US3848661A - Thermal fluid heater apparatus - Google Patents

Thermal fluid heater apparatus Download PDF

Info

Publication number
US3848661A
US3848661A US00381372A US38137273A US3848661A US 3848661 A US3848661 A US 3848661A US 00381372 A US00381372 A US 00381372A US 38137273 A US38137273 A US 38137273A US 3848661 A US3848661 A US 3848661A
Authority
US
United States
Prior art keywords
fluid
chamber
thermal fluid
vessel
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00381372A
Inventor
L Palm
R Palm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fulton Boiler Works Inc
Original Assignee
Fulton Boiler Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fulton Boiler Works Inc filed Critical Fulton Boiler Works Inc
Priority to US00381372A priority Critical patent/US3848661A/en
Application granted granted Critical
Publication of US3848661A publication Critical patent/US3848661A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Definitions

  • This invention relates to a method of heating or cooling thermal fluids for use in heat exchange systems. These systems operate by heating or cooling a fluid in a central location, i.e., in a heater or in refrigeration equipment and then moving the fluid through pipes to a point where the heat or cold of the fluid is utilized to perform a heat exchange function.
  • the method disclosed is particularly advantageous for use in systems where high pressure is not desirable.
  • Examples of such uses are heating reactors and distillation columns, industrial drying, and heating platens and molds in a plastic molding operation.
  • the use of water and steam requires the maintenance of a highly-pressurized system because of the low boiling point of water.
  • the use of water or steam is impractical under these conditions for eco-' nomic' reasons since the equipment must be constructed to reflect the high pressure requirements. Therefore, it is of particular advantage to use liquids having a high boiling point such as mineral oils;.diphenyl diphenyloxide mixtures; chlorinated biphenyls; silicones, silates and silanes; polyglycols; and polyphenyl ethers and esters.
  • Such heaters include a myriad of tubes or coils located in a heat transfer vessel.
  • Tube-type heaters also present a-maintenance problem because of the tendency of the tubes to burn out. Such heaters are also difficult to clean because of the irregular tube surfaces.
  • the thermal fluid enters a substantially unobstructed annular heat transfer vessel with a spinning or helical flow caused by its angle and position of entry into the vessel, this helical flow is carefully maintained as fluid moves through the vessel.
  • the fluid vessel can be either vertically or horizontally positioned without affecting the critical flow relationship necessary for effective heat transfer.
  • the pressure and flow rate is controlled to induce and maintain the swirling action'and tokeep the fluid from being overheated. This helical motion enables the thermal fluidtohave maximum and uniform contact with the heating means employed.
  • the heating system disclosed in the present invention is of the type having a tubeless or coilless construction.
  • This system has a greater thermal efficiency and allows a more even flow of fluid than a tube or coil heater.
  • the thermal fluid passes through the tubeless annular heat transfer vessel which is designed to receive heat from the heating medium in such a way that the continuous helical flow of the fluid is not impaired.
  • the heating medium is circulated both through the inner opening of the annular vessel and over the exterior shell of the vessel. In this manner, the medium makes a two-pass heating contact with the annular vessel.
  • the two-pass heating contact takes maximum advantage of the heating ability of the medium used.
  • the heating action of the two-pass system on the swirling fluid gives both an efficient and even heat transfer from the heating medium to the thermal fluid.
  • FIG. 1 is a system diagram showing the heater unit operatively connected to the various external components that complete a practical operating embodiment.
  • thermal flu ids,-particularly liquids other than water such as, mineral oils; diphenyl-diphenyloxide mixtures; chlorinated biphenyls; silicones, silates and silanes; polyglycols; and polyphenyl ethers and esters are pumped by a circulatingpump 10 into afluid vessel 1'1.
