US3852173A - Alumina reduction process - Google Patents

Alumina reduction process Download PDF

Info

Publication number
US3852173A
US3852173A US00374802A US37480273A US3852173A US 3852173 A US3852173 A US 3852173A US 00374802 A US00374802 A US 00374802A US 37480273 A US37480273 A US 37480273A US 3852173 A US3852173 A US 3852173A
Authority
US
United States
Prior art keywords
bath
alumina
anode
cell
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00374802A
Inventor
S Jacobs
N Jarrett
R Graham
R Campbell
C Cochran
W Haupin
P Foster
W Sleppy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Aerospace Inc
Original Assignee
Aluminum Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminum Company of America filed Critical Aluminum Company of America
Priority to US00374802A priority Critical patent/US3852173A/en
Priority to SE7406897A priority patent/SE7406897L/
Priority to NO741934A priority patent/NO140632C/en
Priority to DE2429576A priority patent/DE2429576A1/en
Priority to FR7421905A priority patent/FR2235212B1/fr
Priority to CH864474A priority patent/CH615700A5/en
Priority to BR5161/74A priority patent/BR7405161A/en
Priority to IT51691/74A priority patent/IT1016149B/en
Priority to SU742042059A priority patent/SU795507A3/en
Application granted granted Critical
Publication of US3852173A publication Critical patent/US3852173A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/18Electrolytes

