US3847797A - Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium - Google Patents

Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium Download PDF

Info

Publication number
US3847797A
US3847797A US00280181A US28018172A US3847797A US 3847797 A US3847797 A US 3847797A US 00280181 A US00280181 A US 00280181A US 28018172 A US28018172 A US 28018172A US 3847797 A US3847797 A US 3847797A
Authority
US
United States
Prior art keywords
oxide
glass
range
molten medium
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00280181A
Other languages
English (en)
Inventor
I Pasternak
J Dugan
J Higgins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US00280181A priority Critical patent/US3847797A/en
Priority to GB4230772A priority patent/GB1414780A/en
Priority to CA152,790A priority patent/CA992482A/en
Priority to DE19722248291 priority patent/DE2248291A1/de
Priority to NL7213296A priority patent/NL7213296A/xx
Priority to FR7235227A priority patent/FR2156049B1/fr
Priority to IT7253171A priority patent/IT966194B/it
Priority to JP47100225A priority patent/JPS4845503A/ja
Application granted granted Critical
Publication of US3847797A publication Critical patent/US3847797A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/40Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by indirect contact with preheated fluid other than hot combustion gases

Definitions

  • Ditsler i ABSTRACT Heavy hydrocarbon feed stocks such as atmospheric and vacuum residua, heavy crude oils and the like are converted to predominantly liquid hydrocarbon products by contacting said feed stocks with a stable regenerable molten medium containing a glass-forming oxide such as boron oxide at a temperature in the range of from about 600 to about 1,200F.
  • a stable regenerable molten medium containing a glass-forming oxide such as boron oxide at a temperature in the range of from about 600 to about 1,200F.
  • the stable, regenerable molten medium comprises a glass-forming oxide in combination with an alkaline reagent.
  • the carbonaceous materials such as coke which are formed in the molten medium during the above-described conversion process are gasified by contacting said carbonaceous materials with a gaseous stream containing oxygen such as air, steam, or car bon dioxide at temperatures of from above about the melting point of said medium to about 2,000F. in order to gasify said carbonaceous materials and thereby regenerate the molten medium.
  • a gaseous stream containing oxygen such as air, steam, or car bon dioxide
  • This invention relates to the conversion of heavy hydrocarbon feedstocks to produce increased proportions of motor fuel range hydrocarbons and fuel oils. More particularly, this invention relates to converting a heavy hydrocarbon feedstock to liquid hydrocarbon products by contacting said feedstock with a molten medium. Still more particularly, this invention relates to the conversion of a heavy hydrocarbon feedstock such as atmospheric and vacuum residua, crude oils and the like, in a stable, regenerable molten medium containing a glass-forming oxide such as boron oxide to produce predominantly liquid hydrocarbon products such as a gas oil and carbonaceous materials, namely coke.
  • the carbonaceous materials formed during the cracking process are gasified by contacting said carbonaceous materials in the molten medium with a gasifying reagent such as air, at elevated temperatures in order to regenerate the melt.
  • Heavy hydrocarbon materials such as atmospheric or vacuum residua, crude oil and the like, are typically subjected to a viscosity-reducing or visbreaking treatment at high temperatures and-elevatedpressures to effectuate by 'a mild thermal cracking of the feedstock to about to percentgas oil, about 5 to 15 volume percent gasoline, and about 75 to 85 percent heavy fuel oil.
  • the specific temperatures, pressures, and feed rates employed in the visbreaking process depend upon the type of the visbreaker feed.
  • the gas oil formed by such a process represents a feedstock suitable for the production of additional amounts of high quality gasoline by catalytic cracking or, after suitable finishing, an acceptable distillate fuel. Of the products formed in visbreaking, gasoline has the highest and the fuel oil the lowest value.
  • hydrocarbon feedstocks can be cracked in a molten salt of either alkali metal carbonate, alkali metal hydroxide, or a mixture thereof, to form hydrocarbon products containing ethylene and thereafter regenerating the molten salt by intimate contact with oxygen or steam (see US. Pat. Nos. 3,553,279 and 3,252,774). Further, in Czechoslovakian Patent 109,952 it is disclosed that various compositions can be employed in the thermal cracking of hydrocarbons.
  • FIGURE is aflow plan of an integrated crackinglgasification process unit for cracking hydrocarbon feedstocks to predominantly liquid products.
  • the regenerable molten medium of the instant inven' tion comprises a glass-forming oxide (or oxide precursor), by which is meant an oxide of silicon, germanium, boron, phosphorus, arsenic, antimony, tellurium, selenium, molybdenum, tungsten, bismuth, aluminum. gallium, vanadium, titanium, and'mixtures thereof.
  • the glass-formingoxides are selected from the group consisting of oxides of boron, phosphorus, vanadiurn, silicon, tungsten, and molybdenum.
  • An oxide of boron is the most preferred glass-forming material.
  • the glass-forming oxides are employed in combination with an alkaline reagent, by which term is meant (a) alkali metal (Group IA) oxides, alkali metal hydroxides and mixtures thereof, and (b) alkali-metal oxides, alkali metal hydroxides and mixtures thereof in combination with alkaline earth metal (Group IIA) oxides, hydroxides and mixtures thereof.
  • alkaline earth metal compounds and alkaline earth metal compounds When mixtures of alkali metal compounds and alkaline earth metal compounds are employed, the mixture typically contains a minor proportion of the alkaline earth materials.
  • Alkaline earth oxides and hydroxides have relatively high melting points and are of limited utility in this process wherein the reaction temperatures do not exceed about 1,200F.
  • the preferred alkali metals are sodium, lithium, potassium, cesium-and mixtures thereof.
  • the preferred alkaline earth metal materials are magnesium, calcium, strontium, and barium.
  • the most preferred alkaline reagent comprises one or more alkali metal hydroxides or one or more alkali metal hydroxides in combination with major or minor amounts of one or more alkali metal oxides.
  • the molar ratio of alkaline reagent (calculated on the basis of the oxide thereof) to glass forming oxide present in the melt varies in the range of from about 0.01 to about 5, more preferably from about 1.5 to about 3, and most preferably from about 2.2 to about 2.7.