  • This vessel is made of heat conductive material and consists of an inner annularshell '12 concentric with and surrounded by an outer annular shell 13.
  • the outer shell 13 is of larger diameter than the inner shell 12, therefore, a space or path is defined through which-the fluid is to flow.
  • the cold fluid enters the fluid vessel through an inlet 14 placed at the bottom of the vessel 11.
  • the pressure created by the circulating-pump l0 forces the fluid toflow upward through the annular vessel until it reaches a fluid outlet 15 at the top of the vessel.
  • the thermal fluid is heated to the desired temperature as it passes through the annular vessel.
  • the annular-fluid vessel '11 is contained within the heating unit 16.
  • the unit includes an outer steel jacket l7 and an inner steel jacket 18 with an insulation layer 19 between them. There is a space left between the inner jacket 18 and the outer annular shell 13 of the heat transfer vessel 11.
  • the fluid vessel is attached to the base of the heating unit by angle supports 20 (only one shown). Heat is transferred to the moving fluid by hot gases ignited at the top of the heating unit 16.
  • Air is taken in through the inlets 21 in a blower assembly 22 and mixed with a gaseous ignition fuel in the burner assembly 23.
  • the mixture is deflected downward through the air blast tube 24 and the funnel shaped air deflector 25. After passing the deflector 25, the gas-air mixture is ignited and combusts in the inner annular shell 12 of the heating vessel 11.
  • the burner assembly 23 shown in FIG. 1 is located at the top of the heating unit 16; alternative construction would be to locate the burner at the bottom or in the middle of the unit.
  • the hot gas aftef'passing under the fluid vessel travels upward through a secondary flue pass.
  • the secondary flue pass consists of the annular opening between the external shell 13 of the fluid vessel 11 and the inner jacket 18 of the insulation layer 19.
  • Equally-spaced vertical ribs or fins 26 are joined to the circumference of the outer shell 13 of the fluid vessel 11. These ribs or fins 26 are effective in absorbing the heat from the gases rising through the secondary pass.
  • the hot gases pass up through the secondary flue and give their remaining heat into the conductive outer annular shell 13 of the fluid vessel 11. Therefore, both sides of the fluid vessel are heated.
  • the upward rising hot gases or products of combustion leave the system through a flue outlet 27. When the heated fluid reaches the top of the fluid vessel, it is forced through an outlet 15 into the external heating system.
  • the heated thermal fluid is circulated to the external system and then is recirculated from the external system through the pump and inlet 14 after it performs its heating function.
  • a pressure indicator and pressure fluctuation reliever 28 is provided on the return path of the fluid to the heating unit.
  • FIGS. 2 and 2A improved efficiency and evenness of heat exchange are produced by the flow relationships occurring within the heater.
  • the thermal fluid to be heated is pumped into the annular fluid heating vessel 11 through an inlet 14 which is tangential to the fluid flow path defined by the annular vessel 11 and at a 90 angle to the vertical axis of the annular vessel.
  • This tangential entry path causes the thermal fluid to come into and flow through the fluid vessel with a spinning or swirling motion.
  • the entire volume of fluid rotates and mixes around the vessel.
  • the fluid is therefore induced to spin around and between the annular shells 12,13 of the fluid vessel 11 in a helical path.
  • the burner assembly gives a circular or whirling movement to the gaseous heat exchange medium as it passes downwardly of the interior of the inner annular shell 12 of the heating vessel 11.
  • the circular movement of the gas plus the natural tendency for heat to rise slows the downward movement of the flame; thereby, efficiently heating the inner annular shell 12.
  • the design of the heating vessel is ideal for heating thermal fluids due to the even distribution of two-pass heat and the minimal restriction of the moving fluid.
  • the minimal restriction of the fluid in the heating vessel results in a low pressure drop.
  • the annular vessel can be constructed with the following dimensions depending on the heating system required: (1) length of the vessel, 24 inches to 96 inches; (2) outer diameter of the vessel, 12 inches to 48 inches; (3) distance be tween the inner and outer walls of the vessel, 1 inch to 10 inches; and (4) inlet diameter, 1V2 inches to 3 inches.
