Synthes Products, LLC | Concave resurfacing prosthesis |
US20080109000A1 (en) * | 2002-09-27 | 2008-05-08 | Depuy Products, Inc. | Tamp for concave resurfacing prosthesis |
US7329284B2 (en) | 2002-09-27 | 2008-02-12 | Depuy Products, Inc. | Concave resurfacing prosthesis |
US9180016B2 (en) | 2002-09-27 | 2015-11-10 | DePuy Synthes Products, Inc. | Concave resurfacing prosthesis kit |
US20100070044A1 (en) * | 2002-09-27 | 2010-03-18 | Depuy Products, Inc. | Concave Resurfacing Prosthesis |
US20040064189A1 (en) * | 2002-09-27 | 2004-04-01 | Maroney Brian John | Concave resurfacing prosthesis |
US8709089B2 (en) | 2002-10-07 | 2014-04-29 | Conformis, Inc. | Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces |
US8634617B2 (en) | 2002-11-07 | 2014-01-21 | Conformis, Inc. | Methods for determining meniscal size and shape and for devising treatment |
US8965088B2 (en) | 2002-11-07 | 2015-02-24 | Conformis, Inc. | Methods for determining meniscal size and shape and for devising treatment |
US8932363B2 (en) | 2002-11-07 | 2015-01-13 | Conformis, Inc. | Methods for determining meniscal size and shape and for devising treatment |
US8077950B2 (en) | 2002-11-07 | 2011-12-13 | Conformis, Inc. | Methods for determining meniscal size and shape and for devising treatment |
US7796791B2 (en) | 2002-11-07 | 2010-09-14 | Conformis, Inc. | Methods for determining meniscal size and shape and for devising treatment |
US7731981B2 (en) | 2002-11-15 | 2010-06-08 | Warsaw Orthopedic, Inc. | Collagen-based materials and methods for treating synovial joints |
EP2292188A2 (en) | 2002-11-27 | 2011-03-09 | Conformis, Inc. | Patient selectable surgical tools |
EP2292189A2 (en) | 2002-11-27 | 2011-03-09 | Conformis, Inc. | Patient selectable surgical tools |
US11096794B2 (en) | 2003-02-14 | 2021-08-24 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10583013B2 (en) | 2003-02-14 | 2020-03-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10492918B2 (en) | 2003-02-14 | 2019-12-03 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10433971B2 (en) | 2003-02-14 | 2019-10-08 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US11432938B2 (en) | 2003-02-14 | 2022-09-06 | DePuy Synthes Products, Inc. | In-situ intervertebral fusion device and method |
US10575959B2 (en) | 2003-02-14 | 2020-03-03 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10555817B2 (en) | 2003-02-14 | 2020-02-11 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US11207187B2 (en) | 2003-02-14 | 2021-12-28 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10376372B2 (en) | 2003-02-14 | 2019-08-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10405986B2 (en) | 2003-02-14 | 2019-09-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10786361B2 (en) | 2003-02-14 | 2020-09-29 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10420651B2 (en) | 2003-02-14 | 2019-09-24 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10639164B2 (en) | 2003-02-14 | 2020-05-05 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US20050075709A1 (en) * | 2003-02-18 | 2005-04-07 | Medtronic, Inc. | Biomedical electrode of enhanced surface area |
US20040167632A1 (en) * | 2003-02-24 | 2004-08-26 | Depuy Products, Inc. | Metallic implants having roughened surfaces and methods for producing the same |
AU2004200704B2 (en) * | 2003-02-24 | 2010-03-25 | Depuy Products, Inc. | Metallic implants having roughened surfaces and method for producing the same |
US7501073B2 (en) | 2003-02-24 | 2009-03-10 | Depuy Products, Inc. | Methods for producing metallic implants having roughened surfaces |
US20040167633A1 (en) * | 2003-02-24 | 2004-08-26 | Depuy Products, Inc. | Metallic implants having roughened surfaces and methods for producing the same |
EP1449544A1 (en) * | 2003-02-24 | 2004-08-25 | Depuy Products, Inc. | Metallic implants having roughened surfaces and methods for producing the same |
US9271811B1 (en) | 2003-02-27 | 2016-03-01 | Philip Scott Lyren | Method for forming a dental implant with porous body |
US7918876B2 (en) | 2003-03-24 | 2011-04-05 | Theken Spine, Llc | Spinal implant adjustment device |
US8182541B2 (en) | 2003-03-31 | 2012-05-22 | Depuy Products, Inc. | Extended articulation orthopaedic implant |
US8444646B2 (en) | 2003-03-31 | 2013-05-21 | Depuy Products, Inc. | Bone preparation tool kit and associated method |
US9445911B2 (en) | 2003-03-31 | 2016-09-20 | DePuy Synthes Products, Inc. | Bone preparation tool kit and associated method |
US8814943B2 (en) | 2003-03-31 | 2014-08-26 | DePuy Synthes Products,LLC | Bone preparation tool kit and associated method |
US20080065226A1 (en) * | 2003-03-31 | 2008-03-13 | Depuy Products, Inc. | Prosthetic implant, trial and associated method |
US8882776B2 (en) | 2003-03-31 | 2014-11-11 | DePuy Synthes Products, LLC | Extended articulation orthopaedic implant |
US9849000B2 (en) | 2003-03-31 | 2017-12-26 | DePuy Synthes Products, Inc. | Punch, implant and associated method |
US20060149390A1 (en) * | 2003-03-31 | 2006-07-06 | Long Jack F | Punch, implant and associated method |
US8974458B2 (en) | 2003-03-31 | 2015-03-10 | DePuy Synthes Products, LLC | Arthroplasty instruments and associated method |
US20040193276A1 (en) * | 2003-03-31 | 2004-09-30 | Maroney Brian J. | Modular articulating surface replacement prosthesis |
US10517742B2 (en) | 2003-03-31 | 2019-12-31 | DePuy Synthes Products, Inc. | Punch, implant and associated method |
US9254135B2 (en) | 2003-03-31 | 2016-02-09 | DePuy Synthes Products, Inc. | Arthroplasty instruments and associated method |
US7527631B2 (en) | 2003-03-31 | 2009-05-05 | Depuy Products, Inc. | Arthroplasty sizing gauge |
US8545506B2 (en) | 2003-03-31 | 2013-10-01 | DePuy Synthes Products, LLC | Cutting guide for use with an extended articulation orthopaedic implant |
US20040193168A1 (en) * | 2003-03-31 | 2004-09-30 | Long Jack F. | Arthroplasty instruments and associated method |
US11147691B2 (en) | 2003-03-31 | 2021-10-19 | DePuy Synthes Products, Inc. | Punch, implant and associated method |
US20040193175A1 (en) * | 2003-03-31 | 2004-09-30 | Maroney Brian J | Arthroplasty sizing gauge |
US9107758B2 (en) | 2003-03-31 | 2015-08-18 | DePuy Synthes Products, Inc. | Bone preparation tool kit and associated method |
EP1464305A2 (en) | 2003-03-31 | 2004-10-06 | Depuy Products, Inc. | Orthopaedic joint replacement prosthesis |
US20090187193A1 (en) * | 2003-03-31 | 2009-07-23 | Maroney Brian J | Joint Arthroplasty Kit and Method |
EP1470802A1 (en) | 2003-03-31 | 2004-10-27 | Depuy Products, Inc. | Articulating surface replacement prosthesis |
US20090192622A1 (en) * | 2003-03-31 | 2009-07-30 | Depuy Products, Inc. | Extended Articulation Orthopaedic Implant |
US8070755B2 (en) | 2003-03-31 | 2011-12-06 | Depuy Products, Inc. | Joint arthroplasty kit and method |
US8366713B2 (en) | 2003-03-31 | 2013-02-05 | Depuy Products, Inc. | Arthroplasty instruments and associated method |
US20090198238A1 (en) * | 2003-03-31 | 2009-08-06 | Depuy Products, Inc. | Bone Preparation Tool Kit and Associated Method |
US8105327B2 (en) | 2003-03-31 | 2012-01-31 | Depuy Products, Inc. | Punch, implant and associated method |
US10227697B2 (en) | 2003-05-16 | 2019-03-12 | Biomet 3I, Llc | Surface treatment process for implants made of titanium alloy |
US11015253B2 (en) | 2003-05-16 | 2021-05-25 | Biomet 3I, Llc | Surface treatment process for implants made of titanium alloy |
US8251700B2 (en) | 2003-05-16 | 2012-08-28 | Biomet 3I, Llc | Surface treatment process for implants made of titanium alloy |
