US3847231A - Pole reinforcement installation - Google Patents

Pole reinforcement installation Download PDF

Info

Publication number
US3847231A
US3847231A US00249249A US24924972A US3847231A US 3847231 A US3847231 A US 3847231A US 00249249 A US00249249 A US 00249249A US 24924972 A US24924972 A US 24924972A US 3847231 A US3847231 A US 3847231A
Authority
US
United States
Prior art keywords
driving
splint
hammer
cylinder
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00249249A
Inventor
J Warjone
A Wilkison
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUCKWELD EQUIPMENT Co
Original Assignee
TRUCKWELD EQUIPMENT Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUCKWELD EQUIPMENT Co filed Critical TRUCKWELD EQUIPMENT Co
Priority to US00249249A priority Critical patent/US3847231A/en
Priority to CA158,661A priority patent/CA988311A/en
Priority to US05/483,944 priority patent/US3938293A/en
Application granted granted Critical
Publication of US3847231A publication Critical patent/US3847231A/en
Priority to CA241,145A priority patent/CA1002769A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/04Guide devices; Guide frames

Definitions

  • the driving mechanism is self contained and need only be supported in driving position and provided with a source of momentum to drive the splint.
  • the driving mechanism includes a hammer or anvil having a depending tongue which serves to support the splint during movement of the splint from the supply tothe position adjacent the pole.
  • the tongue also serves as a guide for the hammering means assuring proper driving contact with the splint during the driving process.
  • the driving mechanism will be supported at the outboard end of the boom which may be held in a relatively rigid position by an adjustable deadleg which is pivotally secured to the outboard end of the boom or alternatively may be held rigid by securement to the pole.
  • tallic stubs have been designed having a small crosssectional area to permit easy driving into the ground and have been shaped to provide a pair of spaced apart pole engagement surfaces which either are shaped complementarily to the curvature or engage tangentially with the poles. These configurations reduce the formation of water retaining pockets and the like which tend to result in'the rotting of the pole. While the new splints have many advantages, as noted. above, one. of the problems with the contoured splint has been in the driving of the splint down immediately adjacent the pole. For the greatest utilization of the splint, contact should be along the entire length of the splint. When placing the splint it must be located adjacent the pole and maintained in a contiguous placement during the insertion period.
  • a further object of the present invention is to provide a driving mechanism which is capable of driving splints for wooden poles, pipes or rods, and further, is relatively portable enabling the mechanism to be easily transported to the locus of the desired drive. It is another object to provide a method for efficiently and safely handling splints from a supply to a location adjacent a pole.
  • FIG. 1 is a perspective view of the driving tool as seen from the side which would be in contact with the pole to be reinforced, and with the splint driving attachment in position.
  • FIG. 2 is a perspective view of the attachment which is used in conjunction with driving a pipe or rod.
  • FIG. 3 is an isometric view of the splint driving tool from the opposite side as shown in FIG. 1 showing the location of the ram.
  • FIG. 4- is a sectional view along lines 44 of FIG. 1 with a splint in position for driving adjacent a pole.
  • FIG. 5 is a partial vertical sectional view showing the relationship of the elements of the splint driving tool when in driving position adjacent the pole.
  • FIG. 6 is a view depicting the means for using the driving tool to transfer the splint to the proper position.
  • FIG. 7 is an isometric view of a splint adapted for use with the present driving means.
  • FIG. 8 is an enlarged view of the outboard end of the boom which is used for driving splints and showing the attachment of one stabilizing means.
  • FIG. 9 is an environmental view showing the relative elements of the boom mechanism as mounted upon the truck which would also carry splints.
  • FIG. 10 shows the boom with a-splint attached and the deadleg dropped to a relatively usable position.
  • FIG. 11 shows the splint being raised to position with the deadleg in proper position for disposal against the supporting ground.
  • FIG. 12 is an environmental view showing the splint deadleg and boom in position adjacent a vertical wooden pole to be reinforced.
  • FIG. 13 is a schematic of the preferred hydraulic system for the present invention.
  • FIG. 14 is an enlarged schematic of a dual range hydraulic system.
  • the splint driving head comprises a heavy, solid generally rectangular main body portion 2 having at its upper end an outwardly projecting hammer. head or anvil 4 and at its lower end a pair of outwardly protruding protective members 6. Because of the relative length of the tongue 8 with respect to the other dimensions of the head and because of its location, it is subject to damage and the members 6 provide support for the driving head when not in use, relieving the tongue from undue strain.
  • Tongue 8 serves only as a guide and is removably secured by a bracket 9 to the hammer head or anvil 4 so it presents a smooth driving surface.
  • the tongue is removable to allow the substitution of various sized tongues guiding other types of objects and different size splints.
  • the tongue 8 may be replaced with a guide 10 of square cross section having a bracket 11 which is secured in the same manner as bracket 9.
  • a fluid ram or other conventional cylinderrod apparatus 12 having an eye l3-secured to the end of its piston rod.
  • a fluid connection 14 allows introduction of fluid into the interior of the ram or cylinder above the piston rod 12, and as will be explained in greater detail hereinafter, raises the cylinder relative to the rod to cause the entire driving tool to be raised.