Definitions

  • ABSTRACT A process for producing aluminum, including electrolytically decomposing alumina to aluminum metal in an electrolyte bath between a carbon anode and a cathodic interface formed between metal and the electrolyte bath, the bath a. consisting essentially of A1 0 NaF, and AlF and b. having a weight ratio NaF to AlF up to 1.1:],
  • the bath while maintaining the bath at an operating temperature effective for preventing bath crusting in interfacial areas between bath and aluminum metal, while enclosing the top of the cell for keeping the surface of the bath molten, and while feeding alumina a. substantially continuously onto the molten bath surface, b. the alumina having a water content effective for preventing anode dusting, c. the carbon anode being exposed to the gaseous water evolved from the alumina, whereby anode dusting is prevented.
  • PATENTED BEE 974 SHEET 0F 5 N 1 A9.F A$lF PHASE DIAGRAM I0 0 6 D 3 I 3 F 5 U 1 I m w. A s L A O M 5 F 5 M l 4' O O A O 3 .O5.I
  • the present invention relates to the electrolytic reduction of alumina to aluminum metal, and, more particularly, to a modified I-Iall-I-Ieroult process for producing aluminum.
  • the conventional Hall-Heroult cell for producing aluminum is beset with a number of problems. For example, it is customary to feed alumina into the molten electrolytic bath through openings broken in the solid crust which covers the upper surface of the bath. This allows pot gases to escape.
  • pre-baked carbonanodes must be stubbed, i.e., molten cast iron is poured into a recess in the top of the anode to form an electrical connection to receive an anode rod for feeding current to the cell.
  • Stubbing is a costly operation. Used carbon anode butts are re-cycled by crushing them and employing the crushed material as part of the mixture of carbon and binder which is molded and baked to form additional anodes. This re-cyclin'g adds expense and also results in fluoride attack on refractories in the kilns used in the 1 baking operation.
  • self-baking carbon anodes i.e., socalled Soderberg electrodes
  • airburning is likewise a problem with such anodes.
  • both pre-baked anodes and self-baking anodes are subject to attack by fluoride gas evolved from the electrolytic bath, which results in sloughing of carbon dust from the anodes and causes increased anode cost and other problems described below.
  • Fume control is likewise a problem for the conventional I-Iall-I-Ieroult cell.
  • An air sweep which dilutes pot gases up to lOO-fold has been inherent in previous attempts to efficiently hood for capture of fumes.
  • the requisite hooding is costly and requires considerable maintenance as individual sections are easily deformed by harsh usage.
  • Fluoride which is in short supply, must be added continually to maintain proper bath composition. And, with all precautions, fume not intercepted by the hooding escapes through roof vents.
  • Process control is another problem area in the conventional Hall-Heroult cell. Addition of alumina by using the crust insulation upsets the alumina control. Unnecessary anode effects reduce production. As make-up for fluoride, AlF must be added to maintain the NaF/AlF ratio necessary to obtain high current efficiency. Continual additional anode-cathode distance adjustment is required because of anode changing and alumina feeding, which require breaking of the crust and upsets heat balance.
  • the carbon lining of the cell which forms a component of the cathode assembly, has a higher voltage drop than is desired, and as the cell ages and bath penetrates into the carbon lining, collector bar to lining interface voltage drop increases further. Magnetic effects result in deterioration of the carbon lining, reduce aluminum production, and shorten cell life.
  • a process for producing aluminum including electrolytically decomposing alumina to aluminum metal in an electrolyte bath between a carbon anode and a cathodic interface formed between aluminum metal and the electrolyte bath, the bath l a. consisting essentially of AI O NaF, and AlF and b. having a weight ratio NaF to AlF up to l.l:l, while maintaining the bath at an operating temperature effective for preventing bath crusting in interfacial areas between bath and aluminum metal, while enclosing the top of the cell for keeping the surface of the bath molten, while feeding alumina a.
  • FIG. 1 is an elevational, cross-sectional, broken-away view of a Soderberg anode type cell for use in the present invention.
  • FIG.2 is an elevational, cross-sectional view of a prebaked anode type cell for use in the present invention.
  • FIG. 4 is a phase diagram for a two component system, i.e., cryolite and aluminum fluoride, and it must be remembered that the situation becomes somewhat different (e.g., lower liquidus temperature) as other components, for instance A1 0 CaF LiF, etc. are added to the bath. Nevertheless, FIG. 4 is sufficient to convey the concept. Point A in FIG.
  • the problem is overcome by increasing the difference between bath operating temperature and bath liquidus temperature. This may be done by raising the operating temperature or by using an additive such as LiF to lower the liquidus temperature.
  • an additive such as LiF
  • the Alumina used in the present invention is generally fed at a rate. substantially equal to that at which it is consumed or converted to aluminum, that is at the rate of electrochemical reduction thereof.
  • substantially continuously as used herein we include adding alumina continuously or in small, separate increments at frequent intervals.
  • the alumina feed to any smelting cell must dissolve in the electrolyte at a rate equal to at least the rate of electrochemical reduction so that the dissolved Al O content of the electrolyte is not depleted. If alumina is fed to a cell more rapidly than it can be dissolved, solids then referred to as muck accumulate on the pot bottom, with attendant adverse effect upon operation of the cell. Factors that influence muck formation include the maximum M 0 solubility in the electrolyte and the solution rate of the particular alumina chosen.
  • the method of feeding and the quantity of alumina introduced to the cell at any one time, along with the difference between cell operating temperature and the liquidus temperature of the NaF-AlF electrolyte, are also important considerations with regard to muck formation.
  • the solubility and solution rate of alumina in NaF- AlF electrolytes depends, in part, on the temperature and weight ratio of NaF/AlF (bath ratio) in the fused salt bath.
  • the maximum solubility and solution rate are found in pure molten cryolite (bath ratio 1.521) at elevated temperatures.
  • bath ratio is lowered by addition of excess AlF the temperature at which a completely liquid NaF-AIF; fused salt system can be maintained, the liquidus temperature, is sharply decreased.
  • a decrease in A120 solubility and solution rate accompany a decrease in bath ratio.
  • the solubility of A1 0 in a given bath at a specified temperature is independent of the physical form of the A1 0 charged to the electrolyte, but the solution rate of the alumina in the bath is a function of properties of the charged alumina.
  • the present invention makes use of the discovery that alumina having, as compared with the metal grade alumina conventionally used for producing aluminum metal by the electrolytic reduction of A1 0 in cryolite-based electrolyte, a higher water content and a higher surface area and charged directly into contact with molten electrolyte exhibits a significantly higher solution rate. It is believed that the higher water content, and in particular a higher chemically combined water content, acts to instantaneously disperse the charged alumina through the electrolyte by the sudden release of steam as the charge comes in contact with the hot electrolyte'bath. The well-dispersed particles then dissolve rapidly in the bath.
  • the alumina to be used in the presentinvention may be fed to individual cells or to a plurality of. cells in a potline.
  • the cells may employ either pre-baked anodes or anodes baked in situ, such as the Soderberg type.
  • calcining alumina hydrate such as Bayer process alumina trihydrate will produce alumina for use in the present invention.
  • calcining temperatu'res in the range of about 300 to 600C are suitable for the purpose.
  • Apparatus and methods for heating alumina to the desired water content and surface area in kilns or so-called flash heating are well-known.
  • Aluminas with surface areas as high as 350 m /g can be obtained by heating a-alumina trihydrate (gibbsite) for l hour at 400C in dry air. Such materials are rapidly soluble in electrolyte baths according 6 the present invention.
  • the water content is preferably effective for dispersing the individual particles of the alumina when the alumina is added to the electrolytic bath. If the water content is too low, steam evolution will not be effective for dispersing the particles, and a tity of heat that must be removed from the bath to drive off water as steam. This quantity cannot be sufficient to cause solidification of bath around solid alumina particles, thereby contributing to muck formation. In general, when this second criteria is satisfied, no dangerous explosions will occur according to the practice of the present invention. In general, if the water content is effective for dispersing the individual particles, it is also effective for preventing anode dusting.
  • the Enclosing of The Bath In the closing of the top of the cell in the method of the present invention, certain guidelines are used.
  • the cover must (1) prevent heat loss from the top of the bath to a sufficient degree that the bath surface remains molten, (2) it must prevent any substantial amount of air from diluting fumes arising due to cell operation, and (3) by barring air, it is to eliminate air burning of the carbonaceous anode material.
  • a basic concept behind minimizing the air entering the cell is the undesirability of the resulting dilution of the fumes, such as gases given off by the anode (e.g., hydrocarbons), those resulting from the electrolysis reaction (e.g., CO and those evolved from the bath (e.g., gaseous fluorides).
  • gases given off by the anode e.g., hydrocarbons
  • those resulting from the electrolysis reaction e.g., CO and those evolved from the bath (e.g., gaseous fluorides).
  • the cell cannot be completely closed, for openings must be provided for venting from the cell the above-mentioned gases produced therein.
  • Anode Dusting Depending upon operating conditions, consumption of carbon anodes in l-lall-Heroult process cells ranges from one-third to three-quarters of a pound of carbon per pound of aluminum produced. The preferred conditions are those leading toward the stoichiometric minimum consumption, 0.33 lbs. C
  • Carbon scum causes alumina feeding problems.
  • the carbon scum has made it impossible to replenish alumina consumed during electrolysis.
  • scum formation accelerates.
  • Carbon dust and scum increases the bath viscosity and hinder diffusion of oxygen-bearing ions to the anode, thus limiting anode current densities and affecting the heat balance of the cell.
  • Increases in the viscosity and density of the bath lower the current efficiency and contribute to poor metal coalescence.
  • the carbon in the scum and dust is not available for reaction with oxygen at the anode and so the gross consumption of'carbon is increased by dusting.
  • Prolonging the life of anodes will not only decrease carbon consumption, but in the case of pre-baked anodes will decrease the amount of anode butts to be recycled to the production of additional anodes and thereby decreases problems attendant upon evolution of fluorides during baking of anodes.
  • the present invention utilizes the discovery that, when the above-described, watercontaining alumina is charged onto the bath, preferably onto locations of the bath surface where gas is evolving alongside the anode, the water given off as the alumina contacts the bath surface will create in a closed cellthe water-containing atmosphere at the anode required for preventing anode dusting. If the alumina is charged to the bath elsewhere than alongside the anode, venting of the cover over the cell should be placed and regulated such that the released gaseous water will in fact contact the anode to prevent anode dusting.
  • anode dusting is caused by atmolite or sodium aluminum tetrafluoride, NaAlF in vapor form. This substance attacks an anode and causes anode dusting.
  • a gaseous effluent containing gaseous fluorides is evolved from the electrolytic bath of alumina dissolved in molten cryolite (primarily cryolite or cryolite plus additional fluorides such as excess AlF CaF and UP), and among such gaseous fluorides is atmolite.
  • the amount of water vapor to. be provided in an atmosphere around an anode surface depends to some extent on the amount of atmolite to be neutralized.
  • Advantages The process of the present invention solves many of the problems associated with conventional Hall- Heroult cell practice. For example, current efficiency is improved and operation at low bath ratio, i.e., low sodium, contributes toward eliminating swelling and heaving in the carbon lining. Also, closing the cell makes possible total fume collection. There is no roof vent loss. from the smelting building.
  • alumina delivered to the bath can be carefully controlled and an optimum concentration maintained.
  • the higher water content alumina itself permits closer control of dissolved alumina concentration.
  • Stable heat balance results in minimum anode-cathode distance variation. Crust breaking for anode changing and alumina additions is eliminated.
  • the higher water content alumina has enabled for the first time satisfactory operation of closed Hall-Heroult cells. By minimizing carbon scum formation in such closed cells, there is continued easy access of feed alumina to the molten bath surface.
  • Carbon consumption is less in the present invention, because there is practically no air burning of the anodes and because operation is at higher COJCO ratio.
  • the bath weight ratio NaF to AIF is less than 1.0.
  • a ratio less than 0.9 can be used. It is preferred to maintain the bath ratio at a value at least greater than 0.5.
  • the concentration of A1 dissolved in the bath should be above that at which an anode effect would occur and is selected to optimize the current efficiency of the cell. It is believed possible, perhaps on a transient basis, to have some alumina in solid, particulate form in the bath. Mucking, i.e., a settling of excessive amounts of solid alumina onto the bottom of the cell, does not occur, due to an increased aluminarsolubility at the metal/bath interface caused by concentration gradients in the catholyte.
  • alumina be fed to the bath in a form having a high dissolution rate as discussed above. Preferred embodiments of such alumina are discussed below.
  • the bath may consist only of A1 0 NaF, and MP it is possible to provide in the bath at least one halide compound of the alkali and alkaline earth metals other than sodium in an amount effective for reducing the liquidus temperature of the bath below that which it would have if only M 0 NaF, and AIR, were present.
  • Suitable alkali and alkaline earth metal halides are LiF, CaF and MgF
  • the bath contains lithium fluoride in an amount between 1 and wt. percent.
  • the operating temperature of the bath is preferably maintained at a temperature greater than 40C above the cryolite liquidus temperature of the bath.