EP2397110A1 (en) | 2003-06-25 | 2011-12-21 | BIEDERMANN MOTECH GmbH | Tissue integration design for seamless implant fixation |
US10433974B2 (en) | 2003-06-30 | 2019-10-08 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
US11612493B2 (en) | 2003-06-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
US7208222B2 (en) | 2003-07-24 | 2007-04-24 | Viasys Healthcare Inc. | Assembled non-random foams |
US20050043801A1 (en) * | 2003-08-21 | 2005-02-24 | Trieu Hai H. | Allogenic/xenogenic implants and methods for augmenting or repairing intervertebral discs |
US7309359B2 (en) | 2003-08-21 | 2007-12-18 | Warsaw Orthopedic, Inc. | Allogenic/xenogenic implants and methods for augmenting or repairing intervertebral discs |
US20080058952A1 (en) * | 2003-08-21 | 2008-03-06 | Trieu Hai H | Allogenic/xenogenic implants and methods for augmenting or repairing intervertebral discs |
US9011543B2 (en) | 2003-08-21 | 2015-04-21 | Warsaw Orthopedic, Inc. | Methods for augmenting or repairing intervertebral discs with allogenic/xenogenic implants |
US20100222891A1 (en) * | 2003-11-18 | 2010-09-02 | Depuy Products, Inc. | Modular implant system with fully porous coated sleeve |
US7799085B2 (en) | 2003-11-18 | 2010-09-21 | Depuy Products, Inc. | Modular implant system with fully porous coated sleeve |
EP2335654A1 (en) | 2003-11-25 | 2011-06-22 | Conformis, Inc. | Patient selectable knee joint arthoplasty devices |
US8052912B2 (en) | 2003-12-01 | 2011-11-08 | Advanced Cardiovascular Systems, Inc. | Temperature controlled crimping |
USRE45744E1 (en) | 2003-12-01 | 2015-10-13 | Abbott Cardiovascular Systems Inc. | Temperature controlled crimping |
US20050118344A1 (en) * | 2003-12-01 | 2005-06-02 | Pacetti Stephen D. | Temperature controlled crimping |
US10085839B2 (en) | 2004-01-05 | 2018-10-02 | Conformis, Inc. | Patient-specific and patient-engineered orthopedic implants |
EP1711128A2 (en) * | 2004-01-16 | 2006-10-18 | Osteobiologics, Inc. | Bone-tendon-bone implant |
EP1711128A4 (en) * | 2004-01-16 | 2008-07-30 | Osteobiologics Inc | Bone-tendon-bone implant |
US7879042B2 (en) | 2004-03-05 | 2011-02-01 | Depuy Products, Inc. | Surface replacement extractor device and associated method |
US8282649B2 (en) | 2004-03-05 | 2012-10-09 | Depuy Products, Inc. | Extended articulation orthopaedic implant |
US20050209597A1 (en) * | 2004-03-05 | 2005-09-22 | Long Jack F | Surface replacement extractor device and associated method |
US20050220853A1 (en) * | 2004-04-02 | 2005-10-06 | Kinh-Luan Dao | Controlled delivery of therapeutic agents from medical articles |
US7544208B1 (en) | 2004-05-03 | 2009-06-09 | Theken Spine, Llc | Adjustable corpectomy apparatus |
US7169185B2 (en) | 2004-05-26 | 2007-01-30 | Impact Science And Technology, Inc. | Canine acetabular cup |
US20050267585A1 (en) * | 2004-05-26 | 2005-12-01 | Sidebotham Christopher G | Canine acetabular cup |
US7892287B2 (en) | 2004-09-27 | 2011-02-22 | Depuy Products, Inc. | Glenoid augment and associated method |
US8556980B2 (en) | 2004-09-27 | 2013-10-15 | DePuy Synthes Products, LLC | Glenoid augment and associated method |
US8790350B2 (en) | 2004-09-27 | 2014-07-29 | DePuy Synthes Products, LLC | Instrument for preparing an implant support surface and associated method |
EP1639967A1 (en) | 2004-09-27 | 2006-03-29 | DePuy Products, Inc. | Modular glenoid prosthesis |
EP1639966A1 (en) | 2004-09-27 | 2006-03-29 | DePuy Products, Inc. | Glenoid augment |
US7927335B2 (en) | 2004-09-27 | 2011-04-19 | Depuy Products, Inc. | Instrument for preparing an implant support surface and associated method |
US7922769B2 (en) | 2004-09-27 | 2011-04-12 | Depuy Products, Inc. | Modular glenoid prosthesis and associated method |
US9149362B2 (en) | 2004-09-27 | 2015-10-06 | DePuy Synthes Products, Inc. | Instrument for preparing an implant support surface and associated method |
EP2324799A2 (en) | 2004-11-24 | 2011-05-25 | Conformis, Inc. | Patient selectable knee joint arthroplasty devices |
US20090088858A1 (en) * | 2004-12-23 | 2009-04-02 | Plus Orthopedics Ag | Method Of Surface Finishing A Bone Implant |
US20100042223A9 (en) * | 2004-12-23 | 2010-02-18 | Plus Orthopedics Ag | Method Of Surface Finishing A Bone Implant |
US20060178749A1 (en) * | 2005-02-10 | 2006-08-10 | Zimmer Technology, Inc. | Modular porous implant |
US20060190091A1 (en) * | 2005-02-22 | 2006-08-24 | Taiyen Biotech Co. Ltd. | Bone implants |
US8323348B2 (en) * | 2005-02-22 | 2012-12-04 | Taiyen Biotech Co., Ltd. | Bone implants |
US7655162B2 (en) * | 2005-03-03 | 2010-02-02 | Biomet Manufacturing Corp. | Acetabular shell system and method for making |
US20100136214A1 (en) * | 2005-03-03 | 2010-06-03 | Biomet Manufacturing Corp. | Acetabular Shell System and Method for Making |
US20060198943A1 (en) * | 2005-03-03 | 2006-09-07 | Biomet Manufacturing Corp. | Acetabular shell system and method for making |
US8266780B2 (en) | 2005-04-21 | 2012-09-18 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US8292967B2 (en) | 2005-04-21 | 2012-10-23 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US8066778B2 (en) | 2005-04-21 | 2011-11-29 | Biomet Manufacturing Corp. | Porous metal cup with cobalt bearing surface |
US7597715B2 (en) | 2005-04-21 | 2009-10-06 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US8197550B2 (en) | 2005-04-21 | 2012-06-12 | Biomet Manufacturing Corp. | Method and apparatus for use of porous implants |
US7850452B2 (en) | 2005-04-27 | 2010-12-14 | Biomet 3I, Llc | Pre-stressed implant component and assembly |
US20060282166A1 (en) * | 2005-06-09 | 2006-12-14 | Sdgi Holdings, Inc. | Compliant porous coating |
US7901462B2 (en) * | 2005-06-23 | 2011-03-08 | Depuy Products, Inc. | Implants with textured surface and methods for producing the same |
US20060293758A1 (en) * | 2005-06-23 | 2006-12-28 | Depuy Products, Inc. | Implants with textured surface and methods for producing the same |
US20090220564A1 (en) * | 2005-08-19 | 2009-09-03 | Baumbach William R | Methods of treating and preventing acute myocardial infarction |
WO2007051519A2 (en) | 2005-11-02 | 2007-05-10 | Plus Orthopedics Ag | Open-cell biocompatible coating for an implant, method for the production thereof, and use thereof |
DE102005052354A1 (en) * | 2005-11-02 | 2007-05-03 | Plus Orthopedics Ag | Open-pore biocompatible surface layer for application to an implant comprises a coherent pore network and has a defined surface area |
US20100004753A1 (en) * | 2005-11-02 | 2010-01-07 | Reto Lerf | Open-pore biocompatible surface layer for an implant, methods of production and use |
US7998523B2 (en) | 2005-11-02 | 2011-08-16 | Smith And Nephew Orthopaedics Ag | Open-pore biocompatible surface layer for an implant, methods of production and use |
US8021432B2 (en) | 2005-12-05 | 2011-09-20 | Biomet Manufacturing Corp. | Apparatus for use of porous implants |
EP1958650B1 (en) * | 2005-12-05 | 2015-10-21 | Mitsubishi Materials Corporation | Method of modifying the surface of medical device |
EP1958650A1 (en) * | 2005-12-05 | 2008-08-20 | Mitsubishi Materials Corporation | Medical device and method of modifying the surface of medical device |
US9138301B2 (en) | 2005-12-05 | 2015-09-22 | Mitsubishi Materials Corporation | Medical device and surface modification method for medical device |
US12011355B2 (en) * | 2005-12-06 | 2024-06-18 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US20070179618A1 (en) * | 2006-01-31 | 2007-08-02 | Sdgi Holdings, Inc. | Intervertebral prosthetic disc |