  • the preferred mole ratio of the alkaline reagent (calculated on the basis of the oxide thereof) to glass-forming oxide in the gasification zone is in the range of from about 0.5 to about 2.5.
  • the preferred mole ratio of the alkaline reagent (calculated on the basis of the oxide thereof) to glass-forming oxide in the gasification zone is in the range from about 0.5 to about 2.0.
  • the mole ratio of the alkaline reagent (calculated on the basis of the oxide thereof) to glass-forming oxide is within the above-described preferred ranges, there occurs a sig nificant increase in the gasification rate of the carbonaceous materials suspended in the molten medium of the instant invention; however, the gasification process is operable if the alkaline reagent/glass forming oxide ratio falls outside the preferred ranges.
  • the advantage of converting a heavy hydrocarbon feedstock in the above-mentioned molten medium, in addition to providing the heat transfer medium for the conversion of the heavy hydrocarbon feedstock to the predominantly liquid hydrocarbon products, lies in the ability of said medium to: (a) suspend the carbonaceous materials formed in situ during the conversion operation uniformly throughout the melt, (b) abstract sulfur from the hydrocarbon materials being treated, and (c) thereafter, upon contact with a gasifying reagent at elevated temperatures to promote the rapid gasification of said carbonaceous materials. Accordingly, the instant invention attains a higher conversion of the heavy hydrocarbon feedstocks to predominantly liquid hydrocarbons than that which is obtainable with more conventional methods such as visbreaking.
  • the molten medium of the instant invention allows one to conduct such conversion processes at higher temperatures, thereby obtaining higher conversions to the predominantly liquid products in view of the fact that the carbonaceous materials formed during said conversion process may be gasified by contacting said carbonaceous materials with a gasifying reagent, as hereinafter defined.
  • the molten medium of the instant invention offers the additional advantages of significantly lowering the emission of pollutants into the atmosphere by absorbing or reacting with at least a portion of the sulfur and/or sulfur compounds produced during the actual cracking operation and/or during the combustion of carbonaceous material during the gasification phase of the process.
  • the liquid hydrocarbon products formed with the conversion process of the instant invention contain a significantly reduced amount of heavy metals compared to that originally contained in the heavy hydrocarbon feed.
  • the molten medium of the instant invention possesses good thermal conductivity to allow efficient heat transfer and possesses high stability such as to undergo essentially no decomposition to volatile products under the thermal conversion or gasification conditions.
  • the melts may contain other components such as ash constituents, metallic and nonmetallic oxides, sulfides, sulfites, sulfates and various other salts in varying amounts so long as the medium is molten at the hydrocarbon conversion conditions of the instant invention, i.e., less than about 1,200F., and preferably from about 600 to less than about 1,200F., and more preferably from about 800 to about 1,100F. and provided that a sufficient amount of glass-forming oxide is employed to maintain the molten medium in a regenerable condition.
  • One skilled in the art will readily determine the applicable components as well as the stoichiometry of the glass-forming oxides to said components which will be required in order to form the regenerable molten medium as described above.
  • various filler materials, catalysts or promoters may be added to the melt.
  • molten medium of the instant invention is described throughout the specification in terms of the alkaline reagent and the glass-forming oxides, it is clearly within the scope of this invention to employ and define the molten medium of this invention with respect to the compounds, i.e., the salt formed when a glassforming oxide is heated to the molten state in combination with the alkaline reagent.
  • a molten medium consisting of lithium oxide and potassium oxide as the alkaline reagent and boron oxide as the glass-forming oxide in the following mole ratios, 0.53 Li O, 0.47 K 0, 1.0 B 0 can also be expressed in the molten state as a borate, specifically a lithium potassium metaborate on the basis of the following reaction:
  • the melt may comprise a glassforming oxide in combination with an alkali metal borate in accordance with the following reaction:
  • any of the molten glass melts of this invention may be prepared by fusing any combination of raw materials, which upon heating will form a glass-forming oxide either alone or in combination with an alkaline reagent.
  • the most preferred melt system of the instant invention comprises boron oxide in combination with a hydroxide of lithium, potassium, sodium and mixtures thereof as the alkaline reagent.
  • the hydroxide may be used in combination with other alkali metal oxide.
  • the most preferred alkaline reagent is a major amount of a mixture of lithium, potassium and sodium hydroxides and a minor amount of alkali metal oxides.
  • the hydrocarbon feedstocks of the instant invention are heavy hydrocarbon feedstocks such as crude oils, heavy residua, atmospheric and vacuum residua, crude bottoms, pitch, asphalt, other heavy hydrocarbon pitchforming residua, coal, coal tar or distillate, natural tars including mixtures thereof.
  • the heavy hydrocarbon feedstocks boils above about 650F. at atmospheric pressure.
  • the hydrocarbon feedstocks that can be employed in th practice of the instant invention are crude oils, aromatic tars, atmospheric or vacuum residua containing materials boiling above about 650F. at atmospheric pressure.
  • an inert diluent can be employed in order to regulate the hydrocarbon partial pressure in the molten media conversion zone.
  • the inert diluent should normally be employed in a molar ratio from about 1 to about 50 moles of diluent per mole of hydrocarbon feedstock, and more preferably from about 1 to about moles of diluent per mole of hydrocarbon feed.
  • Illustrative, non-limiting examples of the diluents that may be employed in the practice of the instanti'nvention include helium, carbon dioxide, nitrogen, steam, methane, and the like.
  • the conversion process of the instant invention results in the formation of predominantly liquid (at atmospheric pressure) hydrocarbon products.
  • the conversion of the above-described heavy hydrocarbon feedstocks results in upgrading said feedstocks, by which is meant that the high percentage, i.e., above 60, and more preferably above 80 weight per- 975F (at atmospheric pressure) is converted to lower boiling liquid hydrocarbon products and coke.