  • the cryolite liquidus temperature is that temperature at which cryolite first begins to crystallize on cooling the bath. Where the bath composition is such that cryolite is the first substance to crystallize on cooling, the intersection of the line of the constant bath composition versus temperature with the uppermost liquidus temperature surface gives the cryolite liquidus temperature.
  • cryolite liquidus temperature is the eutectic" temperature determined by finding the liquidus temperature for progressively decreasing AhO content, correspondingly increasing NaF AIR, and constant bath ratio NaF/AlF and selecting the minimum liquidus temperature on the basis of the resulting group of liquidus temperature values.
  • the operating temperature must be effective for preventing bath crusting in interfacial areas between the bath and the molten aluminum metal pad cathode. It is preferred that the operating temperature lie below 935C, and baths have been operated successfully at operating temperatures below 900C, 850C, and 800C. In some embodiments, the operating temperature is at least C, sometimes at least 100C, above the liquidus temperature of the bath.
  • the electrolytic decomposition of A1 0 in the present invention may be carried out at an anode current density of l to 20 amperes per square inch, while current densities of l to 15 and l to 10 amperes per square inch represent preferred current density ranges.
  • carbon anodes used in the present invention be protected by a waterbearing atmosphere.
  • An appropriate water-bearing atmosphere is created when the bath is sealed off from the air and when the alumina is preferably fed onto locations of the bath surface where electrolysis gas is evolving alongside the anodes.
  • the alumina is in the form of the herein described high dissolution rate, water containing alumina. The resulting water-bearing atmosphere prevents anode dusting, a condition which can prove intolerable for the present invention.
  • total water is defined herein as follows: Expose a sample of alumina to percent humidity for several hours, then equilibrate the sample at 44 percent relative humidity, 25C, for 18 hours, then accurately weigh the sample, then ignite it to l,l0OC, then weigh again. The loss in sample weight on going from the equilibrated state at 44 percent relative humidity to the ignited state after heating at l,l00C, divided by the sample weight at l,lO0C, and multiplied by 100 is the percent total water.
  • the alumina used in carrying out the invention handle and convey easily.
  • the properties according to the present invention that enhance the solution rate of alumina in fused NaF- AlF salt systems also improve its ease of handling and serviceability in operations as in US. Pat. No. 3,503,184. Because the alumina used in the present invention has higher water content, less energy, as compared to the energy used in producing conventional metal grade alumina, is required to produce it from Bayer process hydrated alumina.
  • the alumina added to the bath according to the present invention may be preheated, if desired, so long as it retains the above-mentioned water content and surface area characteristics.
  • the alumina has a total water of 8 to 20 percent, more preferably 10 to l8 percent.
  • the alumina surface area may preferably lie in the range 135 to 180 m lg.
  • a maximum rate of solution of alumina in a fluoride bath is obtained when heated, attrition resistant, high surface area, 8 to 20 percent total water alumina of 55-l45 micron diameter (100 mesh +270 mesh) particles is charged directly to the unfrozen surface of agitated bath at temperatures above its liquidus temperature continuously or in small separate portions, i.e., a time interval between separate shots equaling or less than 10 minutes.
  • the phrase small separate portions is underlined because of its importance with regard to the AT at which the cell is operated.
  • the AT is the difference between the operating temperature and the liquidus temperature of the NaF-AlF fused salt mixture.
  • This liquidus temperature can be lowered by addition of other salts to the bath such as CaF LiF, MgF etc., but for simplicity a pure NAF-AlFg system is visualized.
  • Conventional smelting cells operate with ATs of l30C. In conventional operations a low AT is desirable since the current efficiency of the cell increases as the operating temperature decreases. Because of improved control on, conventional 'potlines the anode cathode distance (ACD) in operating cells has been reduced in some cases to a nominal 1 inch distance. Since the heat input to cells depends on line electrical current and internal resistance, the low ACD has enabled the lowering of AT to, for example, C :L 5C.
  • a proper particle size distribution is advantageous with regard to ease of dissolution in a smelting cell.
  • Alumina fines e.g., particle size less than 44 microns (-3 25 mesh) tend to dust over the surface of the molten bath, agglomerate, and sink to the bottom of the cell, where they contribute to mucking problems.
  • EXAMPLE I The purpose of this example is to illustrate basic principles concerning the prevention of anode dusting, using a gaseous water partial pressure.
  • a graphite crucible 51 and an alumina crucible 52 having a hole 53 at its lower end.
  • a molten aluminum metal pad 54 sits in the bottom of the alumina crucible and contacts the graphite crucible anode skirt 58 surrounds the anode S7 asshown and is sealed at its top by plug 59 provided with orifices for the passage of anode lead 60 and gas flow pipe 61.
  • Appropriate piping is provided for allowing varied amounts of argon gas to flow from tank 62 through impinger bottle 63 containing water64 surrounded by an ice water bath 65.
  • Carbon consumption was 0.33 to 0.38 pounds per pound of aluminum produced at a current efficiency of percent in 29 to 41 ampere-hour tests using water vapor shielding for preventing anode dusting.
  • With 4 to 22 torr water partial pressure in the argon no carbon froth or scum was detected.
  • the impinger bottle 63 was bypassed so that only argon moved down around anode 57 a carbon scum formed on the bath, and electronic shorting from anode to cathode through the carbon scum occurred.
  • EXAMPLE II This and Example III are provided to illustrate the increased dissolution rates obtainable with the alumina used for preventing anode dusting according to the present invention.
  • the apparatus used in this example is shown in FIG. 3.
  • Pot furnace 70 which heated by electrical resistance heating, served for bringing a cryolite-base bath in a graphite crucible 71 supported on fire brick 72 to a temperature of 740C.
  • the nominal bath composition was 64 weight percent cryolite and 36 weight percent aluminum fluoride (AlF This corresponds to a bath weight ratio NaF/AlF 0.65.
  • the quantity of bath was 500 grams and 200 milliliters volume in the molten state.
  • the bath contained 14 grams or 2.8 weight percent of A1 0 as an impurity.
  • this bath is molten (liquidus approximately 724.5C) and crystal clear.
  • a one-gram quantity of alumina having a total water of 17 percent and a surface area of m lg was sprinkled onto the exposed, uncrusted surface of the molten bath. With the bath illuminated with light source 73, the time was recorded for which no remainder of the sprinkled alumina particles could be seen in the bath through viewing tube 74. This time was 2 minutes and 58 seconds, which equals a solution rate, in milligrams per milliliter bath-minute equal to 1.65. By way of comparison, a so-called metalgrade-alumina of surface area of 40 rn lg gave a solution rate of 0.14 milligrams per milliliter bath-minute under like conditions.
  • EXAMPLE lll Using the apparatus of FIG; 3 and alumina of 17' percent total water, 170 m /g surface area, gave, at a bath weight ratio NaF/AlF 1.5 and a bath temperature of 980C, a solution rate of 16 milligrams of A1 per milliliter of bath each minute. The solution rate measured under the same conditions for an alumina of 20 5 EXAMPLE IV This Example illustrates how alumina appropriate for the present invention may be produced.
  • Bayer-process alumina hydrate was treated in a kiln to produce kiln activated alumina suitable for use in the process of the present invention as follows. Kiln dimensions were 360 feet length and 9% feet inner-diameter. Residence time of the material in the kiln was 1 to 1 /2 hours. The charged hydrate moved countercurrent to the combustion gases introduced into the lower end of the kiln. A maximum temperature of 400 to 500C was achieved 10 to feet inside the'lower end of the kiln.
  • Natural gas was burned at a rate of 6,500 cubic feet (standard temperature and pressure) per hour to produce the combustion gases. This natural gas flow rate was selected by testing the product for the desired total water. The volume ratio of air to gas was approximately 10:1. An alumina having a 12.5 percent total water was produced. Anywhere from 88 to 95 weight percent of the particles had a size greater than 325 mesh.
  • EXAMPLES V AND VI Aluminum was produced in the cell of FIG. 1.
  • the maximum dimensions of the steel shell in the horizontal were 18 feet 6 inches X 10 feet 2 inches. Its maximum height was 3 feet 9 inches.
  • the maximum dimensions of the molten aluminum metal pad 21 in the horizontal were 17 feet 8 inches X 9 feet 4 inches.
  • the electrolyte bath had the same maximum dimensions as the metal pad.
  • a mica mat 22 was provided between the steel shell 20 and graphite block 23 for the purpose of preventing current flow through shell 20. Mat thicknesses of from 6 to 20 mils have been used.
  • the pad 21 of molten aluminum was supported on carbonaceous cathode block lining 24 and carbonaceous tamped lining 25.
  • the carbonaceous linings were supported on an alumina fill 26, there being interposed between the tamped lining and the till some quarry tile 27.
  • a layer of red brick 28 was provided between the graphite block 23 and quarry tile 27.
  • FIG. 1 is a representativevertical section through the cell and it will be realized that, for instance, similar graphite blocks 23 would appear in other elevational sections through the cell.
  • the anode 29 was a Soderberg-type carbon anode.
  • the composition charged to form this self-baking anode was 31 percent pitch of softening poing equals 98l00C (cube-in-air method) and 69 percent petroleum coke.
  • the coke fraction was 30 percent coarse,
  • a closure 32 including a cast iron manifold 33, Cera form Refractory board 34, which is a soft (for obtaining a good seal) fibrous electrical and heat insulating board available from the Johns-Manville Co., steel shell 35, steel plate 36, and tire clay brick, e.g., 50% A1 0 and 50% SiO 37.
  • a castable 38 serving a primarily insulative function and a castable 39, e.g., calcium-aluminatebonded tabular. alumina, selected for its refractory properties.
  • the particular heat transfer situation was chosen to maintain the upper surface 45 of bath 3l substantially in molten condition, i.e., free of any crusting.
  • Alumina is charged from hopper 40 through a fill valve and feeder assembly 41 of the type disclosed in US Pat. No. 3,681,229 issued Aug. 1, 1971 to R. L. Lowe entitled Alumina Feeder. Measured quantities of alumina are fed onto the exposed molten bath surface through Inconel-600 pipe 42. The distance between the bottom of pine 42 and the top of bath 31 is about 1 foot.
  • the feeder 41 is a shot-type feeder, i.e., separate quantities of alumina are fed at timed intervals. In Examples V and VI, two feeders 41 were used, and these fed-in alumina approximately every 5 minutes, the quantities of alumina being adjusted to maintain the desired alumina concentration in the bath. It takes about 1 minute to discharge the alumina increments which were about 1,500 grams.
  • Pipe 42 is directed so as to impinge alumina onto the bath 31 where gas 44 is rising alongside the anode. This assures that the water evolved from the charged alumina protects the anode against production of carbon dust therefrom. This practice also promotes dissolution because of the bath agitation caused by the gas evolution.
  • alumina in line with a spike row (spikes 45a, b and 0 lie in a vertical plane parallel to the plane of FIG. 1, which plane also contains pipe 42) in the Soderberg anode (cracks usually occur in the anode in line with spike rows), the dissolution rate is enhanced by the increased gas evolution occurring at the cracks.
  • Feeders 41 were operated using air as the fluidizing medium, it being recognized that this represents a small leakage of air past cover 32 to the bath.
  • the particular alumina used for Examples V and V1 had a total water of 16.95 percent. This alumina was 98 percent plus 325 mesh and its water content alone was sufficient to prevent anode dusting, i.e., a decomposition of the anode such that carbon particles build up in and on the bath.
  • the excess AlF indicates the quantity of AlF above the present under the heading cryolite, formula 3NaF.AlF
  • A1 would be the first substance to crystallize on going below the given liquidus temperature.
  • the eutectic" temperature provides an estimate of the cryolite liquidus temperature in this case.
  • the "eutectic" temperature is determined by finding the liquidus temperature for progressively decreasing A1 0 content, correspondingly increasing NaF MP 16 and constant bath ratio NaF/AIF and selecting the minimum liquidus temperature on the basis of the resulting group of liquidus temperature values.
  • the A1 0 in solution is that at the particular bath operating temperature.
  • Conductivity data is likewise for the given operating temperature.
  • EXAMPLE VII Aluminum was produced in the cell of FIG. 2 shown in longitudinal, elevational cross section. The cell had external dimensions equaling approximately 48 inches 1 height, 89 inches length and 56 inches width.
  • Two carbon, pre-bake anodes 10a and 10b were suspended into electrolyte bath 11 resting on a pad of molten aluminum 12.
  • the molten bath and aluminum were contained laterally by refractory, nonconductive material 13.
  • Refractory material 13 includes a side lining in contact with the molten bath and the molten aluminum and otheroutwardly situated insulating material with internal structural members of, for example, steel.
  • fractory alumina brick and silicon carbide brick were the particular side lining materials chosen in this example. Lining the bottom of the cell were graphite blocks 14a through 14d, which were connected into the electrical system by steel bars 15a to 15d.
  • Alumina was fed to bath 11 through a suitable port (not' shown) in graphite roof 16; the particular alumina used for feed had a surface area of 245 meters per gram and a total water of 13 percent.
  • Graphite roof 16 functioned to seal the bath from the air.
  • the electrolyte bath 11 had a composition of 5% LiF and 4 to 5% A1 0 with the balance being cryolite and A113, in proportions giving a weight ratio NaF/AlF equals 0.8.
  • A1 0 would be the first substance to precipitate when cooling bath 1 l.
  • the liquidus for A1 0 precipitation in the bath at 5% A1 0 is 91 15C.
  • the liquidus is 863.0C.
  • Bath operating temperature in FIG. 2 was 910 i 10C. No crusting was noted at the interface between the molten aluminum cathode and the bath.
  • the cryolite liquidus, as estimated by the eutectic temperature (determined as explained above) at bath ratio 0.8 was 815C.
  • a process for producing aluminum comprising electrolytically decomposing alumina to aluminum metal in an electrolyte bath between a carbon anode and a cathodic interface formed between aluminum metal and the electrolyte bath, the bath a. consisting essentially of A1 NaF, and MR, and
  • the alumina having a water content effective for preventing anode dusting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