  • the flow rate of the fluid is controllable through the vessel, and as such is dependent upon the distance between the inner and outer walls of the vessel. In addition, the flow rate must be kept above a minimum level in order to keep the thermal fluid from burning or scorching.
  • This heater will operate at a minimum flow rate of 1 foot per second and can be adjusted to a maximum of 10 or 15 feet per second. This feature allows the thermal fluid heater to be used for a wide variety of applications.
  • FIGS. 4 and 4A makes use of multiple inlets and outlets.
  • Five inlets 30, 31, 32, 33, 34 are shown all feeding fluid into a tangential path for helical flow.
  • the fluid inlets can be placed at locations other than the bottom of the heating vessel.
  • This construction uses two outlets 35,36 to send heated fluid into the system.
  • FIG. 5 A further embodiment of this invention is illustrated in FIG. 5.
  • thermal fluids of the type previously described are pumped into a fluid vessel 40.
  • This vessel consists of an inner annular shell 41 concentric with and surrounded by an outer annular shell 42 so that a space or path is defined through which the fluid is to flow.
  • Cold fluid enters the fluid vessel through an inlet 43 placed at the bottom of the vessel 40.
  • Fluid is forced to flow upward of the vessel by pressure created by a circulating pump (not shown).
  • the thermal fluid is heated to the desired temperature as it passes through the annular vessel.
  • the fluid vessel 40 is contained within a heating unit and is circulated to the external system substantially, as described in conjunction with the previous embodiment. Heat is transferred to the moving fluid by thin electrical resistance elements 44 extending vertically the length of the vessel.
  • resistance elements are grouped in sets of five, each set 45 forming a resistance heating zone.
  • Four sets of elements are arranged equally spaced apart from each other. These sets of elements each create an elevated temperature zone within the annular vessel 40.
  • the thermal fluid to be heated is pumped into the annular fluid heating vessel 40 through an inlet 43 which is tangential to the fluid flow path defined by the annular vessel 40 and at a 90 angle to the vertical axis of the vessel.
  • the tangential entry path causes the thermal fluid to come into and flow through the fluid vessel 40 with a spinning or swirling motion and causes the entire volume of fluid to rotate and mix around the vessel.
  • the fluid rotates about the flow path defined by the annular vessel, it passes through the elevated temperature zones defined by the sets of resistance elements 45. Heat is conducted to the moving liquid as it swirls about its flow path and through the elevated temperature zones.
  • the resistance elements 44 are constructed out of thin members so as to leave the thermal fluid flow path substantially unobstructed. In this manner, the swirling flow of the thermal fluid is not substantially impaired.
  • An apparatus for heating a thermal fluid having a boiling point higher than water and for circulating the heated thermal fluid within a closed system in order to exchange the heat of that fluid comprising: means including an interior cylindrical shell and a concentric exterior cylindrical shell coextension with and radially spaced therefrom to define a substantially unobstructed elongated annular chamber for continuous unidirectional throughflow of thermal fluid during circulation thereof through the closed system; means for heating the shells to effect heat exchange with the thermal fluid during throughflow thereof in said chamber and including an insulated outer jacket spaced radially from said exterior shell, air inlet deflecting means and a source of combustible material positioned within said interior shell for producing hot combustion products flowing in one axial direction through the inside of the interior shell in wall contact therewith and then flowing in the opposite axial direction between the outside of the exterior shell and the jacket in wall contact therewith; means for producing a bodily flow of said thermal fluid within said annular chamber continuously swirling about the central axis of said chamber in a helical path of predetermined width and characterized