  • the fluid conduit 14 is of sufficient internal diameter that once the valve (not shown in this figure) is open to the sump, the weight of the tool causes rapid evacuation without significantly impeding the free fall or reducing the inertia.
  • a carrying hook 16 which, as will be explained in greater detail with respect to FIGS. 6 and 9 12, is used for supporting the splint as it is moved from the truck to the proper position for placement of the splint or stub.
  • a latch member 18 extends through the main body portion 2 of the driving tool and is seated in a bore 20 in the tongue 8. When the latch member 18 is in the position as shown in FIG. 3, it extends through a splint and serves to lock it in place between the body of the driving tool and the tongue 8 for transport to the position adjacent the pole-As will be noted in FIG. 3, latch 18 may be locked in the inner, or splint supporting, position by turning the latch so that it is captured, since its handle 19 projects behind L-shaped bracket 22.
  • the splint 30, when being driven, is in a position adjacent the pole and has its back against the plate 23 which overlies and shields the cylinder 12 and has the tongue 8 extending to its hollow interior.
  • the splint When the splint is in position for driving the pin 18 and is moved to the position shown in phantom where it is outside the plane of the back of the splint it will allow the splint to be contacted by the hammer and thus driven into the ground.
  • the splint or stub 30 is transported to the driving position by being locked to the driving tool.
  • a sling 31 permits the splint or stub 30 to be picked up by the derrick winch, the sling secured to eye 13 and loop 16.
  • the splint or stub 30 is captured between the tongue 8, the hammer head 4 and is held in position by latch 18.
  • FIG. 7 shows the preferred configuration of the splint, although the present invention is not intended to be limited to this particular configuration.
  • the splint has a fairly large concave inner surface 32 which is adapted to be in contact with and givea large surface support to the pole to be splinted.
  • the ends of the inner surface 32 of splint 30 are left relatively open to allow the tool to be easily inserted and retracted and the outer portion 34 of the splint is curved to give a pleasing appearance and the maximum strength for the amount of material involved.
  • FIG. 8 will now be described in conjunction with FIGS. 9 through 13 which sequentially show the steps of moving a splint from the truck to the position adjacent a standing pole for insertion into the ground thereby.
  • the truck is in travel condition with a boom 50 in an approximately horizontal condition generally parallel to the framework of the vehicle. Secured to the underside of the boom is a deadleg 52 for purposes to be hereinafter described.
  • the boom 50 would normally be mounted upon a turntable shown schematically as 54 and which would include a winch and the controls.
  • the truck would also include an operators station adjacent the turntable allowing complete control of the boom.
  • the truck would normally have a flatbed storage area whereat a plurality of splints 30 may be carried.
  • the deadleg 52 has been moved to a position appropriate for use and the driving tool has been secured to the cable trained over the outer pulley boom 50.
  • the driving head has been placed within a splint 30 and the splint lifted for movement to proper position.
  • the boom has been extended to move the splint to a position adjacent the pole and the cable has been released from eye 16 to allow the splint to be swung to a vertical position.
  • the deadleg 52 will be extended with its lower portion 54 such that it contacts the ground and provides a rigid support for the boom 50 during the driving operation.
  • the driving tool 2 is hung by a cable and has appropriate interconnection such that it will continuously raise and drop the hammer until the splint is properly driven to the ground.
  • the splint is then strapped to the pole by means well known in the art and forms a permanent and rigid reinforcement.
  • the outer end of the boom 50 is shown and it includes a pulley 60 to guide the cable or other flexible means for supporting the driving too] during operation.
  • a plate 62 having an arm 64 pivotally secured thereto.
  • the arm 64 is pivotally secured to plate 62 that they may be moved to either side of the cable or flexible means as is appropriate.
  • the plate 62 permits arm 64 to be placed at any appropriate angle and still give rigid support against downward movement at the boom, since it is secured to plate 62 at one point and contacts the plate at a second point.
  • arm 64 has an extension 66 at its outer end which is tapered to an appropriate size to fit within a cap 68.
  • Cap 68 is mounted to the outer end of 66 and have pivotally depending therefrom the deadleg 52.
  • a clamp rigidly secured to the boom may be caused to interact with the pole itself preventing vertical movement of the boom. This means of stabilization is possible because the weakness of the pole is not relative to vertical movement but relative to horizontal movement.
  • FIG. 13 the preferred hydraulic circuit for control of the stub or splint driving system is shown.
  • a schematic representation of the hammer lift cylinder 12 mounted for fluid communication with the hammer lift cylinder 12 is the conduit 14 capable of handling 33 gallons per minute and is interconnected with a solenoid-operated dump valve 104.
  • the lower conduit 106 from the dump valve 104 leads directly to the hydraulic oil reservoir or sump 108.
  • a second conduit 110 leads from the dump valve 104 to a control valve 112 which has a manually actuated control lever 114.
  • From the control valve 112 a conduit 116 likewise leads to the sump 108 such that fluid will be circulated even if the valve is closed.
  • a pump 122 Directly connected to the control valve 112 and the sump 108 by means of conduits 118 and 120 is a pump 122 to provide the pressure necessary for operation of the mechanism.
  • the hammer may be operated either manually by means of the control lever 114, as explained in greater detail hereinafter, or alternately controlled by an automatic system which includes a source of power such as a battery 124 which is interconnected with the ignition switch 126 and then to an automatic control box 128 having a selective on-off switch 130 as well as two control knobs 132 and 134.