A process for producing aluminum, including electrolytically decomposing alumina to aluminum metal in an electrolyte bath between a carbon anode and a cathodic interface formed between metal and the electrolyte bath, the bath A. CONSISTING ESSENTIALLY OF Al2O3, NaF, and A1F3, and B. HAVING A WEIGHT RATIO NaF to A1F3 up to 1.1:1, WHILE MAINTAINING THE BATH AT AN OPERATING TEMPERATURE EFFECTIVE FOR PREVENTING BATH CRUSTING IN INTERFACIAL AREAS BETWEEN BATH AND ALUMINUM METAL, WHILE ENCLOSING THE TOP OF THE CELL FOR KEEPING THE SURFACE OF THE BATH MOLTEN, AND WHILE FEEDING ALUMINA A. SUBSTANTIALLY CONTINUOUSLY ONTO THE MOLTEN BATH SURFACE, B. THE ALUMINA HAVING A WATER CONTENT EFFECTIVE FOR PREVENTING ANODE DUSTING, C. THE CARBON ANODE BEING EXPOSED TO THE GASEOUS WATER EVOLVED FROM THE ALUMINA, WHEREBY ANODE DUSTING IS PREVENTED.

Description

United States Patent [1 1 Jacobs et al.
[ Dec.3, 1974 ALUMINA REDUCTION PROCESS [73] Assignee: Aluminum Company of America, Pittsburgh, Pa.
[22] Filed: June 28, 1973 [21] Appl. No.: 374,802
[52] US. Cl. 204/67 [51] Int. Cl t C22d 3/12 [58] Field of Search 204/67 [56] References Cited UNITED STATES PATENTS 2,464,267 3/1949 Short 204/67 3,006,724 10/1961 Harrell .204/67 X 3,128,151 4/1964 Zanon et al 1 1 204/67 X 3,294,656 12/1966 Schmitt 204/67 Primary Examiner-John H. Mack Assistant ExaminerD. R Valentine Attorney, Agent, or FirmDaniel A. Sullivan, Jr.
[ 5 7] ABSTRACT A process for producing aluminum, including electrolytically decomposing alumina to aluminum metal in an electrolyte bath between a carbon anode and a cathodic interface formed between metal and the electrolyte bath, the bath a. consisting essentially of A1 0 NaF, and AlF and b. having a weight ratio NaF to AlF up to 1.1:],
while maintaining the bath at an operating temperature effective for preventing bath crusting in interfacial areas between bath and aluminum metal, while enclosing the top of the cell for keeping the surface of the bath molten, and while feeding alumina a. substantially continuously onto the molten bath surface, b. the alumina having a water content effective for preventing anode dusting, c. the carbon anode being exposed to the gaseous water evolved from the alumina, whereby anode dusting is prevented.
15 Claims, 5 Drawing Figures W m. 0Q n9 9 SHEEI 2 0F 5 PAIENTED DEC 3 I974 PATENIEUDEB 31974 I 3,852,173
PATENTED BEE 974 SHEET 0F 5 N 1 A9.F A$lF PHASE DIAGRAM I0 0 6 D 3 I 3 F 5 U 1 I m w. A s L A O M 5 F 5 M l 4' O O A O 3 .O5.I|% m w I 1%v m u 10 v. 1 2 ll lill 5 I 1 (ll 5 '5 Ill 0 w 9 a m w E w w O O 9 R 8 7 F3 n U M A T R A R o H W T T A M W B E T.
FIG. 4
PATENTEL BEE 74 SHEET 5 0F 5 ARGON TANK- ALUMINA REDUCTION PROCESS BACKGROUND OF THE INVENTION The present invention relates to the electrolytic reduction of alumina to aluminum metal, and, more particularly, to a modified I-Iall-I-Ieroult process for producing aluminum.
The conventional Hall-Heroult cell for producing aluminum is beset with a number of problems. For example, it is customary to feed alumina into the molten electrolytic bath through openings broken in the solid crust which covers the upper surface of the bath. This allows pot gases to escape.
In conventional operations, exposed carbon is lost to air burning. This imposes a limitation on using taller, pre-baked anodes for the purpose of reducing labor costs, because increased air burning offsets the advantage.
Furthermore, pre-baked carbonanodes must be stubbed, i.e., molten cast iron is poured into a recess in the top of the anode to form an electrical connection to receive an anode rod for feeding current to the cell. Stubbing is a costly operation. Used carbon anode butts are re-cycled by crushing them and employing the crushed material as part of the mixture of carbon and binder which is molded and baked to form additional anodes. This re-cyclin'g adds expense and also results in fluoride attack on refractories in the kilns used in the 1 baking operation.
In some cells, self-baking carbon anodes (i.e., socalled Soderberg electrodes) are employed, but airburning is likewise a problem with such anodes. Moreover, both pre-baked anodes and self-baking anodes are subject to attack by fluoride gas evolved from the electrolytic bath, which results in sloughing of carbon dust from the anodes and causes increased anode cost and other problems described below.
A number of factors operated to limit the cell life of the conventional l-lall-Heroult cell. Sodium intercalation and formation of sodium aluminum oxide cause heaving and cracking of the cell lining with resultant interference with the operating characteristics of the cell, and shortened cell life, thus necessitating periodic cell re-lining.
Fume control is likewise a problem for the conventional I-Iall-I-Ieroult cell. An air sweep which dilutes pot gases up to lOO-fold has been inherent in previous attempts to efficiently hood for capture of fumes. The requisite hooding is costly and requires considerable maintenance as individual sections are easily deformed by harsh usage. Fluoride, which is in short supply, must be added continually to maintain proper bath composition. And, with all precautions, fume not intercepted by the hooding escapes through roof vents.
Process control is another problem area in the conventional Hall-Heroult cell. Addition of alumina by using the crust insulation upsets the alumina control. Unnecessary anode effects reduce production. As make-up for fluoride, AlF must be added to maintain the NaF/AlF ratio necessary to obtain high current efficiency. Continual additional anode-cathode distance adjustment is required because of anode changing and alumina feeding, which require breaking of the crust and upsets heat balance.
Concerning the cathodes of conventional Hall- I-Ieroult cells, the carbon lining of the cell, which forms a component of the cathode assembly, has a higher voltage drop than is desired, and as the cell ages and bath penetrates into the carbon lining, collector bar to lining interface voltage drop increases further. Magnetic effects result in deterioration of the carbon lining, reduce aluminum production, and shorten cell life.
Power efficiency also is somewhat low in the conventional I-Iall-Heroult cell process.
SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a new process for electrolytically reducing alumina to aluminum, which process overcomes many of the disadvantages of the conventional Hall- I-Ieroult cell.
This, as well as other objects which will become apparent in the discussion that follows, are achieved, according to the present invention, by a process for producing aluminum, including electrolytically decomposing alumina to aluminum metal in an electrolyte bath between a carbon anode and a cathodic interface formed between aluminum metal and the electrolyte bath, the bath l a. consisting essentially of AI O NaF, and AlF and b. having a weight ratio NaF to AlF up to l.l:l, while maintaining the bath at an operating temperature effective for preventing bath crusting in interfacial areas between bath and aluminum metal, while enclosing the top of the cell for keeping the surface of the bath molten, while feeding alumina a. substantially continuously onto the molten bath surface, b. the alumina having a water content effective for preventing anode dusting, c. the carbon anode being exposed .to the gaseous water evolved from the alumina, whereby anode dusting is prevented.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an elevational, cross-sectional, broken-away view of a Soderberg anode type cell for use in the present invention. I
FIG.2 is an elevational, cross-sectional view of a prebaked anode type cell for use in the present invention.
' GENERAL ASPECTS OF THE INVENTION a. The Operation Temperature Operating a l-Iall-l-Ieroult cell at bath weight ratios NaF/AlF equal to or below l.l:l has held the promise of higher current efficiencies due to lower bath operating temperatures. Higher CO /CO ratios would mean less consumption of the carbon in the carbonaceous anodes. Experimentation with baths having weight ratios of l.l:l or'below has however presented a problem of crust formation over the molten aluminum pad cathode during electrolysis. Analysis led to the discovery that the problem must have resulted from maintaining a to 30C difference between the electrolyte bath operatingtemperature and its liquidus temperature, i.e., AT 20 to 30C. This temperature difference is measured at the hottest location in an industrial smelting cell. The maintaining of this 20 to 30 difference was a practice of long standing in the operation of conventional Hall- Heroult-type aluminum smelting cells.
The maintaining of the 20 to 30C difference in operating cells has been the result of several considerations. For example, this temperature difference has permitted the bath to form a protective frozen or solidified layer over and near the side linings of the cell, and it has been known that forevery lC increase of the bath operating temperature over the bath liquidus, there is a decrease of about 0.22 percent efficiency. These two factors had indicated that a temperature difference above 30C would be undesirable. Providing the lower limit on this temperature difference has been the concept that the liquid cavity enclosed by the frozen bath at or near the sidewalls'of a cell should not become too small for efficient smelting. With this well established conceptual basis for the 20 to 30 temperature difference, the problem of electrolyte crusting over the molten aluminum pad cathode during electrolysis at low bath ratios was not attributed by those in the art to the practice of maintaining this temperature difference.
Analysis indicated that, if the 20 to 30 temperature difference is maintained at low bath ratio operations, i.e., low weight ratio NaF to AlF a concentration graclient effect occurs in the catholyte region of the electrolyte directly above the molten aluminum pad cathode to result in the troublesome electrolyte crusting over the molten aluminum pad cathode. It is believed that the gradient results from a depletion of acid (AlF rich) constituents in the catholyte and a concomitant enrichment in basic (NaF) constituents of the catholyte.
A difference to 20 to 30C between the operating temperature of the electrolyte bath and the liquidus of the electrolyte bath is sufficient for preventing crusting in the catholyte region of the higher ratio baths used in prior practice, but is insufficient to prevent crusting at lower ratios of, for example, 0.8. This is illustrated in FIG. 4. FIG. 4 is a phase diagram for a two component system, i.e., cryolite and aluminum fluoride, and it must be remembered that the situation becomes somewhat different (e.g., lower liquidus temperature) as other components, for instance A1 0 CaF LiF, etc. are added to the bath. Nevertheless, FIG. 4 is sufficient to convey the concept. Point A in FIG. 4 is a point 30C above the liquidus of an electrolyte bath of 1.3 ratio, such as might be used in a Hall-Heroult cell operating according to previous practice. Enrichment in sodium will move the actual catholyte composition in the direction of arrow Z, but, as is clear from FIG. 4, composition changes in the direction of arrow Z will never result in the entering of a region in the phase diagram where solid phase might precipitate out. The situation is quite different for point B which is 30C above the liquidus of a bath of 0.8 ratio. There, as soon as sodium enrichment in the catholyte becomes sufficiently great to move the effective composition farther to the left than the A Concentration30C indicated in the Figure,
solid cryolite (Na AlF can precipitate out. In this way, it becomes possible for a crust of frozen electrolyte to form over the molten aluminum pad cathode as electrolysis proceeds in a low ratio electrolyte bath operated with the 20 to 30C difference between bath operating temperature and bath liquidus practiced in the prior art.
Having recognized the source of the problem of crusting over the molten aluminum pad cathode in low ratio baths, the problem is overcome by increasing the difference between bath operating temperature and bath liquidus temperature. This may be done by raising the operating temperature or by using an additive such as LiF to lower the liquidus temperature. For example,
from FIG. 4 it can be seen that crusting over the pad cathode at a bath ratio of 0.8 is prevented by operating the electrolysis at a bath temperature lying at point C, which is 100C above the liquidus of the 0.8 ratio bath. At this higher operating temperature, a considerably greater concentration gradient can be tolerated in the catholyte without suffering the occurrence of crusting,
.of the electrolyte and FIG. 4. If crusting at the cathodebath interface is occurring under the chosen conditions, it can be noted by the resistance given to the probing or sideways movement of a steel rod down at the interface in the electrolyte bath. Preferably, that operating temperature ischosen at which no significant crusting is occurring at the interface between the cathode pad and the electrolyte bath, it being remembered that any increase above this minimum adequate temperature means loss in current efficiency. While this procedure has been discussed for constant bath ratio, it will be recognized that a greater difference between bath operating temperature and bath liquidus may be achieved, for instance, by adding more aluminum fluoride. Also, other substances, such as LiF, may be used to lower the liquidus temperature while maintaining the bath operating temperature constant. b. The Alumina The alumina used in the present invention is generally fed at a rate. substantially equal to that at which it is consumed or converted to aluminum, that is at the rate of electrochemical reduction thereof. Within the meaning of the term substantially continuously as used herein, we include adding alumina continuously or in small, separate increments at frequent intervals.
The alumina feed to any smelting cell must dissolve in the electrolyte at a rate equal to at least the rate of electrochemical reduction so that the dissolved Al O content of the electrolyte is not depleted. If alumina is fed to a cell more rapidly than it can be dissolved, solids then referred to as muck accumulate on the pot bottom, with attendant adverse effect upon operation of the cell. Factors that influence muck formation include the maximum M 0 solubility in the electrolyte and the solution rate of the particular alumina chosen. The method of feeding and the quantity of alumina introduced to the cell at any one time, along with the difference between cell operating temperature and the liquidus temperature of the NaF-AlF electrolyte, are also important considerations with regard to muck formation.
The solubility and solution rate of alumina in NaF- AlF electrolytes depends, in part, on the temperature and weight ratio of NaF/AlF (bath ratio) in the fused salt bath. The maximum solubility and solution rate are found in pure molten cryolite (bath ratio 1.521) at elevated temperatures. As the bath ratio is lowered by addition of excess AlF the temperature at which a completely liquid NaF-AIF; fused salt system can be maintained, the liquidus temperature, is sharply decreased. A decrease in A120 solubility and solution rate accompany a decrease in bath ratio. Thus, while the use of low ratio fused salt mixtures as electrolytes in smelting cells permits lower temperature operations, an alumina feed with properties that improve its solution rate in the electrolyte is required. The solubility of A1 0 in a given bath at a specified temperature is independent of the physical form of the A1 0 charged to the electrolyte, but the solution rate of the alumina in the bath is a function of properties of the charged alumina.
The present invention makes use of the discovery that alumina having, as compared with the metal grade alumina conventionally used for producing aluminum metal by the electrolytic reduction of A1 0 in cryolite-based electrolyte, a higher water content and a higher surface area and charged directly into contact with molten electrolyte exhibits a significantly higher solution rate. It is believed that the higher water content, and in particular a higher chemically combined water content, acts to instantaneously disperse the charged alumina through the electrolyte by the sudden release of steam as the charge comes in contact with the hot electrolyte'bath. The well-dispersed particles then dissolve rapidly in the bath.
The thought of introducing the appreciable amounts of water in the alumina used in the present invention to an alumina electrolytic reduction bath may bring to mind the possibility of explosions. Thus British Patent Specification No. 274,108 of Societa Italiana di Elettrochimica for Improvements in Processes for the Production of Aluminum in Electric Furnaces states that it has not been possible in practice to use the hydrate or hydroxide of alumina directly on account of the more or less strong explosions produced by the material and the resultant projection of igneous liquid. Methods that have been proposed for avoiding this problem are to first agglomerate the hydrate and only then feed it into a molten electrolyte bath; see German Pat. No. 472,006 of Feb. 21, 1929 issued to Societa Italiana di Elettrochimica in Rom for Verfahren zur l-lerstellung von Aluminium. Also proposed is the charging of alumina hydrate onto the crust over a molten electrolytic bath in a Hall-Heroult cell, with introduction into the bath occurring only after dehydration has been achieved; see U.S. Pat. No. 2,464,267 of Allen M. Short for Dehydrating Alumina in the Production of Aluminum. The practice of US. Pat. No. 2,464,267 is to be contrasted with that of the present invention, where an alumina of relatively high water content is added directly to molten electrolyte, rather than being allowed to rest for a period on a crust over molten electrolyte. It has been discovered that substantially continuous adding of the M 0 containing appreciable amounts of combined water does not lead to explosions. The evolved water appears only to disperse the charged A1 0 rapidly to the bath, thus promoting dissolution in the bath.