Abstract

A method of heating or cooling a heat transfer fluid prior to circulation through a heat exchange system wherein the heat transfer liquid is circulated helically through an elongated substantially unobstructed annular chamber. The helical flow is caused by the angle and position of entry of the fluid into the vessel. The swirling fluid is exposed to suitable heating or cooling means to transfer heat with the fluid.

Description

United States Patent 1191 Palm et al. Nov. 19, 1974 THERMAL FLUID HEATER APPARATUS [56] References Cited [75] Inventors: Lewis J. Palm; Ronald B. Palm, UNITED STATES PATENTS both of Pulaski, NY. 2,420,757 5 1947 Neumann et al. 165/155 73 A l ssignee ton Boiler Works, Inc Pulaski, Primary Examiner charles Sukalo [22] Filed: July 23, 1973 [57] ABSTRACT [21] ApplyNo; 381,372 A method of heating or cooling a heat transfer fluid prior to circulation through a heat exchange system Related Apphcauon Data wherein the heat transfer liquid is circulated helically [62]} of 7718201 OCL 1970 Pat through an elongated substantially unobstructed annular chamber. The helical flow is caused by the angle 1 and position of entry of the fluid into the vessel. The Swirling fluid is exposed to Suitabe heating or cooling I 0 s s s s s s s s s a i n s s s s s s a s s s s I I v s u I n t h 58 Field 01 Search 165/1, 142, 155 means transfer heat the FPOM SfSTEM 2 Claims, 6 Drawing Figures SHEET 2 BF 2 PATENIE rasv 1 91914 1 THERMAL FLUID HEATER APPARATUS RELATED APPLICATION This application is filed as a division of my copending application Ser. No. 77,820 filed Oct. 5, 1970 now U.S. Pat. No. 3,747,670 granted July 24, 1973, and is directed to the thermal fluid heater shown in Fig. hereof.
BACKGROUND AND SUMMARY OF THE INVENTION This invention relates to a method of heating or cooling thermal fluids for use in heat exchange systems. These systems operate by heating or cooling a fluid in a central location, i.e., in a heater or in refrigeration equipment and then moving the fluid through pipes to a point where the heat or cold of the fluid is utilized to perform a heat exchange function.
The method disclosed is particularly advantageous for use in systems where high pressure is not desirable. Examples of such uses are heating reactors and distillation columns, industrial drying, and heating platens and molds in a plastic molding operation. At these high temperatures the use of water and steam requires the maintenance of a highly-pressurized system because of the low boiling point of water. The use of water or steam is impractical under these conditions for eco-' nomic' reasons since the equipment must be constructed to reflect the high pressure requirements. Therefore, it is of particular advantage to use liquids having a high boiling point such as mineral oils;.diphenyl diphenyloxide mixtures; chlorinated biphenyls; silicones, silates and silanes; polyglycols; and polyphenyl ethers and esters.
It is conventional to heat these thermal fluids in heaters of the coil or tube type. Such heaters include a myriad of tubes or coils located in a heat transfer vessel. In
' the conventional tube or coil .type heater, thermal fluid enters a tube bundle and passes through these tubes which are in contact with the heat or flame. The fluid is heated as it moves through the coil. The tubes and coils in a heater of this type tend to restrict the flow of the fluid, such restriction results in overheating at certain points and inefficiency in heat transfer resulting from the uneven heating. Further inefficiency results because tube heaters cannot maximize the contact of heat transfer fluid with the heating'means.
Tube-type heaters also present a-maintenance problem because of the tendency of the tubes to burn out. Such heaters are also difficult to clean because of the irregular tube surfaces.
In accordance with the present invention, the thermal fluid enters a substantially unobstructed annular heat transfer vessel with a spinning or helical flow caused by its angle and position of entry into the vessel, this helical flow is carefully maintained as fluid moves through the vessel. The fluid vessel can be either vertically or horizontally positioned without affecting the critical flow relationship necessary for effective heat transfer. The pressure and flow rate is controlled to induce and maintain the swirling action'and tokeep the fluid from being overheated. This helical motion enables the thermal fluidtohave maximum and uniform contact with the heating means employed.
The heating system disclosed in the present invention is of the type having a tubeless or coilless construction.
This system has a greater thermal efficiency and allows a more even flow of fluid than a tube or coil heater. The thermal fluid passes through the tubeless annular heat transfer vessel which is designed to receive heat from the heating medium in such a way that the continuous helical flow of the fluid is not impaired.
In one embodiment of the invention disclosed herein, the heating medium is circulated both through the inner opening of the annular vessel and over the exterior shell of the vessel. In this manner, the medium makes a two-pass heating contact with the annular vessel. The two-pass heating contact takes maximum advantage of the heating ability of the medium used. The heating action of the two-pass system on the swirling fluid gives both an efficient and even heat transfer from the heating medium to the thermal fluid.
Other features and advantages of the invention will be apparent from the following description and claims and are illustrated in the accompanying drawings which show structure embodying preferred features of the present invention and the principles thereof, and what is now considered to be the best mode inwhich to apply these principles.
BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings forming a part of the specification, and in which like numerals are employed to designate like parts'throughout the same:
FIG. 1 is a system diagram showing the heater unit operatively connected to the various external components that complete a practical operating embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT In the system shown generally in FIG. '1, thermal flu ids,-particularly liquids other than water, such as, mineral oils; diphenyl-diphenyloxide mixtures; chlorinated biphenyls; silicones, silates and silanes; polyglycols; and polyphenyl ethers and esters are pumped by a circulatingpump 10 into afluid vessel 1'1. This vesselis made of heat conductive material and consists of an inner annularshell '12 concentric with and surrounded by an outer annular shell 13. The outer shell 13 is of larger diameter than the inner shell 12, therefore, a space or path is defined through which-the fluid is to flow. The cold fluid enters the fluid vessel through an inlet 14 placed at the bottom of the vessel 11. The pressure created by the circulating-pump l0 forces the fluid toflow upward through the annular vessel until it reaches a fluid outlet 15 at the top of the vessel. The thermal fluid is heated to the desired temperature as it passes through the annular vessel.
The annular-fluid vessel '11 is contained within the heating unit 16. The unit includes an outer steel jacket l7 and an inner steel jacket 18 with an insulation layer 19 between them. There is a space left between the inner jacket 18 and the outer annular shell 13 of the heat transfer vessel 11. The fluid vessel is attached to the base of the heating unit by angle supports 20 (only one shown). Heat is transferred to the moving fluid by hot gases ignited at the top of the heating unit 16.
Air is taken in through the inlets 21 in a blower assembly 22 and mixed with a gaseous ignition fuel in the burner assembly 23. The mixture is deflected downward through the air blast tube 24 and the funnel shaped air deflector 25. After passing the deflector 25, the gas-air mixture is ignited and combusts in the inner annular shell 12 of the heating vessel 11. The burner assembly 23 shown in FIG. 1 is located at the top of the heating unit 16; alternative construction would be to locate the burner at the bottom or in the middle of the unit.
As the hot blend goes downward through the interior of the inner annular shell 12, it gives up some of its heat into the shell. The hot gases are forced downward under the vessel 11.
As shown in FIG. 1, and in greater detail in FIG. 3, the hot gas aftef'passing under the fluid vessel travels upward through a secondary flue pass. The secondary flue pass consists of the annular opening between the external shell 13 of the fluid vessel 11 and the inner jacket 18 of the insulation layer 19. Equally-spaced vertical ribs or fins 26 are joined to the circumference of the outer shell 13 of the fluid vessel 11. These ribs or fins 26 are effective in absorbing the heat from the gases rising through the secondary pass. The hot gases pass up through the secondary flue and give their remaining heat into the conductive outer annular shell 13 of the fluid vessel 11. Therefore, both sides of the fluid vessel are heated. The upward rising hot gases or products of combustion leave the system through a flue outlet 27. When the heated fluid reaches the top of the fluid vessel, it is forced through an outlet 15 into the external heating system.
The heated thermal fluid is circulated to the external system and then is recirculated from the external system through the pump and inlet 14 after it performs its heating function. A pressure indicator and pressure fluctuation reliever 28 is provided on the return path of the fluid to the heating unit.
In accordance with the present invention, as shown in FIGS. 2 and 2A, improved efficiency and evenness of heat exchange are produced by the flow relationships occurring within the heater. The thermal fluid to be heated is pumped into the annular fluid heating vessel 11 through an inlet 14 which is tangential to the fluid flow path defined by the annular vessel 11 and at a 90 angle to the vertical axis of the annular vessel. This tangential entry path causes the thermal fluid to come into and flow through the fluid vessel with a spinning or swirling motion. The entire volume of fluid rotates and mixes around the vessel. The fluid is therefore induced to spin around and between the annular shells 12,13 of the fluid vessel 11 in a helical path. To heat the fluid, the burner assembly gives a circular or whirling movement to the gaseous heat exchange medium as it passes downwardly of the interior of the inner annular shell 12 of the heating vessel 11. The circular movement of the gas plus the natural tendency for heat to rise, slows the downward movement of the flame; thereby, efficiently heating the inner annular shell 12.
When the hot gas reaches the bottom of the interior of the annular heating vessel, it turns upward to make a complete second pass around the exterior of the outer shell of the heating vessel, thereby, transmitting additional heat to the outer annular shell and consequently to the fluid. The flow relationship shown in FIGS. 2 and 2A produces maximum heat transfer because of the smoothness of flow of the thermal fluid through the annular path and also because of the length of flow through the vessel caused by the rotational movement. This ideal fluid flow is exposed to double pass heat which takes maximum advantage of the heating ability of the gaseous medium.
The design of the heating vessel is ideal for heating thermal fluids due to the even distribution of two-pass heat and the minimal restriction of the moving fluid. The minimal restriction of the fluid in the heating vessel results in a low pressure drop. The annular vessel can be constructed with the following dimensions depending on the heating system required: (1) length of the vessel, 24 inches to 96 inches; (2) outer diameter of the vessel, 12 inches to 48 inches; (3) distance be tween the inner and outer walls of the vessel, 1 inch to 10 inches; and (4) inlet diameter, 1V2 inches to 3 inches.