  • Such an unexpectedly high conversion to liquid hydrocarbon products by the practice of the instant invention is to be contrasted with the more conventional mild pyrolysis techniques for converting heavy hydrocarbon feedstocks such as visbreaking and hydrovisbreaking which normally result in below about 50 weight percent conversions of materials boiling above about 975F.
  • the amount of materials having four carbon atoms and lighter (Ci) formed in accordance with the practice of the instant invention is usually below 10 wt. percent of the total feedstock and the amount of gas oil (boiling between about 430 to 650F. at atmospheric pressure) formed by the process of this invention is normally in the range of from about 10 to 30 wt. percent of the total feedstock.
  • a heavy hydrocarbon feedstock having an API gravity of 7.1 and an elemental analysis of 83.1 weight percent carbon; 10.59 weight percent hydrogen, 4.30 weight percent sulfur, 0.50 weight percent nitrogen and a hydrocarbonatomic ratio of 1.517 and having a Conradson carbon residue of 15.0 weight percent and containing 0.0 weight percent materials boiling below 430F.; 9.8 weight percent materials boiling in the range of from 430 to 650F.; 35.9 weight percent materials boiling in the range of from 650 to 1,050F. and 54.3 weight percent materials boiling above about 1,050F. is processed in a stable, regenerable molten medium in order to convert said feedstream to predominantly liquid hydrocarbon products and carbonaceous cent of the material boiling above a temperature of materials and thereafter gasifying said carbonaceous materials in order to regenerate the melt system.
  • the heavy hydrocarbon feedstock is contacted with a molten sodium polyphosphate bed containing 55.1 weight Na O-P O 30.4 weight 2Na O'P O and 14.5 weight Na SO
  • the molten medium may be sprayed into a reactor or tn'ckled down the reactor wall where the hydrocarbon feedstock passes through the reactor.
  • the molten medium can flow either cocurrently or countercurrently to the hydrocarbon flow.
  • the temperature of the molten medium is maintained in the range of from above the melting point of said medium to less than about 1,200F. and more preferably from about 800 to about 1,100F. in order to form predominantly liquid hydrocarbon products and carbonaceous materials.
  • the weight ratio of molten media to hydrocarbon in the reaction zone varies in the range of from 0.1 to 1 to about to 1 and preferably from 5 to 1 to 20 to l.
  • the reaction may be conducted at pressures ranging from subatmospheric to about 50 atmospheres, preferably from about 1 to about 10 atmospheres.
  • the reaction time is expressed in the amount of time the feedstock is in contact with the melt, i.e., residence time is in the range of from about 0.001 to about 6 hours, and more preferably from about 0.1 to about 3 hours.
  • the hydrocarbon effluent from the reaction zone is cooled to condense and separate liquid products from the gaseous products containing light olefms.
  • the significant advantage of the instant invention is that the carbonaceous materials (coke) which are formed during the conversion process become suspended in the molten medium and can subsequently be gasified by contacting the melt with a gasifying reagent such as a gaseous stream containing free or combined oxygen, i.e., air, steam, carbon dioxide and mixtures thereof, at elevated temperatures in order to rapidly regenerate the stable molten medium.
  • a gasifying reagent such as a gaseous stream containing free or combined oxygen, i.e., air, steam, carbon dioxide and mixtures thereof, at elevated temperatures in order to rapidly regenerate the stable molten medium.
  • the carbonaceous materials that are formed during the thermal cracking reaction may be generally described as solid particlelike materials having a high carbon content such as those materials normally formed during high tempera ture pyrolysis of organic compounds.
  • gasification as used herein describes the contacting of the carbonaceous materials in the molten media with a reagent containing elemental or chemically combined oxygen such as air, steam, carbon dioxide, and mixtures thereof.
  • the gasification reaction is carried out at temperatures in the range of from above about the melting point of the molten media up to about 2,000F. or higher and at a pressure in the range of from subatmospheric to about 100 atmospheres. More preferably, the temperature at which the gasification reaction is carried out is in the range of from about l,000 to about 1,800F. and at a pressure in the range of from about 1 to about 10 atmospheres.
  • the amount of oxygen which must be present in the gaseous stream containing free or combined oxygen in order to effectuate the gasification of the carbonaceous materials is in the range of from about 1 to about 100 weight percent oxygen, and more preferably from about 10 to about weight percent oxygen.
  • the gaseous stream containing oxygen is passed through the melt at a rate of from less than about 0.01 w./w./hr. to about 100 w./w./hr. More preferably, the rate at which the gaseous stream is passed through the melt system of the instant invention is in the range of from about 0.01 w./w./hr. to about 10 w./w./hr.
  • air is employed as the gaseous stream containing oxygen in order to effect a rapid regeneration of the molten medium.
  • Steam or carbon dioxide, either alone or in admixture with oxygen may also be employed to gasify the carbonaceous materials present in the molten medium of the instant invention.
  • the different gasification reagents mentioned above will each gasify the carbonaceous material at different rates.
  • the presence of free elemental oxygen in the melt will result in higher gasification rates than with other reagents such as steam or COQ.
  • steam or CO is employed as the gasification reagent, more severe conditions, e.g., higher temperatures and longer residence time, will be required in order to achieve gasification rates equivalent to or higher than when, for example, air or oxygen is employed as the gasification reagent.
  • the specific gasification rate of the carbonaceous materials in individual stable, regenerable molten media is dependent upon the temperature at which the gasification process is carried out, as well as the residence time of the oxygen containing gas or steam in the melt, the concentration of carbonaceous material in the melt, and feed rate of oxygen containing gas into the media.
  • the carbon gasiflcation rate increases as the temperature of the melt, concentrations of carbovnaceous materials and feed rate of the oxygencontaining gas increase.