EP2649951A2 (en) | 2006-02-06 | 2013-10-16 | ConforMIS, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
EP2710967A2 (en) | 2006-02-06 | 2014-03-26 | ConforMIS, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US9308053B2 (en) | 2006-02-06 | 2016-04-12 | Conformis, Inc. | Patient-specific joint arthroplasty devices for ligament repair |
US9220516B2 (en) | 2006-02-06 | 2015-12-29 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8623026B2 (en) | 2006-02-06 | 2014-01-07 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief |
US9326780B2 (en) | 2006-02-06 | 2016-05-03 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief |
US9220517B2 (en) | 2006-02-06 | 2015-12-29 | Conformis, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US8500740B2 (en) | 2006-02-06 | 2013-08-06 | Conformis, Inc. | Patient-specific joint arthroplasty devices for ligament repair |
EP2671520A2 (en) | 2006-02-06 | 2013-12-11 | ConforMIS, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
EP2671522A2 (en) | 2006-02-06 | 2013-12-11 | ConforMIS, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
EP2671521A2 (en) | 2006-02-06 | 2013-12-11 | ConforMIS, Inc. | Patient selectable joint arthroplasty devices and surgical tools |
US7883661B2 (en) | 2006-02-17 | 2011-02-08 | Biomet Manufacturing Corp. | Method for forming porous metal implants |
US8814978B2 (en) | 2006-02-17 | 2014-08-26 | Biomet Manufacturing, Llc | Method and apparatus for forming porous metal implants |
US20110123382A1 (en) * | 2006-02-17 | 2011-05-26 | Biomet Manufacturing Corp. | Method and apparatus for forming porous metal implants |
US8361380B2 (en) | 2006-02-17 | 2013-01-29 | Biomet Manufacturing Corp. | Method for forming porous metal implants |
US20100003155A1 (en) * | 2006-02-17 | 2010-01-07 | Biomet Manufacturing Corp. | Method and apparatus for forming porous metal implants |
US7635447B2 (en) | 2006-02-17 | 2009-12-22 | Biomet Manufacturing Corp. | Method and apparatus for forming porous metal implants |
US20070243312A1 (en) * | 2006-04-06 | 2007-10-18 | C3 Materials Corp. | Microstructure applique and method for making same |
US7722735B2 (en) | 2006-04-06 | 2010-05-25 | C3 Materials Corp. | Microstructure applique and method for making same |
US8118779B2 (en) | 2006-06-30 | 2012-02-21 | Warsaw Orthopedic, Inc. | Collagen delivery device |
US8399619B2 (en) | 2006-06-30 | 2013-03-19 | Warsaw Orthopedic, Inc. | Injectable collagen material |
US20080081007A1 (en) * | 2006-09-29 | 2008-04-03 | Mott Corporation, A Corporation Of The State Of Connecticut | Sinter bonded porous metallic coatings |
US9149750B2 (en) | 2006-09-29 | 2015-10-06 | Mott Corporation | Sinter bonded porous metallic coatings |
US8361161B2 (en) * | 2006-11-10 | 2013-01-29 | Fondel Finance B.V. | Kit and method for fixating a prosthesis or part thereof and/or filling osseous defects |
US20090306673A1 (en) * | 2006-11-10 | 2009-12-10 | Fondel Finance B.V. | Kit and method for fixating a prosthesis or part thereof and/or filling osseous defects |
US7699203B2 (en) | 2006-11-13 | 2010-04-20 | Warsaw Orthopedic, Inc. | Variable angle surgical staple inserter |
US20080110957A1 (en) * | 2006-11-13 | 2008-05-15 | Warsaw Orthopedic, Inc. | Variable angle surgical staple inserter |
US11497618B2 (en) | 2006-12-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11273050B2 (en) | 2006-12-07 | 2022-03-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11432942B2 (en) | 2006-12-07 | 2022-09-06 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11642229B2 (en) | 2006-12-07 | 2023-05-09 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11660206B2 (en) | 2006-12-07 | 2023-05-30 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11712345B2 (en) | 2006-12-07 | 2023-08-01 | DePuy Synthes Products, Inc. | Intervertebral implant |
US20080161847A1 (en) * | 2006-12-28 | 2008-07-03 | Orthovita, Inc. | Non-resorbable implantable guides and methods of use |
US8652154B2 (en) | 2006-12-28 | 2014-02-18 | Orthovita, Inc. | Non-resorbable implantable guides |
US7923068B2 (en) | 2007-02-12 | 2011-04-12 | Lotus Applied Technology, Llc | Fabrication of composite materials using atomic layer deposition |
US8735773B2 (en) | 2007-02-14 | 2014-05-27 | Conformis, Inc. | Implant device and method for manufacture |
US20080243261A1 (en) * | 2007-03-30 | 2008-10-02 | Wyss Joseph G | Mobile bearing assembly having a closed track |
US20080243263A1 (en) * | 2007-03-30 | 2008-10-02 | Lee Jordan S | Mobile bearing assembly having multiple articulation interfaces |
US8328874B2 (en) | 2007-03-30 | 2012-12-11 | Depuy Products, Inc. | Mobile bearing assembly |
US8147557B2 (en) | 2007-03-30 | 2012-04-03 | Depuy Products, Inc. | Mobile bearing insert having offset dwell point |
US8764841B2 (en) | 2007-03-30 | 2014-07-01 | DePuy Synthes Products, LLC | Mobile bearing assembly having a closed track |
US20080243259A1 (en) * | 2007-03-30 | 2008-10-02 | Lee Jordan S | Mobile bearing insert having offset dwell point |
US8147558B2 (en) | 2007-03-30 | 2012-04-03 | Depuy Products, Inc. | Mobile bearing assembly having multiple articulation interfaces |
US20080243262A1 (en) * | 2007-03-30 | 2008-10-02 | Lee Jordan S | Mobile bearing assembly |
US20080243260A1 (en) * | 2007-03-30 | 2008-10-02 | Lee Jordan S | Mobile bearing assembly having a non-planar interface |
US8142510B2 (en) | 2007-03-30 | 2012-03-27 | Depuy Products, Inc. | Mobile bearing assembly having a non-planar interface |
EP1997524A1 (en) | 2007-05-31 | 2008-12-03 | DePuy Products, Inc. | Sintered coatings for implantable prosthesis |
JP2008296005A (en) * | 2007-05-31 | 2008-12-11 | Depuy Products Inc | Sintered coating for implantable prosthesis |
US8066770B2 (en) * | 2007-05-31 | 2011-11-29 | Depuy Products, Inc. | Sintered coatings for implantable prostheses |
US10973652B2 (en) | 2007-06-26 | 2021-04-13 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US11622868B2 (en) | 2007-06-26 | 2023-04-11 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
EP2008622A1 (en) | 2007-06-27 | 2008-12-31 | DePuy Products, Inc. | Osteogenic prostheses |
EP2011903A2 (en) | 2007-07-06 | 2009-01-07 | DePuy Products, Inc. | Etching solution and method of its manufacturing as well as method of etching metal surfaces and microtextured implants made using such a method |
US20090008365A1 (en) * | 2007-07-06 | 2009-01-08 | Depuy Products, Inc. | Microtextured Implants and Methods of Making Same |
US20130013081A1 (en) * | 2007-07-09 | 2013-01-10 | Astra Tech Ab | Nanosurface |
US9642708B2 (en) * | 2007-07-09 | 2017-05-09 | Astra Tech Ab | Nanosurface |
US20090036995A1 (en) * | 2007-07-31 | 2009-02-05 | Zimmer, Inc. | Joint space interpositional prosthetic device with internal bearing surfaces |
US8979935B2 (en) * | 2007-07-31 | 2015-03-17 | Zimmer, Inc. | Joint space interpositional prosthetic device with internal bearing surfaces |
US8632600B2 (en) | 2007-09-25 | 2014-01-21 | Depuy (Ireland) | Prosthesis with modular extensions |
US9278003B2 (en) | 2007-09-25 | 2016-03-08 | Depuy (Ireland) | Prosthesis for cementless fixation |
US9398956B2 (en) | 2007-09-25 | 2016-07-26 | Depuy (Ireland) | Fixed-bearing knee prosthesis having interchangeable components |
US8128703B2 (en) | 2007-09-28 | 2012-03-06 | Depuy Products, Inc. | Fixed-bearing knee prosthesis having interchangeable components |
US20100063594A1 (en) * | 2007-09-28 | 2010-03-11 | Hazebrouck Stephen A | Fixed-bearing knee prosthesis having interchangeable components |