The flow rate of the fluid is controllable through the vessel, and as such is dependent upon the distance between the inner and outer walls of the vessel. In addition, the flow rate must be kept above a minimum level in order to keep the thermal fluid from burning or scorching. This heater will operate at a minimum flow rate of 1 foot per second and can be adjusted to a maximum of 10 or 15 feet per second. This feature allows the thermal fluid heater to be used for a wide variety of applications.
The construction shown in FIGS. 4 and 4A makes use of multiple inlets and outlets. Five inlets 30, 31, 32, 33, 34 are shown all feeding fluid into a tangential path for helical flow. As shown in FIGS. 4 and 4A, the fluid inlets can be placed at locations other than the bottom of the heating vessel. This construction uses two outlets 35,36 to send heated fluid into the system.
A further embodiment of this invention is illustrated in FIG. 5. In this embodiment thermal fluids of the type previously described are pumped into a fluid vessel 40. This vessel consists of an inner annular shell 41 concentric with and surrounded by an outer annular shell 42 so that a space or path is defined through which the fluid is to flow. Cold fluid enters the fluid vessel through an inlet 43 placed at the bottom of the vessel 40. Fluid is forced to flow upward of the vessel by pressure created by a circulating pump (not shown). The thermal fluid is heated to the desired temperature as it passes through the annular vessel. The fluid vessel 40 is contained within a heating unit and is circulated to the external system substantially, as described in conjunction with the previous embodiment. Heat is transferred to the moving fluid by thin electrical resistance elements 44 extending vertically the length of the vessel.
These resistance elements are grouped in sets of five, each set 45 forming a resistance heating zone. Four sets of elements are arranged equally spaced apart from each other. These sets of elements each create an elevated temperature zone within the annular vessel 40.
As in the previously described embodiment, the thermal fluid to be heated is pumped into the annular fluid heating vessel 40 through an inlet 43 which is tangential to the fluid flow path defined by the annular vessel 40 and at a 90 angle to the vertical axis of the vessel. The tangential entry path causes the thermal fluid to come into and flow through the fluid vessel 40 with a spinning or swirling motion and causes the entire volume of fluid to rotate and mix around the vessel. As the fluid rotates about the flow path defined by the annular vessel, it passes through the elevated temperature zones defined by the sets of resistance elements 45. Heat is conducted to the moving liquid as it swirls about its flow path and through the elevated temperature zones.
The resistance elements 44 are constructed out of thin members so as to leave the thermal fluid flow path substantially unobstructed. In this manner, the swirling flow of the thermal fluid is not substantially impaired.
Thus, while preferred constructional features of the invention are embodied in the structure illustrated herein, it is to be understood that changes and variations may be made by those skilled in the art without departing from the spirit and scope of the appended claims.
What is claimed is:
1. An apparatus for heating a thermal fluid having a boiling point higher than water and for circulating the heated thermal fluid within a closed system in order to exchange the heat of that fluid comprising: means including an interior cylindrical shell and a concentric exterior cylindrical shell coextension with and radially spaced therefrom to define a substantially unobstructed elongated annular chamber for continuous unidirectional throughflow of thermal fluid during circulation thereof through the closed system; means for heating the shells to effect heat exchange with the thermal fluid during throughflow thereof in said chamber and including an insulated outer jacket spaced radially from said exterior shell, air inlet deflecting means and a source of combustible material positioned within said interior shell for producing hot combustion products flowing in one axial direction through the inside of the interior shell in wall contact therewith and then flowing in the opposite axial direction between the outside of the exterior shell and the jacket in wall contact therewith; means for producing a bodily flow of said thermal fluid within said annular chamber continuously swirling about the central axis of said chamber in a helical path of predetermined width and characterized by rotary and axial flow components cooperatively determining a flow that continuously fills and sweeps the entire annular chamber by introducing adjacent one end of the chamber a stream of said liquid along a direction that is tangent to the chamber periphery including horizontal inlet means at one end of said chamber directed tangentially to said helical flow path and outlet means at the opposite end of said annular chamber; and said apparatus being characterized in that the radial distance between said interior and exterior shells is in the range from about 1 inch to about 10 inches, the shells further having a length of about twice the diameter of the exterior shell and the inlet having a diameter in the range from about 1% inch to about 3 inches to produce a minimum flow rate in said chamber of 1 foot per second for preventing scorching of said thermal fluid.
2. An apparatus as in claim 1 wherein said interior and exterior cylindrical shells are vertically positioned and said thermal fluid flows upward of said annular chamber by entering the chamber through said inlet means located in the lower portion of said chamber.
UNETED STATES PATENT oF Ficn EE'MMQAT @l @EQH 3,848 ,661 Dated November 19 1974 Patent No.
inventor) Lewis J. Palm et a1 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Cancel the section of the Specification beginning at Column 4, line 43, up to and including column 5, line 17.
Signed and sealed this 18th day of February 1975.
(SEAL) Attest: v
C. MARSHALL DANN RUTH C. MASON Commissioner of Patents Attesting Officer and Trademarks FORM PO-105O (10- USCOMM'DC 60376-1269 I U-S. GOVERNMENT PRINTING OFFICE: 8 69, 930