  • the concentration of carbonaceous materials in the molten medium is maintained in the range of from about 0.1 to about weight percent, and preferably from about 1.0 to about 20 weight percent, in order to effect a rapid gasification thereof. Accordingly, it can be seen that it is advantageous to carry out the gasification reaction process at temperatures above about l.0O0F.. and more preferably in the range of from l,O00 to 1,800F. and at an oxygen gas feed rate of 0.01 to 10 w./w./hr. in the presence of from about 1.0 to about l0 weight percent carbonaceous materials in order to effectuate a rapid gasification of the carbonaceous materials present in the melt. Such a rapid gasification will necessarily result in a rapid regeneration of the melt.
  • a heavy hydrocarbon residuum fraction preferably having an initial boiling point (at atmospheric pressure) above about ()F., is introduced to cracking zone 2 via feed line 1.
  • a molten bed 3 containing an oxide of boron and an alkaline reagent comprising a major amount of a mixture of sodium, potassium and lithium hydroxides in combination with a minor amount of sodium, potassium and lithium oxides.
  • the hydrocarbon feedstock may be passed upwardly through melt 3 by introducing the feed stock at a point below the upper level of the molten media.
  • the temperature of the molten media 3 is maintained below about l,200F.
  • the resulting cracked products pass overhead from cracking zone 2 via line 4.
  • the cracked products may be cooled by indirect heat exchange or through contact with a quench medium introduced via line 5. If desired, the cracked products may be passed directly to a fractionation facility via line 6.
  • the instant melt compositions suspend the coke by-product within the melt.
  • the coke materials are removed from the melt by a gasification step involving contacting the coke containing melt with an oxidizing gas.
  • the molten media that contains suspended carbonaceous material is withdrawn from cracking zone 2 by way of line 7 and introduced to gasification zone 8.
  • a vapor lift is used to circulate the melt between the cracking zone and the gasification zone.
  • the coke-containing molten media 9 is contacted with a reagent introduced into the gasification zone 8 via line 10.
  • the reagent is elemental oxygen (or a gas stream containing elemental oxygen), steam or carbon dioxide.
  • the temperature within the gasification zone may be brought to about 2,000F.
  • the coke or carbonaceous material contained in the melt is combusted and the gasification products carried overhead via line 1 l.
  • the chemical composition of the overhead gaseous effluent is dependent on the type of gasifying reagent employed. When oxygen or an oxygen-containing gas is employed, only a minor proportion of the total gaseous effluent is made up of sulfur-bearing materials. When the ratio of alkaline reagent, calculated on the basis of the oxides thereof, to glass-forming oxide exceeds certain minimum levels, the resulting oxygen gasification products are predominantly sulfur free (containing below about 500 vppm, generally below 200 vppm sulfur constituents).
  • melt material During continued use the initial charge of melt material will become contaminated with larger and larger amounts of sulfur and ash'forming impurities. Accordingly, to maintain the melt in the desired active condition, a portion of the contaminated melt must be withdrawn from the system and replaced with fresh melt or, alternatively, reconditioned and returned to the system.
  • One technique for reconditioning the contaminated melt is depicted in the FIGURE. Specifically, a minor quantity of contaminated melt material is withdrawn from line 7 and passed to a sulfur recovery zone 14 wherein it is contacted with carbon dioxide and steam that are introduced via line 15. Typically the melt 16 contained within zone 14 is treated with the carbon dioxide/steam reagents at temperatures in the range of from about 800 to l ,800F.
  • the bulk of the sulfur contaminants present in the melt are in the form of sulfides, contacting with the steam/carbon dioxide mixture will convert the sulfide ion to hydrogen sulfide which is removed from the treating zone via line 17. If the bulk of the sulfur sent to zone 14 is not in a metal sulfide form, it is necessary, for maximum sulfur removal, to reduce the sulfur present in the melt to a sulfide form in a reducing zone located prior to zone 14.
  • the molten media having reduced sulfur content is withdrawn via line 18 and returned to the system via line 19.
  • a portion of the treated effluent in line 19 may be.
  • withdrawn from the system via line 20 for treatment for the removal of ash constituents The resulting sulfur-free, ash-free melt may be returned to the system.
  • alkaline reagent constituents of the melt may be converted to the corresponding carbonates through reaction with carbon dioxide generated during the gasification portion of the integrated process.
  • the equilibrium carbonate concentration of the melt will generally increase as the mole ratio of alkaline reagent to glassat least partially converted to sulfates, sulfites, sulfides and carbonate materials, the mole ratio of alkaline rea- EXAMPLE 1
  • the conversion zone was 2 inches in diameter and 10 inches in length and was placed in a Lindberg furnace.
  • the melt temperature was measured by a thermocouple inserted into a thermowell position in the center of the molten medium connected to a portable pyrometer.
  • An inert diluent, namely steam, in the amount of 1.0 gram per minute was introduced into the reaction zone.
  • the effluent gases were cooled in a water condenser and noncondensable gases were passed directly to a gas chromatograph for analysis. The test results are reported below.
  • EXAMPLE 4 This example indicates the excellent carbon gasification rates that are obtainable in accordance with the instant invention when carbonaceous materials present in the molten melts of the instant invention are contacted with air as the oxygen-containing gas stream at 1,500F. or 1,600F.
  • the molten media of the instant invention (Runs A through F and I) which contain glass-forming oxide(s) in combination with an alkali metal oxide promote the rapid gasification of the carbonaceous materials present in said melts, which gasification permits facile regeneration of the melt after the melt has been employed as the cracking medium for a hydrocarbon feedstock, as described in Example 1.
  • the molten medium employed in RunG could not be conducted at the temperatures employed in Runs A through F in view of the fact that this particular molten medium, at such temperature, evolves carbon dioxide.
  • the particular molten media employed in Run H could not be conducted at the air flow rate employed forRuns A through F in view of the fact that, at such air flow rates, there occurs a significant loss of the molten media from the reactor due to volatilization of the melt.