US9204967B2 (en) | 2007-09-28 | 2015-12-08 | Depuy (Ireland) | Fixed-bearing knee prosthesis having interchangeable components |
US8602290B2 (en) | 2007-10-10 | 2013-12-10 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US8608049B2 (en) | 2007-10-10 | 2013-12-17 | Zimmer, Inc. | Method for bonding a tantalum structure to a cobalt-alloy substrate |
US20090112315A1 (en) * | 2007-10-29 | 2009-04-30 | Zimmer, Inc. | Medical implants and methods for delivering biologically active agents |
US20100298944A1 (en) * | 2007-12-08 | 2010-11-25 | Depuy International Limited | Implant assembly |
US8308809B2 (en) | 2007-12-08 | 2012-11-13 | Depuy International Limited | Method of implanting an implant including bone abrasion |
US20120129133A1 (en) * | 2008-01-09 | 2012-05-24 | Kaigler Sr Darnell | Implant pellets and methods for performing bone augmentation and preservation |
US9301816B2 (en) * | 2008-01-09 | 2016-04-05 | Innovative Health Technologies, Llc | Implant pellets and methods for performing bone augmentation and preservation |
US11737881B2 (en) | 2008-01-17 | 2023-08-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
USD696399S1 (en) | 2008-02-06 | 2013-12-24 | Kleiner Intellectual Property, Llc | Spinal distraction instrument |
USD700322S1 (en) | 2008-02-06 | 2014-02-25 | Jeffrey B. Kleiner | Intervertebral surgical tool |
US11129730B2 (en) | 2008-02-06 | 2021-09-28 | Spinal Surgical Strategies, Inc., a Nevada corpora | Spinal fusion cage system with inserter |
US9439782B2 (en) | 2008-02-06 | 2016-09-13 | Jeffrey B. Kleiner | Spinal fusion cage system with inserter |
US8808305B2 (en) | 2008-02-06 | 2014-08-19 | Jeffrey B. Kleiner | Spinal fusion cage system with inserter |
US8277510B2 (en) | 2008-02-06 | 2012-10-02 | Kleiner Intellectual Property, Llc | Tools and methods for spinal fusion |
US8292960B2 (en) | 2008-02-06 | 2012-10-23 | Kleiner Intellectual Property, Llc | Spinal fusion cage with removable planar elements |
US10179054B2 (en) | 2008-02-06 | 2019-01-15 | Jeffrey B. Kleiner | Spinal fusion cage system with inserter |
US8715355B2 (en) | 2008-02-06 | 2014-05-06 | Nuvasive, Inc. | Spinal fusion cage with removable planar elements |
US9700420B2 (en) | 2008-03-05 | 2017-07-11 | Conformis, Inc. | Implants for altering wear patterns of articular surfaces |
US8682052B2 (en) | 2008-03-05 | 2014-03-25 | Conformis, Inc. | Implants for altering wear patterns of articular surfaces |
US9180015B2 (en) | 2008-03-05 | 2015-11-10 | Conformis, Inc. | Implants for altering wear patterns of articular surfaces |
US11712341B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US12023255B2 (en) | 2008-04-05 | 2024-07-02 | DePuy Synthes Products, Inc. | Expandable inter vertebral implant |
US11707359B2 (en) | 2008-04-05 | 2023-07-25 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11712342B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11617655B2 (en) | 2008-04-05 | 2023-04-04 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11602438B2 (en) | 2008-04-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11701234B2 (en) | 2008-04-05 | 2023-07-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US12011361B2 (en) | 2008-04-05 | 2024-06-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US20090292365A1 (en) * | 2008-05-22 | 2009-11-26 | Depuy Products, Inc. | Implants With Roughened Surfaces |
US8871142B2 (en) | 2008-05-22 | 2014-10-28 | DePuy Synthes Products, LLC | Implants with roughened surfaces |
US9393118B2 (en) | 2008-05-22 | 2016-07-19 | DePuy Synthes Products, Inc. | Implants with roughened surfaces |
US8114156B2 (en) * | 2008-05-30 | 2012-02-14 | Edwin Burton Hatch | Flexibly compliant ceramic prosthetic meniscus for the replacement of damaged cartilage in orthopedic surgical repair or reconstruction of hip, knee, ankle, shoulder, elbow, wrist and other anatomical joints |
US11337823B2 (en) | 2008-06-30 | 2022-05-24 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US8206451B2 (en) | 2008-06-30 | 2012-06-26 | Depuy Products, Inc. | Posterior stabilized orthopaedic prosthesis |
US9937049B2 (en) | 2008-06-30 | 2018-04-10 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9168145B2 (en) | 2008-06-30 | 2015-10-27 | Depuy (Ireland) | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US9539099B2 (en) | 2008-06-30 | 2017-01-10 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9931216B2 (en) | 2008-06-30 | 2018-04-03 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US9119723B2 (en) | 2008-06-30 | 2015-09-01 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis assembly |
US9204968B2 (en) | 2008-06-30 | 2015-12-08 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis |
US10729551B2 (en) | 2008-06-30 | 2020-08-04 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
EP2143823A2 (en) | 2008-06-30 | 2010-01-13 | DePuy Products, Inc. | Open-celled metal implants with roughened surfaces |
US8187335B2 (en) | 2008-06-30 | 2012-05-29 | Depuy Products, Inc. | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US9220601B2 (en) | 2008-06-30 | 2015-12-29 | Depuy (Ireland) | Orthopaedic femoral component having controlled condylar curvature |
US8834575B2 (en) | 2008-06-30 | 2014-09-16 | Depuy (Ireland) | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US10179051B2 (en) | 2008-06-30 | 2019-01-15 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US11369478B2 (en) | 2008-06-30 | 2022-06-28 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US20100036500A1 (en) * | 2008-06-30 | 2010-02-11 | Heldreth Mark A | Orthopaedic knee prosthesis having controlled condylar curvature |
US8828086B2 (en) | 2008-06-30 | 2014-09-09 | Depuy (Ireland) | Orthopaedic femoral component having controlled condylar curvature |
US10849760B2 (en) | 2008-06-30 | 2020-12-01 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US11730602B2 (en) | 2008-06-30 | 2023-08-22 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US8795380B2 (en) | 2008-06-30 | 2014-08-05 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US8734522B2 (en) | 2008-06-30 | 2014-05-27 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis |
US20090326674A1 (en) * | 2008-06-30 | 2009-12-31 | Depuy Products, Inc. | Open Celled Metal Implants With Roughened Surfaces and Method for Roughening Open Celled Metal Implants |
US20090326667A1 (en) * | 2008-06-30 | 2009-12-31 | Williams John L | Orthopaedic femoral component having controlled condylar curvature |
US10543098B2 (en) | 2008-06-30 | 2020-01-28 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US10265180B2 (en) | 2008-06-30 | 2019-04-23 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9452053B2 (en) | 2008-06-30 | 2016-09-27 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US20090326665A1 (en) * | 2008-06-30 | 2009-12-31 | Wyss Joseph G | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US12059356B2 (en) | 2008-06-30 | 2024-08-13 | Depuy Ireland Unlimited Company | Orthopaedic knee prosthesis having controlled condylar curvature |
US9326864B2 (en) | 2008-06-30 | 2016-05-03 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US8192498B2 (en) | 2008-06-30 | 2012-06-05 | Depuy Products, Inc. | Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature |
US20090326664A1 (en) * | 2008-06-30 | 2009-12-31 | Wagner Christel M | Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature |
US12109119B2 (en) | 2008-06-30 | 2024-10-08 | Depuy Ireland Unlimited Company | Orthopaedic femoral component having controlled condylar curvature |