Claims (2)

1. An apparatus for heating a thermal fluid having a boiling point higher than water and for circulating the heated thermal fluid within a closed system in order to exchange the heat of that fluid comprising: means including an interior cylindrical shell and a concentric exterior cylindrical shell coextension with and radially spaced therefrom to define a substantiallY unobstructed elongated annular chamber for continuous unidirectional throughflow of thermal fluid during circulation thereof through the closed system; means for heating the shells to effect heat exchange with the thermal fluid during throughflow thereof in said chamber and including an insulated outer jacket spaced radially from said exterior shell, air inlet deflecting means and a source of combustible material positioned within said interior shell for producing hot combustion products flowing in one axial direction through the inside of the interior shell in wall contact therewith and then flowing in the opposite axial direction between the outside of the exterior shell and the jacket in wall contact therewith; means for producing a bodily flow of said thermal fluid within said annular chamber continuously swirling about the central axis of said chamber in a helical path of predetermined width and characterized by rotary and axial flow components cooperatively determining a flow that continuously fills and sweeps the entire annular chamber by introducing adjacent one end of the chamber a stream of said liquid along a direction that is tangent to the chamber periphery including horizontal inlet means at one end of said chamber directed tangentially to said helical flow path and outlet means at the opposite end of said annular chamber; and said apparatus being characterized in that the radial distance between said interior and exterior shells is in the range from about 1 inch to about 10 inches, the shells further having a length of about twice the diameter of the exterior shell and the inlet having a diameter in the range from about 1 1/2 inch to about 3 inches to produce a minimum flow rate in said chamber of 1 foot per second for preventing scorching of said thermal fluid.
2. An apparatus as in claim 1 wherein said interior and exterior cylindrical shells are vertically positioned and said thermal fluid flows upward of said annular chamber by entering the chamber through said inlet means located in the lower portion of said chamber.
US00381372A 1970-10-05 1973-07-23 Thermal fluid heater apparatus Expired - Lifetime US3848661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00381372A US3848661A (en) 1970-10-05 1973-07-23 Thermal fluid heater apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7782070A 1970-10-05 1970-10-05
US00381372A US3848661A (en) 1970-10-05 1973-07-23 Thermal fluid heater apparatus

Publications (1)

Publication Number Publication Date
US3848661A true US3848661A (en) 1974-11-19

Family

ID=26759711

Family Applications (1)

Application Number Title Priority Date Filing Date
US00381372A Expired - Lifetime US3848661A (en) 1970-10-05 1973-07-23 Thermal fluid heater apparatus

Country Status (1)