  • EXAMPLE 5 This example shows that steam may also be employed in order to gasify carbonaceous materials present in the molten medium of this invention.
  • Table VIII indicates that steam is effective as a gasification reagent; however, it is noted that in order to ob tain a gasification rate equivalent to those obtained when air is employed as the gasification reagent (Run A of Example 4), higher gasification temperatures are required. Accordingly, employing gasification temperatures higher than 1,700F. would likewise increase the gasification rates exhibited by the molten media in Runs E through G.
  • EXAMPLE 6 A series of tests were conducted to demonstrate the efficacy of melts containing boron oxide. For comparison purposes, another series of runs were conducted wherein the melt employed was composed of alkali metal carbonate materials. The initial alkaline reagent portion of the boron-containing melt was composed of about 43 mole percent lithium as lithium hydroxide. 31 mole percent sodium as sodium hydroxide. and 26 mole percent potassium as potassium hydroxide. Sufficient boron oxide was added to the melt to bring the molar ratio of alkali compounds on an oxide basis to boron oxide to 2.5. The hydroxides/boron oxide mixture was heated in a graphite-lined reactor to a temperature ranging from 1,500 to 1,600F. over a period of from 3-4 hours until a homogeneous melt was secured. Thereafter the melt was solidified by cooling, and
  • the carbonate melt utilized in the comparative test runs was composedof about 43 mole percent lithium carbonate, 31 mole percent sodium carbonate and 26 mole percent potassium carbonate.
  • the melt was prepared by blending the three components in the reactor.
  • the test runs in which the carbonate melt was employed were conducted in the same manner as the experiments wherein the boron oxide containing melt was used.
  • the boron oxidecontaining melts serve as efficient means for the cracking of heavy petroleum residual materials.
  • the heavier products obtained from the process contained relatively small amounts of sulfur and metals. This indicates that the melt served to partially desulfurize the feedstock materials and diminish metal contaminants concentrations.
  • the data also shows that the boron oxide containing melt was at least equivalent in performance to the carbonate based melt.
  • the 980F.+ product obtained with the use of the boron oxide-containing melt contains significantly less sulfur than similar products secured with the carbonate melt.
  • the coke obtained with the boron oxide melt was substantially sulfur-free in comparison to the coke obtained utilizing the carbonate melt.
  • a process for converting a heavy hydrocarbon feedstock to lighter hydrocarbon materials which comprises contacting said feedstock with a regenerable molten medium containing an alkaline reagent selected from the group consisting of alkali metal oxides. hydroxides and mixtures thereof, and alkali metal oxides. hydroxides and mixtures thereof in combination with alkaline earth metal oxides, hydroxides and mixtures thereof and a glass-forming oxide wherein the mole ratio of the alkaline reagent, expressed as the oxide thereof, to the glass-forming oxide is about 1.5 to about 3 at a temperature in the range of from about the melting point of said medium to less than about 1,200F. for a time sufficient to form lighter hydrocarbon materials.
  • an alkaline reagent selected from the group consisting of alkali metal oxides. hydroxides and mixtures thereof, and alkali metal oxides. hydroxides and mixtures thereof in combination with alkaline earth metal oxides, hydroxides and mixtures thereof and a glass-forming oxide wherein the mole ratio of the alka
  • glass-forming oxide is selected from the group consisting of oxides of boron, phosphorus, vanadium, silicon, tungsten, and molybdenum.
  • a process for converting a heavy hydrocarbon feedstock to lighter hydrocarbon materials which comprises contacting said heavy hydrocarbon feedstock with a regenerable molten medium containing an alkaline reagent selected from the group consisting of alkali metal oxides, hydroxides and mixtures thereof and alkali metal oxides, hydroxides and mixtures thereof in combination with alkaline earth metal oxides, hydroxides and mixtures thereof and a glass-forming oxide selected from the group consisting of oxides of boron. phosphorus, vanadium. silicon, tungsten, and molybdenum, wherein the mole ratio of the alkaline reagent.
  • an alkaline reagent selected from the group consisting of alkali metal oxides, hydroxides and mixtures thereof and alkali metal oxides, hydroxides and mixtures thereof in combination with alkaline earth metal oxides, hydroxides and mixtures thereof and a glass-forming oxide selected from the group consisting of oxides of boron. phosphorus, vanadium. silicon, tungsten,
  • the oxide thereof, to the glass-forming oxide is in the range of from about 1.5 to about 3, at a temperature in the range of from about 800 to less than about 1,200F. to form predominantly liquid hydrocarbon products and carbonaceous materials and thereafter gasifying said carbonaceous materials formed during said conversion process by contacting said molten medium containing said carbonaceous materials with oxygen, carbon dioxide, steam or mixtures thereof at a temperature in the range of from about the melting point of said medium to about 2,000F.
  • gasifying reagent is a gas stream containing from about 10 to about 25 wt. percent oxygen.
  • glass-forming oxide is an oxide of phosphorus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
US00280181A 1971-10-05 1972-08-14 Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium Expired - Lifetime US3847797A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00280181A US3847797A (en) 1971-10-05 1972-08-14 Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium
GB4230772A GB1414780A (en) 1971-10-05 1972-09-12 Thermal cracking of a heavy hydrocarbon feed stock in a regene rable melt
CA152,790A CA992482A (en) 1971-10-05 1972-09-28 Visbreaking a heavy hydrocarbon feed stock in a regenerable molten medium
NL7213296A NL7213296A (enExample) 1971-10-05 1972-10-02
DE19722248291 DE2248291A1 (de) 1971-10-05 1972-10-02 Verfahren zur umwandlung von schweren kohlenwasserstoffbeschickungen
FR7235227A FR2156049B1 (enExample) 1971-10-05 1972-10-04
IT7253171A IT966194B (it) 1971-10-05 1972-10-04 Trattamento per ridurre la visco sita di un materiale di aimento idrocarburico in un mezzo fuso rigenerabile
JP47100225A JPS4845503A (enExample) 1971-10-05 1972-10-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US18677071A 1971-10-05 1971-10-05
US00280181A US3847797A (en) 1971-10-05 1972-08-14 Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium

Publications (1)

Publication Number Publication Date
US3847797A true US3847797A (en) 1974-11-12

Family

ID=26882390

Family Applications (1)

Application Number Title Priority Date Filing Date
US00280181A Expired - Lifetime US3847797A (en) 1971-10-05 1972-08-14 Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium

Country Status (8)

Country Link
US (1) US3847797A (enExample)
JP (1) JPS4845503A (enExample)
CA (1) CA992482A (enExample)
DE (1) DE2248291A1 (enExample)
FR (1) FR2156049B1 (enExample)
GB (1) GB1414780A (enExample)
IT (1) IT966194B (enExample)
NL (1) NL7213296A (enExample)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948759A (en) * 1973-03-28 1976-04-06 Exxon Research And Engineering Company Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium in the presence of hydrogen
US3966583A (en) * 1974-10-07 1976-06-29 Clean Energy Corporation Coal treatment process and apparatus
US3966582A (en) * 1974-10-07 1976-06-29 Clean Energy Corporation Solubilization and reaction of coal and like carbonaceous feedstocks to hydrocarbons and apparatus therefor
US3977960A (en) * 1975-01-03 1976-08-31 Stout Vincent H Hydrocarbon recovery system
US4158697A (en) * 1975-12-29 1979-06-19 Clean Energy Corporation Coal treatment apparatus
US5071539A (en) * 1985-08-30 1991-12-10 Engelhard Corporation FCC catalysts of increased effective heat capacity
US20050148487A1 (en) * 2003-12-19 2005-07-07 Brownscombe Thomas F. Method of decomposing polymer
WO2005061665A2 (en) 2003-12-19 2005-07-07 Shell Internationale Research Maatschappij B.V. Systems and methods of producing a crude product
US7402547B2 (en) 2003-12-19 2008-07-22 Shell Oil Company Systems and methods of producing a crude product
US7534342B2 (en) 2003-12-19 2009-05-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7678264B2 (en) 2005-04-11 2010-03-16 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20100155298A1 (en) * 2008-12-18 2010-06-24 Raterman Michael F Process for producing a high stability desulfurized heavy oils stream
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
US7749374B2 (en) 2006-10-06 2010-07-06 Shell Oil Company Methods for producing a crude product
US7918992B2 (en) 2005-04-11 2011-04-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20110147273A1 (en) * 2009-12-18 2011-06-23 Exxonmobil Research And Engineering Company Desulfurization process using alkali metal reagent
US20110147274A1 (en) * 2009-12-18 2011-06-23 Exxonmobil Research And Engineering Company Regeneration of alkali metal reagent
US20110147271A1 (en) * 2009-12-18 2011-06-23 Exxonmobil Research And Engineering Company Process for producing a high stability desulfurized heavy oils stream
US8894845B2 (en) 2011-12-07 2014-11-25 Exxonmobil Research And Engineering Company Alkali metal hydroprocessing of heavy oils with enhanced removal of coke products
US9061273B2 (en) 2008-03-26 2015-06-23 Auterra, Inc. Sulfoxidation catalysts and methods and systems of using same
US9206359B2 (en) 2008-03-26 2015-12-08 Auterra, Inc. Methods for upgrading of contaminated hydrocarbon streams
US9512151B2 (en) 2007-05-03 2016-12-06 Auterra, Inc. Product containing monomer and polymers of titanyls and methods for making same
US9828557B2 (en) 2010-09-22 2017-11-28 Auterra, Inc. Reaction system, methods and products therefrom
US10246647B2 (en) 2015-03-26 2019-04-02 Auterra, Inc. Adsorbents and methods of use
US10450516B2 (en) 2016-03-08 2019-10-22 Auterra, Inc. Catalytic caustic desulfonylation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610801U (ja) * 1991-10-14 1994-02-10 清 松崎 上部直径測定尺
RU2174142C2 (ru) * 1999-07-12 2001-09-27 ТОО научно-производственное предприятие "Ротоклон" Устройство для термической переработки углеводородного сырья в жидком промежуточном расплавленном теплоносителе