US8236061B2 (en) | 2008-06-30 | 2012-08-07 | Depuy Products, Inc. | Orthopaedic knee prosthesis having controlled condylar curvature |
US8784496B2 (en) | 2008-06-30 | 2014-07-22 | Depuy (Ireland) | Orthopaedic knee prosthesis having controlled condylar curvature |
US20100042214A1 (en) * | 2008-08-13 | 2010-02-18 | Nebosky Paul S | Drug delivery implants |
US9561354B2 (en) | 2008-08-13 | 2017-02-07 | Smed-Ta/Td, Llc | Drug delivery implants |
US9700431B2 (en) | 2008-08-13 | 2017-07-11 | Smed-Ta/Td, Llc | Orthopaedic implant with porous structural member |
US10349993B2 (en) | 2008-08-13 | 2019-07-16 | Smed-Ta/Td, Llc | Drug delivery implants |
US10357298B2 (en) | 2008-08-13 | 2019-07-23 | Smed-Ta/Td, Llc | Drug delivery implants |
US9616205B2 (en) | 2008-08-13 | 2017-04-11 | Smed-Ta/Td, Llc | Drug delivery implants |
US11426291B2 (en) | 2008-08-13 | 2022-08-30 | Smed-Ta/Td, Llc | Orthopaedic implant with porous structural member |
US20100042226A1 (en) * | 2008-08-13 | 2010-02-18 | Nebosky Paul S | Orthopaedic implant with spatially varying porosity |
US9358056B2 (en) | 2008-08-13 | 2016-06-07 | Smed-Ta/Td, Llc | Orthopaedic implant |
US8702767B2 (en) | 2008-08-13 | 2014-04-22 | Smed-Ta/Td, Llc | Orthopaedic Screws |
US20100042215A1 (en) * | 2008-08-13 | 2010-02-18 | Stalcup Gregory C | Orthopaedic implant |
US20100042213A1 (en) * | 2008-08-13 | 2010-02-18 | Nebosky Paul S | Drug delivery implants |
US10842645B2 (en) | 2008-08-13 | 2020-11-24 | Smed-Ta/Td, Llc | Orthopaedic implant with porous structural member |
US8475505B2 (en) | 2008-08-13 | 2013-07-02 | Smed-Ta/Td, Llc | Orthopaedic screws |
US20100042167A1 (en) * | 2008-08-13 | 2010-02-18 | Nebosky Paul S | Orthopaedic screws |
USD853560S1 (en) | 2008-10-09 | 2019-07-09 | Nuvasive, Inc. | Spinal implant insertion device |
US8858634B2 (en) | 2008-11-04 | 2014-10-14 | Mayo Foundation For Medical Education And Research | Soft tissue attachment device |
US20100125335A1 (en) * | 2008-11-20 | 2010-05-20 | Daley Robert J | Methods and apparatus for replacing biological joints using bone cement in a suspended state |
US20100125303A1 (en) * | 2008-11-20 | 2010-05-20 | Daley Robert J | Methods and apparatus for replacing biological joints using bone mineral substance in a suspended state |
US9861496B2 (en) | 2008-12-05 | 2018-01-09 | Jeffrey B. Kleiner | Apparatus and method of spinal implant and fusion |
US8366748B2 (en) | 2008-12-05 | 2013-02-05 | Kleiner Jeffrey | Apparatus and method of spinal implant and fusion |
US9427264B2 (en) | 2008-12-05 | 2016-08-30 | Jeffrey KLEINER | Apparatus and method of spinal implant and fusion |
US8870882B2 (en) | 2008-12-05 | 2014-10-28 | Jeffrey KLEINER | Apparatus and method of spinal implant and fusion |
US20100161065A1 (en) * | 2008-12-23 | 2010-06-24 | Depuy Products, Inc. | Shoulder Prosthesis with Vault-Filling Structure having Bone-Sparing Configuration |
US8241365B2 (en) | 2008-12-23 | 2012-08-14 | Depuy Products, Inc. | Shoulder prosthesis with vault-filling structure having bone-sparing configuration |
USD667542S1 (en) | 2009-02-06 | 2012-09-18 | Kleiner Jeffrey B | Spinal distraction instrument |
US10201355B2 (en) | 2009-02-06 | 2019-02-12 | Kleiner Intellectual Property, Llc | Angled surgical tool for removing tissue from within an intervertebral space |
US9826988B2 (en) | 2009-02-06 | 2017-11-28 | Kleiner Intellectual Property, Llc | Devices and methods for preparing an intervertebral workspace |
US9247943B1 (en) | 2009-02-06 | 2016-02-02 | Kleiner Intellectual Property, Llc | Devices and methods for preparing an intervertebral workspace |
US10271959B2 (en) | 2009-02-11 | 2019-04-30 | Howmedica Osteonics Corp. | Intervertebral implant with integrated fixation |
EP2226408A1 (en) | 2009-02-19 | 2010-09-08 | DePuy Products, Inc. | Rough porous constructs |
US11154305B2 (en) | 2009-02-24 | 2021-10-26 | Microport Orthopedics Holdings Inc. | Patient specific surgical guide locator and mount |
US11534186B2 (en) | 2009-02-24 | 2022-12-27 | Microport Orthopedics Holdings Inc. | Orthopedic surgical guide |
US9649117B2 (en) | 2009-02-24 | 2017-05-16 | Microport Orthopedics Holdings, Inc. | Orthopedic surgical guide |
US10660654B2 (en) | 2009-02-24 | 2020-05-26 | Microport Orthopedics Holdings Inc. | Method for forming a patient specific surgical guide mount |
US9675365B2 (en) | 2009-02-24 | 2017-06-13 | Microport Orthopedics Holdings Inc. | System and method for anterior approach for installing tibial stem |
US8808303B2 (en) | 2009-02-24 | 2014-08-19 | Microport Orthopedics Holdings Inc. | Orthopedic surgical guide |
US10646238B2 (en) | 2009-02-24 | 2020-05-12 | Microport Orthopedics Holdings, Inc. | Systems and methods for installing an orthopedic implant |
US9113914B2 (en) | 2009-02-24 | 2015-08-25 | Microport Orthopedics Holdings Inc. | Method for forming a patient specific surgical guide mount |
US11389177B2 (en) | 2009-02-24 | 2022-07-19 | Microport Orthopedics Holdings Inc. | Method for forming a patient specific surgical guide mount |
US9089342B2 (en) | 2009-02-24 | 2015-07-28 | Microport Orthopedics Holdings Inc. | Patient specific surgical guide locator and mount |
US11464527B2 (en) | 2009-02-24 | 2022-10-11 | Microport Orthopedics Holdings Inc. | Systems and methods for installing an orthopedic implant |
US10512476B2 (en) | 2009-02-24 | 2019-12-24 | Microport Orthopedics Holdings, Inc. | Orthopedic surgical guide |
US9320620B2 (en) | 2009-02-24 | 2016-04-26 | Conformis, Inc. | Patient-adapted and improved articular implants, designs and related guide tools |
US9017334B2 (en) | 2009-02-24 | 2015-04-28 | Microport Orthopedics Holdings Inc. | Patient specific surgical guide locator and mount |
US20100217338A1 (en) * | 2009-02-24 | 2010-08-26 | Wright Medical Technology, Inc. | Patient Specific Surgical Guide Locator and Mount |
US9642632B2 (en) | 2009-02-24 | 2017-05-09 | Microport Orthopedics Holdings Inc. | Orthopedic surgical guide |
US10973536B2 (en) | 2009-02-24 | 2021-04-13 | Microport Orthopedics Holdings, Inc. | Orthopedic surgical guide |
US20100212138A1 (en) * | 2009-02-24 | 2010-08-26 | Wright Medical Technology, Inc. | Method For Forming A Patient Specific Surgical Guide Mount |
US10039557B2 (en) | 2009-02-24 | 2018-08-07 | Micorport Orthopedics Holdings, Inc. | Orthopedic surgical guide |
US11779356B2 (en) | 2009-02-24 | 2023-10-10 | Microport Orthopedics Holdings, Inc. | Orthopedic surgical guide |
US9949747B2 (en) | 2009-02-24 | 2018-04-24 | Microport Orthopedics Holdings, Inc. | Systems and methods for installing an orthopedic implant |
US9566075B2 (en) | 2009-02-24 | 2017-02-14 | Microport Orthopedics Holdings Inc. | Patient specific surgical guide locator and mount |
US11779347B2 (en) | 2009-02-24 | 2023-10-10 | Microport Orthopedics Holdings Inc. | System for forming a patient specific surgical guide mount |
US9883870B2 (en) | 2009-02-24 | 2018-02-06 | Microport Orthopedics Holdings Inc. | Method for forming a patient specific surgical guide mount |
US9901353B2 (en) | 2009-02-24 | 2018-02-27 | Microport Holdings Inc. | Patient specific surgical guide locator and mount |
US11911046B2 (en) | 2009-02-24 | 2024-02-27 | Microport Orthopedics Holdings, Inc. | Patient specific surgical guide locator and mount |
US8771365B2 (en) | 2009-02-25 | 2014-07-08 | Conformis, Inc. | Patient-adapted and improved orthopedic implants, designs, and related tools |