The thought of purposely adding to a cell an alumina with high water content may also indicate danger of a major increase in HF evolution. It has been found that only 5 percent of the water on the alumina pyrohydrolyzes bath to produce HF fume.
The alumina to be used in the presentinvention may be fed to individual cells or to a plurality of. cells in a potline. The cells may employ either pre-baked anodes or anodes baked in situ, such as the Soderberg type.
Generally, calcining alumina hydrate, such as Bayer process alumina trihydrate will produce alumina for use in the present invention. In general, calcining temperatu'res in the range of about 300 to 600C are suitable for the purpose. Apparatus and methods for heating alumina to the desired water content and surface area in kilns or so-called flash heating (see US. Pat. No. 2,915,365 of F. Saussol; French Pat. No. 1,108,0l1) are well-known.
Aluminas with surface areas as high as 350 m /g can be obtained by heating a-alumina trihydrate (gibbsite) for l hour at 400C in dry air. Such materials are rapidly soluble in electrolyte baths according 6 the present invention.
For any alumina which is to be used as feed to the aluminum smelting cell, it is possible to run an experiment of the typeset forth in Example ll below, or the like, for the purpose of determining the minimum water content desirable. The water content is preferably effective for dispersing the individual particles of the alumina when the alumina is added to the electrolytic bath. If the water content is too low, steam evolution will not be effective for dispersing the particles, and a tity of heat that must be removed from the bath to drive off water as steam. This quantity cannot be sufficient to cause solidification of bath around solid alumina particles, thereby contributing to muck formation. In general, when this second criteria is satisfied, no dangerous explosions will occur according to the practice of the present invention. In general, if the water content is effective for dispersing the individual particles, it is also effective for preventing anode dusting.
c. The Enclosing of The Bath In the closing of the top of the cell in the method of the present invention, certain guidelines are used. The cover must (1) prevent heat loss from the top of the bath to a sufficient degree that the bath surface remains molten, (2) it must prevent any substantial amount of air from diluting fumes arising due to cell operation, and (3) by barring air, it is to eliminate air burning of the carbonaceous anode material.
It is important that the bath surface remain molten in order that alumina being charged contact molten bath. This causes the water in the alumina to disperse the particles for rapid dissolution in the bath, as well as providing water vapor which inhibits attack on exposed carbon anode surfaces, as discussed below. It may happen sometimes that some undissolved substance will be floating on the bath surface, but this undissolved substance must not be present in such quantities as to disrupt the dispersing of the alumina and lead to mucking.
. A basic concept behind minimizing the air entering the cell is the undesirability of the resulting dilution of the fumes, such as gases given off by the anode (e.g., hydrocarbons), those resulting from the electrolysis reaction (e.g., CO and those evolved from the bath (e.g., gaseous fluorides). Of course, the cell cannot be completely closed, for openings must be provided for venting from the cell the above-mentioned gases produced therein. d. Anode Dusting Depending upon operating conditions, consumption of carbon anodes in l-lall-Heroult process cells ranges from one-third to three-quarters of a pound of carbon per pound of aluminum produced. The preferred conditions are those leading toward the stoichiometric minimum consumption, 0.33 lbs. C/lb.Al, predicted by the net cell reaction:
One of the problems encountered heretofore in closing off the space-above the electrolyte bath of a Halll-leroult cell from the air has been that carbon scum accumulates on the bath surface and carbon dust is even distributed throughout the electrolyte. This carbon scum and dust is caused by a deterioration of the carbon anodes. The phenomenon is referred to as anode dusting.
- Carbon scum causes alumina feeding problems. The carbon scum has made it impossible to replenish alumina consumed during electrolysis. As the dissolved alumina content of the bath decreases, scum formation accelerates. Carbon dust and scum increases the bath viscosity and hinder diffusion of oxygen-bearing ions to the anode, thus limiting anode current densities and affecting the heat balance of the cell. Increases in the viscosity and density of the bath lower the current efficiency and contribute to poor metal coalescence. The carbon in the scum and dust is not available for reaction with oxygen at the anode and so the gross consumption of'carbon is increased by dusting. Because of carbon scum, the bath agitation supplied by anode bubble evolution is reduced and the tendency for electrolyte to solidify at the metal pad-bath interface increases. Ultimately, enough carbon dust can be distributed throughout the bath in closed cells to allow for electronic conduction and complete loss of metal production. These conditions must be avoided for successful operation of an enclosed cell according to the present invention.
Prolonging the life of anodes will not only decrease carbon consumption, but in the case of pre-baked anodes will decrease the amount of anode butts to be recycled to the production of additional anodes and thereby decreases problems attendant upon evolution of fluorides during baking of anodes.
It has been discovered that the phenomenon of anode dusting in closed cells can be prevented by providing at the anode within the cell an atmosphere containing water. Thus, it is possible to provide within the closed cell a skirt around the anode and to create within this skirt a partial pressure of water effective for preventing the anode dusting. The present invention utilizes the discovery that, when the above-described, watercontaining alumina is charged onto the bath, preferably onto locations of the bath surface where gas is evolving alongside the anode, the water given off as the alumina contacts the bath surface will create in a closed cellthe water-containing atmosphere at the anode required for preventing anode dusting. If the alumina is charged to the bath elsewhere than alongside the anode, venting of the cover over the cell should be placed and regulated such that the released gaseous water will in fact contact the anode to prevent anode dusting.
It is believed that anode dusting is caused by atmolite or sodium aluminum tetrafluoride, NaAlF in vapor form. This substance attacks an anode and causes anode dusting.
Thus, in cell operation, a gaseous effluent containing gaseous fluorides is evolved from the electrolytic bath of alumina dissolved in molten cryolite (primarily cryolite or cryolite plus additional fluorides such as excess AlF CaF and UP), and among such gaseous fluorides is atmolite.
Attack by atmolite on exposed, carbon anode surfaces is particularly a problem when using closed cells, e.g., cells which are closed at the top by a plate.
It is believed that the amount of water vapor to. be provided in an atmosphere around an anode surface depends to some extent on the amount of atmolite to be neutralized. In general, it is desirable to provide at least enough water vapor to react the atmolite stoichiometrically with the water vapor in accordance with the equation NaAlF 3/2 H O NaF Va A1 0 3HF e. Advantages The process of the present invention solves many of the problems associated with conventional Hall- Heroult cell practice. For example, current efficiency is improved and operation at low bath ratio, i.e., low sodium, contributes toward eliminating swelling and heaving in the carbon lining. Also, closing the cell makes possible total fume collection. There is no roof vent loss. from the smelting building. Since pot gas is not diluted with air, scrubber treatment or treatment according to US. Pat. No. 3,503,184 is simplified and need only handle as little as l/ of the gas volume previously handled. Lack of air sweep (e.g., US. Pat. No. 3,708,414), low operating temperatures, and low fluoride partial pressure reduce the amount of fluoride and other materials that must be recovered. Conventional cells must recover, e.g., 24 pounds particulate per ton of aluminum produced; operation according to the present invention at 800C has been found to mean recovery of only 3.2 pounds per ton, while operation at 900C has yielded only 14.6 pounds particulate per ton.
Because there is no crust over the bath, alumina delivered to the bath can be carefully controlled and an optimum concentration maintained. The higher water content alumina itself permits closer control of dissolved alumina concentration. Stable heat balance results in minimum anode-cathode distance variation. Crust breaking for anode changing and alumina additions is eliminated.
The higher water content alumina has enabled for the first time satisfactory operation of closed Hall-Heroult cells. By minimizing carbon scum formation in such closed cells, there is continued easy access of feed alumina to the molten bath surface.
Slightly increased HF emission is more than offset by the complete capture of pot gases made possible by closing the top of the cell.
There is no discernible drop in current efficiency as a result of the use of higher water content alumina in the present invention.
Carbon consumption is less in the present invention, because there is practically no air burning of the anodes and because operation is at higher COJCO ratio.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferably, the bath weight ratio NaF to AIF is less than 1.0. A ratio less than 0.9 can be used. It is preferred to maintain the bath ratio at a value at least greater than 0.5.
The concentration of A1 dissolved in the bath should be above that at which an anode effect would occur and is selected to optimize the current efficiency of the cell. It is believed possible, perhaps on a transient basis, to have some alumina in solid, particulate form in the bath. Mucking, i.e., a settling of excessive amounts of solid alumina onto the bottom of the cell, does not occur, due to an increased aluminarsolubility at the metal/bath interface caused by concentration gradients in the catholyte. Because of the relatively small difference between the alumina concentration at which anode effect begins and the alumina saturation concentration in the low bath ratio operation according to the present invention, it is additionally preferred that alumina be fed to the bath in a form having a high dissolution rate as discussed above. Preferred embodiments of such alumina are discussed below.
While the bath may consist only of A1 0 NaF, and MP it is possible to provide in the bath at least one halide compound of the alkali and alkaline earth metals other than sodium in an amount effective for reducing the liquidus temperature of the bath below that which it would have if only M 0 NaF, and AIR, were present. Suitable alkali and alkaline earth metal halides are LiF, CaF and MgF In a preferred embodiment, the bath contains lithium fluoride in an amount between 1 and wt. percent.
The operating temperature of the bath is preferably maintained at a temperature greater than 40C above the cryolite liquidus temperature of the bath. The cryolite liquidus temperature is that temperature at which cryolite first begins to crystallize on cooling the bath. Where the bath composition is such that cryolite is the first substance to crystallize on cooling, the intersection of the line of the constant bath composition versus temperature with the uppermost liquidus temperature surface gives the cryolite liquidus temperature. Where Al O is the first substance to crystallize, a reasonably good approximation of cryolite liquidus temperature is the eutectic" temperature determined by finding the liquidus temperature for progressively decreasing AhO content, correspondingly increasing NaF AIR, and constant bath ratio NaF/AlF and selecting the minimum liquidus temperature on the basis of the resulting group of liquidus temperature values. The operating temperature must be effective for preventing bath crusting in interfacial areas between the bath and the molten aluminum metal pad cathode. It is preferred that the operating temperature lie below 935C, and baths have been operated successfully at operating temperatures below 900C, 850C, and 800C. In some embodiments, the operating temperature is at least C, sometimes at least 100C, above the liquidus temperature of the bath.
The electrolytic decomposition of A1 0 in the present invention may be carried out at an anode current density of l to 20 amperes per square inch, while current densities of l to 15 and l to 10 amperes per square inch represent preferred current density ranges.
It is additionally preferred that carbon anodes used in the present invention be protected by a waterbearing atmosphere. An appropriate water-bearing atmosphere is created when the bath is sealed off from the air and when the alumina is preferably fed onto locations of the bath surface where electrolysis gas is evolving alongside the anodes. The alumina is in the form of the herein described high dissolution rate, water containing alumina. The resulting water-bearing atmosphere prevents anode dusting, a condition which can prove intolerable for the present invention.
Up to 100 percent of the feed alumina, and at least 50 percent more preferably at least percent, by
weight, is high dissolution rate alumina containing sufficient water to create an atmosphere above the electrolyte bath effective for preventing anode dusting. The alumina is .fed substantially continuously, directly to the molten electrolyte of the cell. Water content and dissolution rate are indicated by, among other parameters, the total water and the surface area of the alumina. The term total water" is defined herein as follows: Expose a sample of alumina to percent humidity for several hours, then equilibrate the sample at 44 percent relative humidity, 25C, for 18 hours, then accurately weigh the sample, then ignite it to l,l0OC, then weigh again. The loss in sample weight on going from the equilibrated state at 44 percent relative humidity to the ignited state after heating at l,l00C, divided by the sample weight at l,lO0C, and multiplied by 100 is the percent total water.
Surface area is measured by the Brunauer-Emmett- Teller method. See Stephen Brunauer, P. H. Emmett, Edward Teller, J. of Am. Chem. 500., V. 60, pgs. 309-19, 1938.
The use of alumina. of the high water content of the present invention is contrary to the commonly-held view set forth at p. 34 of The Chemical Background of the Aluminum Industry by Pearson, published by The Royal Institute of Chemistry in 1955, that alumina used in electrolytic production of aluminum should be moisture-free.
In addition, it is desirable that the alumina used in carrying out the invention handle and convey easily. The properties according to the present invention that enhance the solution rate of alumina in fused NaF- AlF salt systems also improve its ease of handling and serviceability in operations as in US. Pat. No. 3,503,184. Because the alumina used in the present invention has higher water content, less energy, as compared to the energy used in producing conventional metal grade alumina, is required to produce it from Bayer process hydrated alumina.
The alumina added to the bath according to the present invention may be preheated, if desired, so long as it retains the above-mentioned water content and surface area characteristics.
Preferably, the alumina has a total water of 8 to 20 percent, more preferably 10 to l8 percent.
The alumina surface area may preferably lie in the range 135 to 180 m lg.
A maximum rate of solution of alumina in a fluoride bath is obtained when heated, attrition resistant, high surface area, 8 to 20 percent total water alumina of 55-l45 micron diameter (100 mesh +270 mesh) particles is charged directly to the unfrozen surface of agitated bath at temperatures above its liquidus temperature continuously or in small separate portions, i.e., a time interval between separate shots equaling or less than 10 minutes. The phrase small separate portions is underlined because of its importance with regard to the AT at which the cell is operated. The AT is the difference between the operating temperature and the liquidus temperature of the NaF-AlF fused salt mixture. This liquidus temperature can be lowered by addition of other salts to the bath such as CaF LiF, MgF etc., but for simplicity a pure NAF-AlFg system is visualized. Conventional smelting cells operate with ATs of l30C. In conventional operations a low AT is desirable since the current efficiency of the cell increases as the operating temperature decreases. Because of improved control on, conventional 'potlines the anode cathode distance (ACD) in operating cells has been reduced in some cases to a nominal 1 inch distance. Since the heat input to cells depends on line electrical current and internal resistance, the low ACD has enabled the lowering of AT to, for example, C :L 5C. While these low ATs are advantageous from a current and power efficiency viewpoint, they tend to increase mucking problems in the cell even when an alumina *with properties that maximize its solution rate is fed to the pots. Automatic ore feeders which introduce e.g.-, only approximately 2 lb. of A1 0 into the bath per increment may be used. This is a reasonably low rate of introduction of A1 0; to the cell. However, if the AT of the bath is low, even this quantity of alumina may be so large that the heat removed from the bath to drive off water, bring the charge to temperature, and dissolve it can easily result in localized solidification of electrolyte. if this occurs then alumina encased in solidified bath will sink to the bottom of the cell to create muck instead of dissolving. The point is, it is important to balance the size of the portion of A1 0 fed to a pot at any given time against the AT of the cell. Low AT and large slugs of alumina will muck a pot, particularly when high surface area and water content aluminas are used.