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB386669A (en) * 1931-07-09 1933-01-09 Henry Dreyfus Improvements in or relating to the treatment or manufacture of hydrocarbons
US3081256A (en) * 1959-05-14 1963-03-12 Shell Oil Co Process and apparatus for carrying out chemical reactions
US3480689A (en) * 1967-05-10 1969-11-25 Sun Oil Co Cracking of hydrocarbons
US3553279A (en) * 1968-03-29 1971-01-05 Texas Instruments Inc Method of producing ethylene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB386669A (en) * 1931-07-09 1933-01-09 Henry Dreyfus Improvements in or relating to the treatment or manufacture of hydrocarbons
US3081256A (en) * 1959-05-14 1963-03-12 Shell Oil Co Process and apparatus for carrying out chemical reactions
US3480689A (en) * 1967-05-10 1969-11-25 Sun Oil Co Cracking of hydrocarbons
US3553279A (en) * 1968-03-29 1971-01-05 Texas Instruments Inc Method of producing ethylene

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948759A (en) * 1973-03-28 1976-04-06 Exxon Research And Engineering Company Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium in the presence of hydrogen
US3966583A (en) * 1974-10-07 1976-06-29 Clean Energy Corporation Coal treatment process and apparatus
US3966582A (en) * 1974-10-07 1976-06-29 Clean Energy Corporation Solubilization and reaction of coal and like carbonaceous feedstocks to hydrocarbons and apparatus therefor
US3977960A (en) * 1975-01-03 1976-08-31 Stout Vincent H Hydrocarbon recovery system
US4158697A (en) * 1975-12-29 1979-06-19 Clean Energy Corporation Coal treatment apparatus
US5071539A (en) * 1985-08-30 1991-12-10 Engelhard Corporation FCC catalysts of increased effective heat capacity
US7837863B2 (en) 2003-12-19 2010-11-23 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7955499B2 (en) 2003-12-19 2011-06-07 Shell Oil Company Systems, methods, and catalysts for producing a crude product
WO2005063936A2 (en) 2003-12-19 2005-07-14 Shell Internationale Research Maatschappij B.V. Systems and methods of producing a crude product
WO2005063675A2 (en) 2003-12-19 2005-07-14 Shell Internationale Research Maatschappij B.V. Systems and methods of producing a crude product
WO2005066304A2 (en) 2003-12-19 2005-07-21 Shell Internationale Research Maatschappij B.V. Systems and methods of producing a crude product
WO2005066305A2 (en) 2003-12-19 2005-07-21 Shell International Research Maatschappij B.V. Systems and methods of producing a crude product
WO2005066308A2 (en) 2003-12-19 2005-07-21 Shell Internationale Research Maatschappij B.V. Systems and methods of producing a crude product
WO2005061664A3 (en) * 2003-12-19 2006-05-11 Shell Oil Co Systems and methods of producing a crude product
US7402547B2 (en) 2003-12-19 2008-07-22 Shell Oil Company Systems and methods of producing a crude product
US7413646B2 (en) 2003-12-19 2008-08-19 Shell Oil Company Systems and methods of producing a crude product
US7416653B2 (en) 2003-12-19 2008-08-26 Shell Oil Company Systems and methods of producing a crude product
US7534342B2 (en) 2003-12-19 2009-05-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7588681B2 (en) 2003-12-19 2009-09-15 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7591941B2 (en) 2003-12-19 2009-09-22 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7615196B2 (en) 2003-12-19 2009-11-10 Shell Oil Company Systems for producing a crude product
US7625481B2 (en) 2003-12-19 2009-12-01 Shell Oil Company Systems and methods of producing a crude product
US7628908B2 (en) 2003-12-19 2009-12-08 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8663453B2 (en) 2003-12-19 2014-03-04 Shell Oil Company Crude product composition
US7674370B2 (en) 2003-12-19 2010-03-09 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7674368B2 (en) 2003-12-19 2010-03-09 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8613851B2 (en) 2003-12-19 2013-12-24 Shell Oil Company Crude product composition
US7736490B2 (en) 2003-12-19 2010-06-15 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8608938B2 (en) 2003-12-19 2013-12-17 Shell Oil Company Crude product composition
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
US8608946B2 (en) 2003-12-19 2013-12-17 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7763160B2 (en) 2003-12-19 2010-07-27 Shell Oil Company Systems and methods of producing a crude product
US7780844B2 (en) 2003-12-19 2010-08-24 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7807046B2 (en) 2003-12-19 2010-10-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7811445B2 (en) 2003-12-19 2010-10-12 Shell Oil Company Systems and methods of producing a crude product
US7828958B2 (en) 2003-12-19 2010-11-09 Shell Oil Company Systems and methods of producing a crude product
US20050148487A1 (en) * 2003-12-19 2005-07-07 Brownscombe Thomas F. Method of decomposing polymer
US7854833B2 (en) 2003-12-19 2010-12-21 Shell Oil Company Systems and methods of producing a crude product
WO2005061665A2 (en) 2003-12-19 2005-07-07 Shell Internationale Research Maatschappij B.V. Systems and methods of producing a crude product
US7879223B2 (en) 2003-12-19 2011-02-01 Shell Oil Company Systems and methods of producing a crude product
US7648625B2 (en) 2003-12-19 2010-01-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7959797B2 (en) 2003-12-19 2011-06-14 Shell Oil Company Systems and methods of producing a crude product
US7959796B2 (en) 2003-12-19 2011-06-14 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8506794B2 (en) 2003-12-19 2013-08-13 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8475651B2 (en) 2003-12-19 2013-07-02 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8394254B2 (en) 2003-12-19 2013-03-12 Shell Oil Company Crude product composition
US8025794B2 (en) 2003-12-19 2011-09-27 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8025791B2 (en) 2003-12-19 2011-09-27 Shell Oil Company Systems and methods of producing a crude product
US8070937B2 (en) 2003-12-19 2011-12-06 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8070936B2 (en) 2003-12-19 2011-12-06 Shell Oil Company Systems and methods of producing a crude product
US8163166B2 (en) 2003-12-19 2012-04-24 Shell Oil Company Systems and methods of producing a crude product
US8241489B2 (en) 2003-12-19 2012-08-14 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8268164B2 (en) 2003-12-19 2012-09-18 Shell Oil Company Systems and methods of producing a crude product
US7918992B2 (en) 2005-04-11 2011-04-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7678264B2 (en) 2005-04-11 2010-03-16 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8481450B2 (en) 2005-04-11 2013-07-09 Shell Oil Company Catalysts for producing a crude product
US7749374B2 (en) 2006-10-06 2010-07-06 Shell Oil Company Methods for producing a crude product
US9512151B2 (en) 2007-05-03 2016-12-06 Auterra, Inc. Product containing monomer and polymers of titanyls and methods for making same
US9061273B2 (en) 2008-03-26 2015-06-23 Auterra, Inc. Sulfoxidation catalysts and methods and systems of using same
US9206359B2 (en) 2008-03-26 2015-12-08 Auterra, Inc. Methods for upgrading of contaminated hydrocarbon streams
US20100155298A1 (en) * 2008-12-18 2010-06-24 Raterman Michael F Process for producing a high stability desulfurized heavy oils stream
US8778173B2 (en) 2008-12-18 2014-07-15 Exxonmobil Research And Engineering Company Process for producing a high stability desulfurized heavy oils stream
US20110147274A1 (en) * 2009-12-18 2011-06-23 Exxonmobil Research And Engineering Company Regeneration of alkali metal reagent
US8696890B2 (en) 2009-12-18 2014-04-15 Exxonmobil Research And Engineering Company Desulfurization process using alkali metal reagent
US8404106B2 (en) 2009-12-18 2013-03-26 Exxonmobil Research And Engineering Company Regeneration of alkali metal reagent
US20110147271A1 (en) * 2009-12-18 2011-06-23 Exxonmobil Research And Engineering Company Process for producing a high stability desulfurized heavy oils stream
US20110147273A1 (en) * 2009-12-18 2011-06-23 Exxonmobil Research And Engineering Company Desulfurization process using alkali metal reagent
US8613852B2 (en) 2009-12-18 2013-12-24 Exxonmobil Research And Engineering Company Process for producing a high stability desulfurized heavy oils stream
US9828557B2 (en) 2010-09-22 2017-11-28 Auterra, Inc. Reaction system, methods and products therefrom
US8894845B2 (en) 2011-12-07 2014-11-25 Exxonmobil Research And Engineering Company Alkali metal hydroprocessing of heavy oils with enhanced removal of coke products
US10246647B2 (en) 2015-03-26 2019-04-02 Auterra, Inc. Adsorbents and methods of use
US10450516B2 (en) 2016-03-08 2019-10-22 Auterra, Inc. Catalytic caustic desulfonylation
US11008522B2 (en) 2016-03-08 2021-05-18 Auterra, Inc. Catalytic caustic desulfonylation