US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US12097124B2 (en) | 2009-03-30 | 2024-09-24 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
EP2251046A2 (en) | 2009-04-15 | 2010-11-17 | DePuy Products, Inc. | Nanotextured cobalt-chromium alloy articles |
EP2241288A1 (en) | 2009-04-15 | 2010-10-20 | DePuy Products, Inc. | Surface textured titanium-containing articles |
US8696759B2 (en) | 2009-04-15 | 2014-04-15 | DePuy Synthes Products, LLC | Methods and devices for implants with calcium phosphate |
US20100268330A1 (en) * | 2009-04-15 | 2010-10-21 | Depuy Products, Inc. | Methods and Devices for Implants with Calcium Phosphate |
US20100268227A1 (en) * | 2009-04-15 | 2010-10-21 | Depuy Products, Inc. | Methods and Devices for Bone Attachment |
US8894717B2 (en) | 2009-04-24 | 2014-11-25 | Depuy International Limited | Surgical prostheses |
CN102458310A (en) * | 2009-04-24 | 2012-05-16 | 德普伊国际有限公司 | Surgical prostheses |
CN102458310B (en) * | 2009-04-24 | 2015-01-28 | 德普伊国际有限公司 | Surgical prostheses |
US8979939B2 (en) | 2009-04-24 | 2015-03-17 | Depuy International Limited | Surgical prostheses |
WO2010122281A1 (en) * | 2009-04-24 | 2010-10-28 | Depuy International Limited | Surgical prostheses |
JP2012524584A (en) * | 2009-04-24 | 2012-10-18 | デピュー インターナショナル リミテッド | Surgical prosthesis |
US9101476B2 (en) | 2009-05-21 | 2015-08-11 | Depuy (Ireland) | Prosthesis with surfaces having different textures and method of making the prosthesis |
US11213397B2 (en) | 2009-05-21 | 2022-01-04 | Depuy Ireland Unlimited Company | Prosthesis with surfaces having different textures and method of making the prosthesis |
US10433964B2 (en) | 2009-05-21 | 2019-10-08 | Depuy Ireland Unlimited Company | Prosthesis with surfaces having different textures and method of making the prosthesis |
US20110029092A1 (en) * | 2009-05-21 | 2011-02-03 | Depuy Products, Inc. | Prosthesis with surfaces having different textures and method of making the prosthesis |
WO2011004334A3 (en) * | 2009-07-07 | 2011-05-12 | Eurocoating S.P.A. | Process and apparatus for depositing a coating on items, and item obtained from said process |
WO2011004217A1 (en) * | 2009-07-07 | 2011-01-13 | Eurocoating S.P.A. | Process for depositing a coating on metal or non- metal items, and item obtained therefrom |
US20110008754A1 (en) * | 2009-07-10 | 2011-01-13 | Bassett Jeffrey A | Patient-Specific Implants With Improved Osseointegration |
US9707058B2 (en) * | 2009-07-10 | 2017-07-18 | Zimmer Dental, Inc. | Patient-specific implants with improved osseointegration |
US12053393B2 (en) | 2009-09-18 | 2024-08-06 | Spinal Surgical Strategies, Inc. | Bone graft delivery system and method for use |
US9629729B2 (en) | 2009-09-18 | 2017-04-25 | Spinal Surgical Strategies, Llc | Biological delivery system with adaptable fusion cage interface |
US8685031B2 (en) | 2009-09-18 | 2014-04-01 | Spinal Surgical Strategies, Llc | Bone graft delivery system |
US10245159B1 (en) | 2009-09-18 | 2019-04-02 | Spinal Surgical Strategies, Llc | Bone graft delivery system and method for using same |
US9173694B2 (en) | 2009-09-18 | 2015-11-03 | Spinal Surgical Strategies, Llc | Fusion cage with combined biological delivery system |
US11660208B2 (en) | 2009-09-18 | 2023-05-30 | Spinal Surgical Strategies, Inc. | Bone graft delivery system and method for using same |
US8906028B2 (en) | 2009-09-18 | 2014-12-09 | Spinal Surgical Strategies, Llc | Bone graft delivery device and method of using the same |
US9060877B2 (en) | 2009-09-18 | 2015-06-23 | Spinal Surgical Strategies, Llc | Fusion cage with combined biological delivery system |
US10973656B2 (en) | 2009-09-18 | 2021-04-13 | Spinal Surgical Strategies, Inc. | Bone graft delivery system and method for using same |
US8709088B2 (en) | 2009-09-18 | 2014-04-29 | Spinal Surgical Strategies, Llc | Fusion cage with combined biological delivery system |
US10195053B2 (en) | 2009-09-18 | 2019-02-05 | Spinal Surgical Strategies, Llc | Bone graft delivery system and method for using same |
US20110069059A1 (en) * | 2009-09-18 | 2011-03-24 | Hyunjae Lee | Regulator and organic light emitting diode display using the same |
US9186193B2 (en) | 2009-09-18 | 2015-11-17 | Spinal Surgical Strategies, Llc | Fusion cage with combined biological delivery system |
US11666455B2 (en) | 2009-09-18 | 2023-06-06 | Spinal Surgical Strategies, Inc., A Nevada Corporation | Bone graft delivery devices, systems and kits |
US8951465B2 (en) | 2009-10-08 | 2015-02-10 | Biomet Manufacturing, Llc | Method of bonding porous metal to metal substrates |
US20110085929A1 (en) * | 2009-10-08 | 2011-04-14 | Biomet Manufacturing Corp. | Method of bonding porous metal to metal substrates |
US8383033B2 (en) | 2009-10-08 | 2013-02-26 | Biomet Manufacturing Corp. | Method of bonding porous metal to metal substrates |
US8632604B2 (en) * | 2009-10-22 | 2014-01-21 | Depuy International Limited | Medical implant device |
US20120253468A1 (en) * | 2009-10-22 | 2012-10-04 | Depuy International Limited | Medical implant device |
WO2011048138A1 (en) | 2009-10-22 | 2011-04-28 | Depuy International Limited | A medical implant device |
EP2316387A1 (en) | 2009-10-30 | 2011-05-04 | DePuy Products, Inc. | Cutting guide for use in a joint replacement procedure |
US8715359B2 (en) | 2009-10-30 | 2014-05-06 | Depuy (Ireland) | Prosthesis for cemented fixation and method for making the prosthesis |
US8231683B2 (en) | 2009-12-08 | 2012-07-31 | Depuy Products, Inc. | Shoulder prosthesis assembly having glenoid rim replacement structure |
US11607321B2 (en) | 2009-12-10 | 2023-03-21 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US9011547B2 (en) | 2010-01-21 | 2015-04-21 | Depuy (Ireland) | Knee prosthesis system |
US20110190902A1 (en) * | 2010-01-29 | 2011-08-04 | Depuy Products, Inc. | Methods and devices for implants with improved cement adhesion |
US8475536B2 (en) | 2010-01-29 | 2013-07-02 | DePuy Synthes Products, LLC | Methods and devices for implants with improved cement adhesion |
US9592206B2 (en) | 2010-02-05 | 2017-03-14 | Orthomedex Llc | Methods of using water-soluble inorganic compounds for implants |
US8673018B2 (en) | 2010-02-05 | 2014-03-18 | AMx Tek LLC | Methods of using water-soluble inorganic compounds for implants |
US20110196502A1 (en) * | 2010-02-05 | 2011-08-11 | Walls James A | Methods of Using Water-Soluble Inorganic Compounds for Implants |
US10117973B2 (en) | 2010-02-05 | 2018-11-06 | Orthomedex Llc | Methods of using water-soluble inorganic compounds for implants |
US10980921B2 (en) | 2010-02-05 | 2021-04-20 | Orthomedex Llc | Methods of using water-soluble inorganic compounds for implants |
US8864826B2 (en) * | 2010-02-26 | 2014-10-21 | Limacorporate Spa | Integrated prosthetic element |
US20130006354A1 (en) * | 2010-02-26 | 2013-01-03 | Limacorporate Spa | Integrated prosthetic element |
US11911287B2 (en) | 2010-06-24 | 2024-02-27 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
US10966840B2 (en) | 2010-06-24 | 2021-04-06 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US11872139B2 (en) | 2010-06-24 | 2024-01-16 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US11654033B2 (en) | 2010-06-29 | 2023-05-23 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US8727203B2 (en) | 2010-09-16 | 2014-05-20 | Howmedica Osteonics Corp. | Methods for manufacturing porous orthopaedic implants |
US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US9301848B2 (en) | 2010-11-24 | 2016-04-05 | DePuy Synthes Products, Inc. | Modular glenoid prosthesis |