A proper particle size distribution is advantageous with regard to ease of dissolution in a smelting cell. Alumina fines, e.g., particle size less than 44 microns (-3 25 mesh), tend to dust over the surface of the molten bath, agglomerate, and sink to the bottom of the cell, where they contribute to mucking problems. Large particles, having diameters, e.g., greater than 150 microns (+100 mesh), also contribute to mucking problems, particularly when they are fed in large portions to pots operating with small ATs. The large particles acquire a layer of solidified electrolyte on contacting molten bath which causes them to sink to the pot bottom, rather than rapidly dissolve. This is the same mechanism as that discussed earlier to explain muck formation in cells that receive M 0 feed in quantities too high to be accommodated by the low ATs. The dit ference is that particle sizes in excess of +100 mesh lead to muck even when ATs are in the vicinity of 25C. At small AT, attention must likewise be paid to the heat of evaporation of the water in the alumina.
Further illustrative of the present invention are the following examples:
EXAMPLE I The purpose of this example is to illustrate basic principles concerning the prevention of anode dusting, using a gaseous water partial pressure. With reference to FIG. 5, there is shown a graphite crucible 51 and an alumina crucible 52 having a hole 53 at its lower end. A molten aluminum metal pad 54 sits in the bottom of the alumina crucible and contacts the graphite crucible anode skirt 58 surrounds the anode S7 asshown and is sealed at its top by plug 59 provided with orifices for the passage of anode lead 60 and gas flow pipe 61. Appropriate piping is provided for allowing varied amounts of argon gas to flow from tank 62 through impinger bottle 63 containing water64 surrounded by an ice water bath 65. Carbon consumption was 0.33 to 0.38 pounds per pound of aluminum produced at a current efficiency of percent in 29 to 41 ampere-hour tests using water vapor shielding for preventing anode dusting. With 4 to 22 torr water partial pressure in the argon, no carbon froth or scum was detected. When the impinger bottle 63 was bypassed so that only argon moved down around anode 57 a carbon scum formed on the bath, and electronic shorting from anode to cathode through the carbon scum occurred.
EXAMPLE II This and Example III are provided to illustrate the increased dissolution rates obtainable with the alumina used for preventing anode dusting according to the present invention. The apparatus used in this example is shown in FIG. 3. Pot furnace 70, which heated by electrical resistance heating, served for bringing a cryolite-base bath in a graphite crucible 71 supported on fire brick 72 to a temperature of 740C. The nominal bath composition was 64 weight percent cryolite and 36 weight percent aluminum fluoride (AlF This corresponds to a bath weight ratio NaF/AlF 0.65. The quantity of bath was 500 grams and 200 milliliters volume in the molten state. The bath contained 14 grams or 2.8 weight percent of A1 0 as an impurity. At 740C, this bath is molten (liquidus approximately 724.5C) and crystal clear. A one-gram quantity of alumina having a total water of 17 percent and a surface area of m lg was sprinkled onto the exposed, uncrusted surface of the molten bath. With the bath illuminated with light source 73, the time was recorded for which no remainder of the sprinkled alumina particles could be seen in the bath through viewing tube 74. This time was 2 minutes and 58 seconds, which equals a solution rate, in milligrams per milliliter bath-minute equal to 1.65. By way of comparison, a so-called metalgrade-alumina of surface area of 40 rn lg gave a solution rate of 0.14 milligrams per milliliter bath-minute under like conditions.
EXAMPLE lll Using the apparatus of FIG; 3 and alumina of 17' percent total water, 170 m /g surface area, gave, at a bath weight ratio NaF/AlF 1.5 and a bath temperature of 980C, a solution rate of 16 milligrams of A1 per milliliter of bath each minute. The solution rate measured under the same conditions for an alumina of 20 5 EXAMPLE IV This Example illustrates how alumina appropriate for the present invention may be produced.
Bayer-process alumina hydrate was treated in a kiln to produce kiln activated alumina suitable for use in the process of the present invention as follows. Kiln dimensions were 360 feet length and 9% feet inner-diameter. Residence time of the material in the kiln was 1 to 1 /2 hours. The charged hydrate moved countercurrent to the combustion gases introduced into the lower end of the kiln. A maximum temperature of 400 to 500C was achieved 10 to feet inside the'lower end of the kiln.
Natural gas was burned at a rate of 6,500 cubic feet (standard temperature and pressure) per hour to produce the combustion gases. This natural gas flow rate was selected by testing the product for the desired total water. The volume ratio of air to gas was approximately 10:1. An alumina having a 12.5 percent total water was produced. Anywhere from 88 to 95 weight percent of the particles had a size greater than 325 mesh.
EXAMPLES V AND VI Aluminum was produced in the cell of FIG. 1. The maximum dimensions of the steel shell in the horizontal were 18 feet 6 inches X 10 feet 2 inches. Its maximum height was 3 feet 9 inches. The maximum dimensions of the molten aluminum metal pad 21 in the horizontal were 17 feet 8 inches X 9 feet 4 inches. The electrolyte bath had the same maximum dimensions as the metal pad.
A mica mat 22 was provided between the steel shell 20 and graphite block 23 for the purpose of preventing current flow through shell 20. Mat thicknesses of from 6 to 20 mils have been used.
The pad 21 of molten aluminum was supported on carbonaceous cathode block lining 24 and carbonaceous tamped lining 25. The carbonaceous linings were supported on an alumina fill 26, there being interposed between the tamped lining and the till some quarry tile 27. A layer of red brick 28 was provided between the graphite block 23 and quarry tile 27.
FIG. 1 is a representativevertical section through the cell and it will be realized that, for instance, similar graphite blocks 23 would appear in other elevational sections through the cell.
The anode 29 was a Soderberg-type carbon anode. The composition charged to form this self-baking anode was 31 percent pitch of softening poing equals 98l00C (cube-in-air method) and 69 percent petroleum coke. The coke fraction was 30 percent coarse,
Table I Coke Size Distribution Cumulative Greater than Sieve Size Tyler Sieve Coarse Intermediate Fine .371 31.1 3 50.6 4 66.8 8 91.7 1 1 14 97.9 48.9 28 98.8 75.5 48 99.1 93.5 2.4 100 99.4 98.0 10.4 200 99.7 99.0 39.7 pan 100 .100 100 The cathode current was supplied through steel collector bars, such as bar 30, to the block lining 24. the current supply is indicated by the plus and minus signs on the anode and on collector bar respectively.
The space above the bath 31 was sealed from the surrounding air by a closure 32, including a cast iron manifold 33, Cera form Refractory board 34, which is a soft (for obtaining a good seal) fibrous electrical and heat insulating board available from the Johns-Manville Co., steel shell 35, steel plate 36, and tire clay brick, e.g., 50% A1 0 and 50% SiO 37. Within shell 35 there was provided a castable 38 serving a primarily insulative function and a castable 39, e.g., calcium-aluminatebonded tabular. alumina, selected for its refractory properties. The particular heat transfer situation was chosen to maintain the upper surface 45 of bath 3l substantially in molten condition, i.e., free of any crusting.
Alumina is charged from hopper 40 through a fill valve and feeder assembly 41 of the type disclosed in US Pat. No. 3,681,229 issued Aug. 1, 1971 to R. L. Lowe entitled Alumina Feeder. Measured quantities of alumina are fed onto the exposed molten bath surface through Inconel-600 pipe 42. The distance between the bottom of pine 42 and the top of bath 31 is about 1 foot. The feeder 41 is a shot-type feeder, i.e., separate quantities of alumina are fed at timed intervals. In Examples V and VI, two feeders 41 were used, and these fed-in alumina approximately every 5 minutes, the quantities of alumina being adjusted to maintain the desired alumina concentration in the bath. It takes about 1 minute to discharge the alumina increments which were about 1,500 grams. Pipe 42 is directed so as to impinge alumina onto the bath 31 where gas 44 is rising alongside the anode. This assures that the water evolved from the charged alumina protects the anode against production of carbon dust therefrom. This practice also promotes dissolution because of the bath agitation caused by the gas evolution. By charging the alumina in line with a spike row (spikes 45a, b and 0 lie in a vertical plane parallel to the plane of FIG. 1, which plane also contains pipe 42) in the Soderberg anode (cracks usually occur in the anode in line with spike rows), the dissolution rate is enhanced by the increased gas evolution occurring at the cracks. Feeders 41 were operated using air as the fluidizing medium, it being recognized that this represents a small leakage of air past cover 32 to the bath.
The particular alumina used for Examples V and V1 had a total water of 16.95 percent. This alumina was 98 percent plus 325 mesh and its water content alone was sufficient to prevent anode dusting, i.e., a decomposition of the anode such that carbon particles build up in and on the bath.
The production data for Examples V and VI are presented in Tables 11 to IV.
Table 11 Pot Production Data Example No.
Data Name V VI Pot Days Operated 32 96 Total Lbs. Net Aluminum (Al) 35,172 110,740 Lbs. Net Al/Pot-Day 1099.2 1153.5 Average 70 Al 99.74 99.75 Electrical Current Efficiency 92.6 90.0 Kilowatt-Hours/Lb. of Al 7 7.49 7.76 Anode Effects/Pot-Day .91 1.21 Lbs. Soderberg Pastel Lb. Net Al .56 N.M. Lbs. Cryolite Used 1850 3600 Lbs. Fluoride Used 6105 21,731 Lbs. LiCO Used 682 1400 Anode to Cathode Distance, inches 1.5
'- NM. not measured Table III For Electrical Data Data Name Example No.
V VI
Volts/Pot 5.13 5.17 Average Amperes 66,874 72,207 Kilowatts/Pot 343.1 373.3 Ohmic Voltage Drop in Bath 1.70 1.68
Table IV Pot-Bath Data Example No. v
With special reference to Table IV, the excess AlF indicates the quantity of AlF above the present under the heading cryolite, formula 3NaF.AlF In each of Examples V and V1, A1 would be the first substance to crystallize on going below the given liquidus temperature. The eutectic" temperature provides an estimate of the cryolite liquidus temperature in this case. The "eutectic" temperature is determined by finding the liquidus temperature for progressively decreasing A1 0 content, correspondingly increasing NaF MP 16 and constant bath ratio NaF/AIF and selecting the minimum liquidus temperature on the basis of the resulting group of liquidus temperature values. The A1 0 in solution is that at the particular bath operating temperature. Conductivity data is likewise for the given operating temperature.
Gases evolved from the Soderberg anode (e.g., hydrocarbons), fluorides from the bath, and anode reaction gas (e.g., CO were vented from cover 32 through an opening (not shown), and passed through a burner to burn the hydrocarbons. Because it is difficult to provide an absolute sealing of the bath from the air using cover 32, i.e., leaks can be present in cover 32, a pressure of 0.03 to 0.1 inches of H 0, measured negatively from atmospheric pressure, is maintained between cover 32 and the burner in order to prevent fume leakage from the cover 32. The burned gases were then fed to a scrubber system.
EXAMPLE VII Aluminum was produced in the cell of FIG. 2 shown in longitudinal, elevational cross section. The cell had external dimensions equaling approximately 48 inches 1 height, 89 inches length and 56 inches width. Two carbon, pre-bake anodes 10a and 10b were suspended into electrolyte bath 11 resting on a pad of molten aluminum 12. The molten bath and aluminum were contained laterally by refractory, nonconductive material 13. Refractory material 13 includes a side lining in contact with the molten bath and the molten aluminum and otheroutwardly situated insulating material with internal structural members of, for example, steel. Re-
fractory alumina brick and silicon carbide brick were the particular side lining materials chosen in this example. Lining the bottom of the cell were graphite blocks 14a through 14d, which were connected into the electrical system by steel bars 15a to 15d. Alumina was fed to bath 11 through a suitable port (not' shown) in graphite roof 16; the particular alumina used for feed had a surface area of 245 meters per gram and a total water of 13 percent. Graphite roof 16 functioned to seal the bath from the air. The electrolyte bath 11 had a composition of 5% LiF and 4 to 5% A1 0 with the balance being cryolite and A113, in proportions giving a weight ratio NaF/AlF equals 0.8. A1 0 would be the first substance to precipitate when cooling bath 1 l. The liquidus for A1 0 precipitation in the bath at 5% A1 0 is 91 15C. At 4% A1 0 the liquidus is 863.0C. Bath operating temperature in FIG. 2 was 910 i 10C. No crusting was noted at the interface between the molten aluminum cathode and the bath. The cryolite liquidus, as estimated by the eutectic temperature (determined as explained above) at bath ratio 0.8 was 815C.
' It will be understood that the above description of the present invention is susceptible to various modifications, changes, and adaptations and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims.
It will likewise be recognized that the action of water in the present invention will be subject to energyrelated laws such as rates of reaction and chemical equilibrium constants and that anode dusting need only be prevented to an extent such that there be no dustingrelated impairment of cell operation.
All percentages given herein are in percent by weight unless indicated otherwise.
What is claimed is:
1. A process for producing aluminum, comprising electrolytically decomposing alumina to aluminum metal in an electrolyte bath between a carbon anode and a cathodic interface formed between aluminum metal and the electrolyte bath, the bath a. consisting essentially of A1 NaF, and MR, and
b. having a weight ratio NaF to AlF up to 1.111, while maintaining said bath at an operating temperature effective for preventing bath crusting in interfacial areas between bath and aluminum metal, while enclosing the top of the cell for keeping the surface of the bath molten, and while feeding alumina a. substantially continuously onto the molten bath surface,
b. the alumina having a water content effective for preventing anode dusting,
c. the carbon anode being exposed to the gaseous water evolved from the alumina, whereby anode dusting is prevented.
2. A process as claimed in claim 1 wherein the alumina is fed onto locations of the bath surface where gas is rising alongside the anode.
3. A process as claimed in claim 1 wherein the operating temperature of the bath is greater than 40C above the cryolite liquidus temperature of the bath.
4. A process as claimed in claim 1, wherein said ratio is less than 1.0.
5. A process as claimed in claim 1, wherein said ratio I 18 is less than 0.9.
6. A process as claimed in claim 1,, said operating temperature being below 935C. 1
7. A process as claimed in claim 1, said operating temperature being below 900C.
8. A process as claimed in claim 1, wherein said operating temperature is at least C above the cryolite liquidus temperature.
9. A process as claimed in claim 1, wherein said operating temperature is at least 100C above the cryolite liquidus temperature.
10. A process as claimed in claim 1 wherein said alumina is added in increments at intervals of up to 10 minutes.
11. A process as claimed in claim 1 wherein said alumina has a total water from 8 to 20 weight percent.
12. A process as claimed in claim 1 wherein said alumina has a total water of from 10 to 18 weight percent.
13. A process as claimed in claim 1 wherein said alumina amounts to at least 50 percent by weight of the total amount of A1 0 fed to the cell.
14. A process as claimed in claim 1 wherein said alumina amounts to at least of the A1 0 fed to the cell.
15. A process as claimed in claim 1 wherein said alumina having a water content effective for dispersing its individual particles upon addition thereof to said bath,
but insufficient to cause mucking.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,852,173 Dated December 3, 1974 Inv n )S. C. Jacobs, N. Jarrett, R. W. Graham, P. A. Foster W. C. Sleppy, C. N. Cochran, W. E. Haupin & R. J. Carpbell. It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shownbelow:
Column 3, line 17 After "0.22%" add -=-in current--.
- Column 13, line 62 Change "poing" to --=point-=.
Column 14, line 42 Change "pine" to pipe- (SEAL Attest C. I'flkRSI-IALL DANN Commis sioner of Patents RUTH C. MASON and Trademarks Attesting Officer FORM PO-1050 (10-69) u oMM-uc 6OS76-F'69 A U. S. GOVERNMENT PRINTING OFFICE Ill! 0-368-884,