Also Published As

Publication number Publication date
DE2248291A1 (de) 1973-04-12
IT966194B (it) 1974-02-11
FR2156049A1 (enExample) 1973-05-25
NL7213296A (enExample) 1973-04-09
JPS4845503A (enExample) 1973-06-29
FR2156049B1 (enExample) 1976-08-20
CA992482A (en) 1976-07-06
GB1414780A (en) 1975-11-19

Similar Documents

Publication Publication Date Title
US3847797A (en) Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium
US3948759A (en) Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium in the presence of hydrogen
US3850742A (en) Hydrocarbon cracking in a regenerable molten media
US3876527A (en) Hydrocarbon cracking in a regenerable molten medium
US4111845A (en) Cracking catalyst modified by antimony thiophosphate
US4321129A (en) Cracking process employing catalyst having combination of antimony and tin
US4076613A (en) Combined disulfurization and conversion with alkali metals
CA1072477A (en) Method of negating the effects of metals poisoning on cracking catalysts
US4255287A (en) Cracking catalyst
US4305809A (en) Fixed sulfur petroleum coke fuel and method for its production
US3852188A (en) Hydrocarbon cracking in a regenerable molten media
EP0290689B1 (en) Partial oxidation process
US3475323A (en) Process for the preparation of low sulfur fuel oil
US3862025A (en) Melt cracking for lubricating oils
US4479804A (en) Fixed sulfur petroleum coke fuel and method for its production
US4671804A (en) Partial oxidation process
US4256564A (en) Cracking process and catalyst for same containing indium to passivate contaminating metals
US3983030A (en) Combination process for residua demetalation, desulfurization and resulting coke gasification
US4244810A (en) Fluidized catalytic cracking process for increased hydrogen production
US2768936A (en) Conversion of asphaltic hydrocarbons
US4364848A (en) Passivation of metal contaminants on cracking catalyst
US4705539A (en) Partial oxidation process
US1955829A (en) Conversion of carbonaceous materials into useful hydrocarbon products
US4784670A (en) Partial oxidation process
US4404090A (en) Passivation of metal contaminants on cracking catalyst