US8961611B2 (en) | 2010-11-24 | 2015-02-24 | DePuy Synthes Products, LLC | Modular glenoid prosthesis |
US8480750B2 (en) | 2010-11-24 | 2013-07-09 | DePuy Synthes Products, LLC | Modular glenoid prosthesis |
US8465548B2 (en) | 2010-11-24 | 2013-06-18 | DePuy Synthes Products, LLC | Modular glenoid prosthesis |
WO2012129021A1 (en) | 2011-03-18 | 2012-09-27 | Depuy Products, Inc. | Revision glenoid device and method |
US10172715B2 (en) | 2011-03-18 | 2019-01-08 | DePuy Synthes Products, Inc. | Method of implanting a revision glenoid device |
US10603053B2 (en) | 2011-03-18 | 2020-03-31 | DePuy Synthes Products, Inc. | Method of using a combination driver/anti-rotation handle for shoulder arthroplasty |
US8764836B2 (en) | 2011-03-18 | 2014-07-01 | Lieven de Wilde | Circular glenoid method for shoulder arthroplasty |
US11298141B2 (en) | 2011-03-18 | 2022-04-12 | DePuy Synthes Products, Inc. | Method of using a combination driver/anti-rotation handle for shoulder arthroplasty |
EP3078339A1 (en) | 2011-03-18 | 2016-10-12 | DePuy Synthes Products, LLC | Device for retroversion correction for shoulder arthroplasty |
US9226830B2 (en) | 2011-03-18 | 2016-01-05 | DePuy Synthes Products, Inc. | Device and method for retroversion correction for shoulder arthroplasty |
US11369390B2 (en) | 2011-03-18 | 2022-06-28 | DePuy Synthes Products, Inc. | Method using a combination reamer/drill bit for shoulder arthroplasty |
US10779842B2 (en) | 2011-03-18 | 2020-09-22 | DePuy Synthes Products, Inc. | Method using combination reamer/drill bit for shoulder arthroplasty |
US11903594B2 (en) | 2011-03-18 | 2024-02-20 | Depuy Synthes Products, Inc | Method using a combination reamer/drill bit for shoulder arthroplasty |
WO2012129018A1 (en) | 2011-03-18 | 2012-09-27 | Depuy Products, Inc. | Combination reamer/drill bit for shoulder arthroplasty |
US9820758B2 (en) | 2011-03-18 | 2017-11-21 | DePuy Synthes Products, Inc. | Combination reamer/drill bit for shoulder arthoplasty |
US9763679B2 (en) | 2011-03-18 | 2017-09-19 | DePuy Synthes Products, Inc. | Combination driver/anti-rotation handle for shoulder arthroplasty |
US11076963B2 (en) | 2011-03-18 | 2021-08-03 | DePuy Synthes Products, Inc. | Revision glenoid device |
US9474686B2 (en) | 2011-05-12 | 2016-10-25 | Finsbury (Development) Limited | Package for surgical implants and instruments |
US10517707B2 (en) | 2011-05-12 | 2019-12-31 | Finsbury Orthopaedics Limited | Package for surgical implants and instruments |
WO2012153092A1 (en) | 2011-05-12 | 2012-11-15 | Finsbury (Development) Ltd | A package |
US9517138B2 (en) | 2011-05-20 | 2016-12-13 | Zimmer, Inc. | Stabilizing prosthesis support structure |
US8900317B2 (en) | 2011-05-20 | 2014-12-02 | Zimmer, Inc. | Stabilizing prosthesis support structure |
RU2483840C2 (en) * | 2011-06-10 | 2013-06-10 | Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет | Method of making porous coating on metallic implants |
US9579206B2 (en) | 2011-10-26 | 2017-02-28 | George J. Picha | Hard-tissue implant |
US9333081B2 (en) | 2011-10-26 | 2016-05-10 | George J. Picha | Hard-tissue implant |
US10154908B2 (en) | 2011-10-26 | 2018-12-18 | Gary A. Zwick | Hard-tissue implant |
US8771354B2 (en) | 2011-10-26 | 2014-07-08 | George J. Picha | Hard-tissue implant |
EP2623050A1 (en) | 2012-02-01 | 2013-08-07 | DePuy Products, Inc. | Instrument for use in shoulder arthroplasty |
US20150118650A1 (en) * | 2012-04-06 | 2015-04-30 | Limacorporate Spa | Prosthetic Element for Bone Extremities Such as Fingers or Toes, or for Teeth, and Corresponding Production Method |
US9949834B2 (en) * | 2012-04-06 | 2018-04-24 | Limacorporate Spa | Prosthetic element for bone extremities such as fingers or toes, or for teeth, and corresponding production method |
US9486226B2 (en) | 2012-04-18 | 2016-11-08 | Conformis, Inc. | Tibial guides, tools, and techniques for resecting the tibial plateau |
US10517698B2 (en) | 2012-04-26 | 2019-12-31 | Zimmer Dental, Inc. | Dental implant wedges |
US9539069B2 (en) | 2012-04-26 | 2017-01-10 | Zimmer Dental, Inc. | Dental implant wedges |
US9675471B2 (en) | 2012-06-11 | 2017-06-13 | Conformis, Inc. | Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components |
US9554877B2 (en) * | 2012-07-31 | 2017-01-31 | Zimmer, Inc. | Dental regenerative device made of porous metal |
US9320603B2 (en) | 2012-09-20 | 2016-04-26 | Depuy (Ireland) | Surgical instrument system with multiple lengths of broaches sharing a common geometry |
US11648127B2 (en) | 2012-09-20 | 2023-05-16 | Depuy Ireland Unlimited Company | Method and system including sleeves and broaches for surgically preparing the patient's bone |
US10583011B2 (en) | 2012-09-20 | 2020-03-10 | Depuy Ireland Unlimited Company | Method and system including sleeves and broaches for surgically preparing the patient's bone |
US10543097B2 (en) | 2012-09-20 | 2020-01-28 | Depuy Ireland Unlimited Company | Method and surgical instrument system with multiple lengths of broaches sharing a common geometry |
US8998996B2 (en) | 2012-09-20 | 2015-04-07 | Depuy (Ireland) | Knee prosthesis system with standard and distal offset joint line |
US9532879B2 (en) | 2012-09-20 | 2017-01-03 | Depuy Ireland Unlimited Company | Femoral knee prosthesis system with augments and multiple lengths of sleeves sharing a common geometry |
USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
USD967960S1 (en) | 2013-03-07 | 2022-10-25 | Howmedica Osteonics Corp. | Porous tibial implant |
US9949837B2 (en) | 2013-03-07 | 2018-04-24 | Howmedica Osteonics Corp. | Partially porous bone implant keel |
US11850164B2 (en) | 2013-03-07 | 2023-12-26 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11564801B2 (en) | 2013-03-07 | 2023-01-31 | Howmedica Osteonics Corp. | Partially porous tibial component |
US11497619B2 (en) | 2013-03-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US10449065B2 (en) | 2013-03-15 | 2019-10-22 | Smed-Ta/Td, Llc | Method of manufacturing a tubular medical implant |
US9707080B2 (en) | 2013-03-15 | 2017-07-18 | Smed-Ta/Td, Llc | Removable augment for medical implant |
US9724203B2 (en) | 2013-03-15 | 2017-08-08 | Smed-Ta/Td, Llc | Porous tissue ingrowth structure |
US9408699B2 (en) | 2013-03-15 | 2016-08-09 | Smed-Ta/Td, Llc | Removable augment for medical implant |
US9681966B2 (en) | 2013-03-15 | 2017-06-20 | Smed-Ta/Td, Llc | Method of manufacturing a tubular medical implant |
USD723682S1 (en) | 2013-05-03 | 2015-03-03 | Spinal Surgical Strategies, Llc | Bone graft delivery tool |
EP2865466A1 (en) * | 2013-10-22 | 2015-04-29 | Linde Aktiengesellschaft | Method for modifying the surface structure of a metal body |
US9339585B2 (en) | 2014-04-03 | 2016-05-17 | Kennametal Inc. | Porous coating for surgical orthopedic implants |
USD750249S1 (en) | 2014-10-20 | 2016-02-23 | Spinal Surgical Strategies, Llc | Expandable fusion cage |
US12064169B2 (en) | 2014-12-30 | 2024-08-20 | Biosense Webster (Israel) Ltd. | Catheter with irrigated tip electrode with porous substrate and high density surface micro-electrodes |
US10390880B2 (en) | 2014-12-30 | 2019-08-27 | Biosense Webster (Israel) Ltd. | Catheter with irrigated tip electrode with porous substrate and high density surface micro-electrodes |
US10925668B2 (en) | 2014-12-30 | 2021-02-23 | Biosense Webster (Israel) Ltd. | Catheter with irrigated tip electrode with porous substrate and high density surface micro-electrodes |
US10034707B2 (en) | 2014-12-30 | 2018-07-31 | Biosense Webster (Israel) Ltd. | Catheter with irrigated tip electrode with porous substrate and high density surface micro-electrodes |