Claims (15)

1. A PROCESS FOR PRODUCING ALUMINUM, COMPRISING ELECTROLYTICALLY DECOMPOSING ALUMINA TO ALUMINUM METAL IN AN ELECTROLYTE BATH BETWEEN A CARBON ANODE AND A CATHODIC INTERFACE FORMED BETWEEN BETWEEN ALUMINUM METAL AND THE ELECTROLYTE BATH, THE BATH A. CONSISTING ESSENTIALLY OF AL2O3, NAF, AND ALF3, AND B. HAVING A WEIGHT RATIO NAF TO ALF3 UP TO 1.1:1, WHILE MAINTAINING SAID BATH AT AN OPERATING TEMPERATURES EFFECTIVE FOR PREVENTING BATH CRUSTING IN INTERFACIAL AREAS BETWEEN BATH AND ALUMINUM METAL, WHILE ENCLOSING THE TOP OF THE CELL FOR KEEPING THE SURFACE OF THE BATH MOLTEN, AND WHILE FEEDING ALUMINA A. SUBSTANTIALLY CONTINUOUSLY ONTO THE MOLTEN BATH SURFACE, B. THE ALUMINA HAVING A WATER CONTENT EFFECTIVE FOR PREVENTING ANODE DUSTING, C. THE CARBON ANODE BEING EXPOSED TO THE GASEOUS WATER EVOLVED FROM THE ALUMINA, WHEREBY ANODE DUSTING IS PREVENTED.
2. A process as claimed in claim 1 wherein the alumina is fed onto locations of the bath surface where gas is rising alongside the anode.
3. A process as claimed in claim 1 wherein the operating temperature of the bath is greater than 40*C above the cryolite liquidus temperature of the bath.
4. A process as claimed in claim 1, wherein said ratio is less than 1.0.
5. A process as claimed in claim 1, wherein said ratio is less than 0.9.
6. A process as claimed in claim 1, said operating temperature being below 935*C.
7. A process as claimed in claim 1, said operating temperature being below 900*C.
8. A process as claimed in claim 1, wherein said operating temperature is at least 70*C above the cryolite liquidus temperature.
9. A process as claimed in claim 1, wherein said operating temperature is at least 100*C above the cryolite liquidus temperature.
10. A process as claimed in claim 1 wherein said alumina is added in increments at intervals of up to 10 minutes.
11. A process as claimed in claim 1 wherein said aLumina has a total water from 8 to 20 weight percent.
12. A process as claimed in claim 1 wherein said alumina has a total water of from 10 to 18 weight percent.
13. A process as claimed in claim 1 wherein said alumina amounts to at least 50 percent by weight of the total amount of Al2O3 fed to the cell.
14. A process as claimed in claim 1 wherein said alumina amounts to at least 90% of the Al2O3 fed to the cell.
15. A process as claimed in claim 1 wherein said alumina having a water content effective for dispersing its individual particles upon addition thereof to said bath, but insufficient to cause mucking.
US00374802A 1973-06-28 1973-06-28 Alumina reduction process Expired - Lifetime US3852173A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US00374802A US3852173A (en) 1973-06-28 1973-06-28 Alumina reduction process
SE7406897A SE7406897L (en) 1973-06-28 1974-05-24
NO741934A NO140632C (en) 1973-06-28 1974-05-28 PROCEDURE FOR THE MANUFACTURE OF ALUMINUM BY MELTING ELECTROLYTICAL DECOMPOSITION OF ALUMINUM USING CARBON ANODS
DE2429576A DE2429576A1 (en) 1973-06-28 1974-06-20 PROCESS FOR PRODUCING ALUMINUM
FR7421905A FR2235212B1 (en) 1973-06-28 1974-06-24
CH864474A CH615700A5 (en) 1973-06-28 1974-06-24 Method for operating a cell for the electrolytic decomposition of alumina into aluminium metal
BR5161/74A BR7405161A (en) 1973-06-28 1974-06-24 IMPROVEMENTS IN THE PROCESS FOR ALUMINUM PRODUCTION BY ALUMINUM ELECTRIC COMPOSITION
IT51691/74A IT1016149B (en) 1973-06-28 1974-06-24 PROCESS FOR THE PRODUCTION OF AL-LUMINUM BY ELECTROLYTIC DECOMPOSITION OF ALUMINE
SU742042059A SU795507A3 (en) 1973-06-28 1974-06-24 Method of aluminium production by electrolysis of melt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00374802A US3852173A (en) 1973-06-28 1973-06-28 Alumina reduction process