Country Link
US (1) US3848661A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056757A2 (en) * 1981-01-15 1982-07-28 SOCIETE D'APPAREILLAGE ELECTRIQUE SAPCO Société Anonyme dite: Gas burner, method of manufacture of this burner and boiler using such a burner
EP0326814A1 (en) * 1988-02-01 1989-08-09 Jednotné zemedelské druzstvo "Chovatel" Radiating heater for heating liquids
US20100300663A1 (en) * 2009-05-29 2010-12-02 Ming-Li Tso Heat exchanger
US20140014293A1 (en) * 2012-07-10 2014-01-16 Bioniko Consulting Llc Apparatus and method for cooling containers
US10139167B1 (en) * 2018-05-17 2018-11-27 Michael W. Courson Heat exchanger
US10228190B2 (en) * 2014-12-11 2019-03-12 Fulton Group N.A., Inc. Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof
US10240813B2 (en) 2014-12-11 2019-03-26 Fulton Group N.A., Inc. Fully-wetted, refractory-free tubeless fluid heating system with negligible thermal expansion stress

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2420757A (en) * 1943-11-05 1947-05-20 Borg Warner Heat exchange assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2420757A (en) * 1943-11-05 1947-05-20 Borg Warner Heat exchange assembly

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056757A2 (en) * 1981-01-15 1982-07-28 SOCIETE D'APPAREILLAGE ELECTRIQUE SAPCO Société Anonyme dite: Gas burner, method of manufacture of this burner and boiler using such a burner
EP0056757A3 (en) * 1981-01-15 1982-08-25 Societe D'appareillage Electrique Sapco Societe Anonyme Dite: Gas burner, method of manufacture of this burner and boiler using such a burner
EP0326814A1 (en) * 1988-02-01 1989-08-09 Jednotné zemedelské druzstvo "Chovatel" Radiating heater for heating liquids
US20100300663A1 (en) * 2009-05-29 2010-12-02 Ming-Li Tso Heat exchanger
US20140014293A1 (en) * 2012-07-10 2014-01-16 Bioniko Consulting Llc Apparatus and method for cooling containers
US8869544B2 (en) * 2012-07-10 2014-10-28 Andres Bernal Apparatus and method for cooling containers
US10228190B2 (en) * 2014-12-11 2019-03-12 Fulton Group N.A., Inc. Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof
US10240813B2 (en) 2014-12-11 2019-03-26 Fulton Group N.A., Inc. Fully-wetted, refractory-free tubeless fluid heating system with negligible thermal expansion stress
US11441846B2 (en) * 2014-12-11 2022-09-13 Fulton Group N.A., Inc. Tubeless heat exchanger for fluid heating systems
US20230017453A1 (en) * 2014-12-11 2023-01-19 Fulton Group N.A., Inc. Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof
US11835302B2 (en) * 2014-12-11 2023-12-05 Fulton Group N.A., Inc. Tubeless heat exchanger for fluid heating systems
US10139167B1 (en) * 2018-05-17 2018-11-27 Michael W. Courson Heat exchanger

Similar Documents

Publication Publication Date Title
US3885125A (en) Method for electrically heating a heat transfer fluid
US3747670A (en) Thermal fluid heater
US9074792B2 (en) Multiple-ring heat exchanger
US4589374A (en) Spiral corrugated corrosion resistant heat exchanger
US4357910A (en) Multi-pass helical coil thermal fluid heater
US2642046A (en) Stand boiler with vertical flue, circulating coil, and indirectly heated domestic supply
US3452967A (en) Rotary cylinder for heat treatment of fabrics or the like continuous materials
US3848661A (en) Thermal fluid heater apparatus
US3349754A (en) Heat exchange device
US1639051A (en) Heat-exchange apparatus
US4813396A (en) Methods and apparatus for changing liquid temperature
CA1251020A (en) Radiating sleeve for catalytic reaction apparatus
US3759230A (en) Gas fired fluid heating apparatus
US2383924A (en) Heater
US4011904A (en) Combination heat exchanger and blower
US3831560A (en) Coil-type continuous flow heater
US2704062A (en) Air heating furnace
US2507293A (en) Water tube coil steam generating apparatus
US1989612A (en) Furnace
US2718217A (en) Water heating apparatus
US1802578A (en) Water heater
US1785159A (en) Heat-interchange device
US2175307A (en) Electric heater
US2637314A (en) Forced downward air flow air
US1819517A (en) Heating system for liquids