US10182923B2 (en) | 2015-01-14 | 2019-01-22 | Stryker European Holdings I, Llc | Spinal implant with porous and solid surfaces |
US11266510B2 (en) | 2015-01-14 | 2022-03-08 | Stryker European Operations Holdings Llc | Spinal implant with fluid delivery capabilities |
US11000386B2 (en) | 2015-01-14 | 2021-05-11 | Stryker European Holdings I, Llc | Spinal implant with porous and solid surfaces |
US10603182B2 (en) | 2015-01-14 | 2020-03-31 | Stryker European Holdings I, Llc | Spinal implant with fluid delivery capabilities |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
AU2016243847B2 (en) * | 2015-03-18 | 2020-03-26 | Zimmer Gmbh | Implant configured for hammertoe and small bone fixation |
US10729552B2 (en) | 2015-03-18 | 2020-08-04 | Biomet C.V. | Implant configured for hammertoe and small bone fixation |
US11623027B2 (en) | 2015-05-18 | 2023-04-11 | Stryker European Operations Holdings Llc | Partially resorbable implants and methods |
US10537666B2 (en) | 2015-05-18 | 2020-01-21 | Stryker European Holdings I, Llc | Partially resorbable implants and methods |
EP4043074A1 (en) | 2015-08-14 | 2022-08-17 | The University of Sydney | Connexin 45 inhibition for therapy |
WO2017027910A1 (en) | 2015-08-14 | 2017-02-23 | The University Of Sydney | Connexin 45 inhibition for therapy |
USD797290S1 (en) | 2015-10-19 | 2017-09-12 | Spinal Surgical Strategies, Llc | Bone graft delivery tool |
US11596523B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable articulating intervertebral cages |
US11596522B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable intervertebral cages with articulating joint |
US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
US11559403B2 (en) | 2017-01-20 | 2023-01-24 | Biomet Manufacturing, Llc | Modular augment component |
US11141276B2 (en) | 2017-01-20 | 2021-10-12 | Biomet Manufacturing, Llc | Modular augment component |
EP3357459A1 (en) | 2017-02-03 | 2018-08-08 | Spinal Surgical Strategies, LLC | Bone graft delivery device with positioning handle |
US11696831B2 (en) | 2017-03-10 | 2023-07-11 | Alps Holding Llc | Hard-tissue implant comprising a bulk implant, a face, pillars, slots, and at least one support member |
US11213398B2 (en) | 2017-03-10 | 2022-01-04 | Gary A. Zwick | Hard-tissue implant comprising a bulk implant, a face, pillars, slots, and at least one support member |
WO2018165400A1 (en) | 2017-03-10 | 2018-09-13 | Applied Medical Research, Inc. | Hard-tissue implant comprising a bulk implant, a face, pillars, slots, and at least one support member |
US12064352B2 (en) | 2017-03-10 | 2024-08-20 | Alps Holding Llc | Hard-tissue implant comprising a bulk implant, a face, pillars, slots, and at least one support member |
US11324606B2 (en) | 2017-03-10 | 2022-05-10 | Gary A. Zwick | Spinal interbody cage comprising a bulk interbody cage, a top face, a bottom face, pillars, and slots |
US11446155B2 (en) | 2017-05-08 | 2022-09-20 | Medos International Sarl | Expandable cage |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US11622867B2 (en) | 2017-09-20 | 2023-04-11 | Stryker European Operations Holdings Llc | Spinal implants |
US10835388B2 (en) | 2017-09-20 | 2020-11-17 | Stryker European Operations Holdings Llc | Spinal implants |
US11278427B2 (en) | 2018-04-10 | 2022-03-22 | Gary A. Zick, Trustee Of The Everest Trust Uta April 20, 2017 | Spinal interbody cage comprising top and bottom faces with mesh structures, pillars and slots |
US11857430B2 (en) | 2018-08-09 | 2024-01-02 | Stryker European Operations Holdings Llc | Interbody implants and optimization features thereof |
US11065126B2 (en) | 2018-08-09 | 2021-07-20 | Stryker European Operations Holdings Llc | Interbody implants and optimization features thereof |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US12108959B2 (en) | 2019-05-29 | 2024-10-08 | Wright Medical Technology, Inc. | Preparing a tibia for receiving tibial implant component of a replacement ankle |
US11123173B2 (en) | 2019-09-11 | 2021-09-21 | Gary A. Zwick | Implant comprising first and second sets of pillars for attaching a tendon or a ligament to a hard tissue |
US11690724B2 (en) * | 2019-10-31 | 2023-07-04 | Beijing Ak Medical Co., Ltd | Metal-ceramic composite joint prosthesis and applications and manufacturing method thereof |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11806245B2 (en) | 2020-03-06 | 2023-11-07 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US20220175432A1 (en) * | 2020-12-04 | 2022-06-09 | Industrial Technology Research Institute | Bone screw |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US12023258B2 (en) | 2021-04-06 | 2024-07-02 | Medos International Sarl | Expandable intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
WO2023104778A1 (en) | 2021-12-07 | 2023-06-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Method for producing a porous layer or a porous body |
DE102021132139A1 (en) | 2021-12-07 | 2023-06-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Method of making a porous sheet or body |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
Also Published As
Publication number | Publication date |
---|---|
FR2095854A5 (en) | 1972-02-11 |
CA962806A (en) | 1975-02-18 |
CH540044A (en) | 1973-08-15 |
DE2127843A1 (en) | 1971-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3855638A (en) | Surgical prosthetic device with porous metal coating | |
DE69527957T2 (en) | BIOMATERIAL AND IMPLANT FOR REPAIRING AND REPLACING BONES | |
US4309488A (en) | Implantable bone replacement materials based on calcium phosphate ceramic material in a matrix and process for the production thereof | |
US4693721A (en) | Porous flexible metal fiber material for surgical implantation | |
US5030233A (en) | Porous flexible metal fiber material for surgical implantation | |
US4713076A (en) | Coating composition and anchorage component for surgical implants | |
Cooke | Ceramics in orthopedic surgery. | |
EP1024841B1 (en) | Bone substitutes | |
US5522894A (en) | Bone replacement material made of absorbable beads | |
Chiroff et al. | Tissue ingrowth of replamineform implants | |
Nilles et al. | Biomechanical evaluation of bone‐porous material interfaces | |
US6018095A (en) | Method for preparing an implantable composite material, resulting material, implant including said material, and kit therefor | |
KR880001652B1 (en) | Implant and method for production thereof | |
US4878914A (en) | Ceramic prosthesis for living body & method of making the same | |
Wang et al. | Interfacial shear strength and histology of plasma sprayed and sintered hydroxyapatite implants in vivo | |
WO1986002260A1 (en) | Method and device for fixing a joint prosthesis | |
Wie et al. | Hot isostatic pressing-processed hydroxyapatite-coated titanium implants: light microscopic and scanning electron microscopy investigations. | |
Pilliar et al. | The bone-biomaterial interface for load-bearing implants | |
JP2761339B2 (en) | Novel surface coating for prosthetic devices and prosthetic devices coated thereby | |
EP0259484A1 (en) | Moldable bone implant material | |
US5888067A (en) | Dental implant | |
Karagianes | Porous metals as a hard tissue substitute | |
Weber et al. | Carbon-metal graded composites for permanent osseous attachment of non-porous metals | |
Hastings | Biomedical engineering and materials for orthopaedic implants | |
Mohanty | Medical Applications of alumina ceramics |