Publications (1)

Publication Number Publication Date
US3852173A true US3852173A (en) 1974-12-03

Family

ID=23478252

Family Applications (1)

Application Number Title Priority Date Filing Date
US00374802A Expired - Lifetime US3852173A (en) 1973-06-28 1973-06-28 Alumina reduction process

Country Status (1)

Country Link
US (1) US3852173A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962050A (en) * 1975-05-21 1976-06-08 The United States Of America As Represented By The Secretary Of The Interior Recovery of zinc from zinc chloride by fused salt electrolysis
US3996117A (en) * 1974-03-27 1976-12-07 Aluminum Company Of America Process for producing aluminum
US5114545A (en) * 1991-06-17 1992-05-19 Reynolds Metals Company Electrolyte chemistry for improved performance in modern industrial alumina reduction cells
US5279715A (en) * 1991-09-17 1994-01-18 Aluminum Company Of America Process and apparatus for low temperature electrolysis of oxides
US5378325A (en) * 1991-09-17 1995-01-03 Aluminum Company Of America Process for low temperature electrolysis of metals in a chloride salt bath
US20120228127A1 (en) * 2009-04-29 2012-09-13 Alcoa Inc. Systems, method and apparatus for reducing impurities in electrolysis cells
US20130092552A1 (en) * 2012-05-23 2013-04-18 Shenzhen Sunxing Light Alloys Materials Co.,Ltd Potassium cryolite for aluminum electrolysis industry and preparation method thereof
US20130112570A1 (en) * 2012-05-23 2013-05-09 Shenzhen Sunxing Light Alloys Materials Co.,Ltd Sodium cryolite for aluminum electrolysis industry and preparation method thereof
US20140262807A1 (en) * 2013-03-13 2014-09-18 Alcoa Inc. Systems and methods of protecting electrolysis cell sidewalls
US20160068979A1 (en) * 2014-09-10 2016-03-10 Alcoa Inc. Systems and methods of protecting electrolysis cell sidewalls
CN106086939A (en) * 2016-07-29 2016-11-09 四川华索自动化信息工程有限公司 A kind of aluminium oxide auto feed control system used for aluminium electrolysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464267A (en) * 1944-09-28 1949-03-15 Allan M Short Dehydrating alumina in the production of aluminum
US3006724A (en) * 1959-04-10 1961-10-31 Dow Chemical Co Preparation of aluminum hydroxy fluoride
US3128151A (en) * 1959-10-30 1964-04-07 I C P M Ind Chimiche Porto Mar Process for producing a sodium fluoaluminate composition having predetermined naf/alf3 ratio
US3294656A (en) * 1961-10-17 1966-12-27 Alusuisse Method of producing aluminium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2464267A (en) * 1944-09-28 1949-03-15 Allan M Short Dehydrating alumina in the production of aluminum
US3006724A (en) * 1959-04-10 1961-10-31 Dow Chemical Co Preparation of aluminum hydroxy fluoride
US3128151A (en) * 1959-10-30 1964-04-07 I C P M Ind Chimiche Porto Mar Process for producing a sodium fluoaluminate composition having predetermined naf/alf3 ratio
US3294656A (en) * 1961-10-17 1966-12-27 Alusuisse Method of producing aluminium

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996117A (en) * 1974-03-27 1976-12-07 Aluminum Company Of America Process for producing aluminum
US3962050A (en) * 1975-05-21 1976-06-08 The United States Of America As Represented By The Secretary Of The Interior Recovery of zinc from zinc chloride by fused salt electrolysis
US5114545A (en) * 1991-06-17 1992-05-19 Reynolds Metals Company Electrolyte chemistry for improved performance in modern industrial alumina reduction cells
US5279715A (en) * 1991-09-17 1994-01-18 Aluminum Company Of America Process and apparatus for low temperature electrolysis of oxides
US5378325A (en) * 1991-09-17 1995-01-03 Aluminum Company Of America Process for low temperature electrolysis of metals in a chloride salt bath
US5415742A (en) * 1991-09-17 1995-05-16 Aluminum Company Of America Process and apparatus for low temperature electrolysis of oxides
US20120228127A1 (en) * 2009-04-29 2012-09-13 Alcoa Inc. Systems, method and apparatus for reducing impurities in electrolysis cells
US20130112570A1 (en) * 2012-05-23 2013-05-09 Shenzhen Sunxing Light Alloys Materials Co.,Ltd Sodium cryolite for aluminum electrolysis industry and preparation method thereof
US20130092552A1 (en) * 2012-05-23 2013-04-18 Shenzhen Sunxing Light Alloys Materials Co.,Ltd Potassium cryolite for aluminum electrolysis industry and preparation method thereof
US20140262807A1 (en) * 2013-03-13 2014-09-18 Alcoa Inc. Systems and methods of protecting electrolysis cell sidewalls
WO2014165203A1 (en) 2013-03-13 2014-10-09 Alcoa Inc. Systems and methods of protecting electrolysis cell sidewalls
EP2971257A4 (en) * 2013-03-13 2016-09-28 Alcoa Inc Systems and methods of protecting electrolysis cell sidewalls
US9771659B2 (en) * 2013-03-13 2017-09-26 Alcoa Usa Corp. Systems and methods of protecting electrolysis cell sidewalls
RU2642782C2 (en) * 2013-03-13 2018-01-26 Алкоа Инк. Systems and methods for protection of electrolyser side walls
US20160068979A1 (en) * 2014-09-10 2016-03-10 Alcoa Inc. Systems and methods of protecting electrolysis cell sidewalls
EP3191623A4 (en) * 2014-09-10 2018-05-16 Alcoa USA Corp. Systems and methods of protecting electrolysis cell sidewalls
US10151039B2 (en) * 2014-09-10 2018-12-11 Alcoa Usa Corp. Systems and methods of protecting electrolysis cell sidewalls
CN106086939A (en) * 2016-07-29 2016-11-09 四川华索自动化信息工程有限公司 A kind of aluminium oxide auto feed control system used for aluminium electrolysis

Similar Documents

Publication Publication Date Title
Tabereaux et al. Aluminum production
US4338177A (en) Electrolytic cell for the production of aluminum
US3951763A (en) Aluminum smelting temperature selection
Haupin Electrochemistry of the Hall-Heroult process for aluminum smelting
US3996117A (en) Process for producing aluminum
US4670110A (en) Process for the electrolytic deposition of aluminum using a composite anode
US3852173A (en) Alumina reduction process
US4342637A (en) Composite anode for the electrolytic deposition of aluminum
US3383294A (en) Process for production of misch metal and apparatus therefor
Habashi Extractive metallurgy of aluminum
CA1281304C (en) Method and apparatus for electrolytic reduction of alumina
CA1151099A (en) Process for producing aluminum by fusion electrolysis
US4073703A (en) Electrolytic production of magnesium
CN203999841U (en) Electrolyzer, electrolyzer system and electrolyzer assembly
US5158655A (en) Coating of cathode substrate during aluminum smelting in drained cathode cells
Kvande Production of primary aluminium
CN104047034A (en) Systems and methods of protecting electrolysis cells
US5028301A (en) Supersaturation plating of aluminum wettable cathode coatings during aluminum smelting in drained cathode cells
US4118304A (en) Electrolytic alumina reduction cell with heat radiation reducing means
US3839167A (en) Novel alumina feed for aluminum cell
US3723286A (en) Aluminum reduction cell
Beck Production of aluminum with low temperature fluoride melts
US4409073A (en) Process for the electrolytic reduction of metals and an improved particulate carbon electrode for the same
WO1994002664A1 (en) Barrier layer against fluoride diffusion in linings of aluminum reduction cells and like apparatus
US3855086A (en) Carbon anode protection in aluminum smelting cells