  • the control knob 132 predetermines the length of time when the current is off. During the time the current is off the cylinder raises along the piston rod and weight is lifted to its uppermost position.
  • the control knob 134 controls the length of time the current is on. During the time when the current is on the piston rod can extend and the weight falls.
  • the automatic control box if the automatic control box is placed into operation, the hammer will be automatically lifted and dropped at a predetermined timed sequence controlled by the knobs 132 and 134. However, if it is desirable to manually control the hammer, the automatic control box will notbe engaged and the lever 114 will be used to raise and drop the hammer.
  • a modified, non-preferred dual range hammer lift system can be seen and includes the input conduit 102 which feeds directly into the cylinder 140'forcing the outer cylindrical shell to extend and through conventional direction reversing sheaves and cables, not shown, causes its attached hammer to move upwardly relative to the splint.
  • a secondary conduit 150 interconnects conduit 102 with the enclosed area behind the ram allowing communication therewith. ln the event that the selector valve 152 is in its lowered or pushed down position, fluid canpass through conduit 150 to the back side of the piston rod 142 and the cylinder will generate,
  • the selector valve 152 may be pulled up, directing any fluid behind the piston rod 142 to the sump or reservoirvia conduit 154 and then the cylinder will generate 24,000 pounds of force.
  • the difference in force generated is only illustrative and caused by the fluid pressure behind the piston rod. The actual forces will depend both upon the pressure within the main conduit 102 and the relative surface areas on opposite sides of the ram subjected to the pressure.
  • the hereinabove described tool and method allows a pole to be rapidly and inexpensively splinted since the entire operation involves only one vehicle and the vehicle, as shown in FIG. 11, can include a plurality of other mechanisms.
  • the driving tool itself is of a small enough size that it can be appropriately carried along with a plurality of splints while the vehicle is doing other operations and upon the noticing of a pole which needs to be splinted the vehicle need only stop for a short time, have the tool interconnected with the boom, have a splint placed upon the driving tool, move to proper position by the control of the boom and, if necessary have connected the deadleg or clamp, then driven to the appropriate depth.
  • the splint is wrapped to the pole to provide a rigid securement.
  • Driving means for forcing objects into the ground comprising:
  • hammer means having sufficient weight to impact drive an object into the ground
  • fluid-powered cylinder-rod means having a cylinder secured to the hammer means and a rod, said cylinder extending downwardly from the hammer means along a substantial portion of the cylinder length
  • said guide means including a downwardly extending tongue adapted to extend into the interior of a hollow metallic splint and guide the hammer during driving of the splint, said guide means being approximately centrally located on said hammer means and extending downwardly parallel to said cylinder to guide the center of the mass of the hammer means and cylinder approximately along the center line of the splint, and
  • a tool for driving splints adjacent an upright pole comprising:
  • a generally rectangular, elongated main body portion having at one end a driving element
  • combination supporting and guiding means secured to the bottom portion of the driving element and configured to fit between the pole and the splint during the driving of the splint
  • a fluid operated cylinder secured to the main body portion and interconnected to a supply of fluid under pressure and a piston rod, and wherein the piston rod of the cylinder will remain relatively stationary and the encompassing cylinder and attached body portion will reciprocate, causing a driving contact with the splint with the supporting and guiding means slidably guiding the driving element onto the splint.
  • a hammer for forcing elongated objects into the ground comprising:
  • fluid ram means secured to said anvil means and comprising a cylinder and piston
  • said guiding means providing alignment between the anvil and the object and depending from the anvil approximately parallel to the shielding means and spaced therefrom so as to fit telescopically with the object
  • said shielding means including an enlarged, generally rectangular plate overlying the guiding means for protecting the guiding means, and
  • fluid carrying conduit means directing fluid into the cylinder to elevate the anvil and means to exhaust the fluid to allow the anvil to free fall and impact upon the object to be driven.
  • a hammer as in claim 11 wherein the guide means is an alongated hollow rod of rectangular cross section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

Apparatus for installing a splint adjacent a vertically standing power pole or the like including means for lifting the metallic splint and placing it in proper position and then driving same to the proper depth. The driving mechanism is self contained and need only be supported in driving position and provided with a source of momentum to drive the splint. The driving mechanism includes a hammer or anvil having a depending tongue which serves to support the splint during movement of the splint from the supply to the position adjacent the pole. The tongue also serves as a guide for the hammering means assuring proper driving contact with the splint during the driving process. The driving mechanism will be supported at the outboard end of the boom which may be held in a relatively rigid position by an adjustable deadleg which is pivotally secured to the outboard end of the boom or alternatively may be held rigid by securement to the pole.

Description

United States Patent [1 1 Warjone et al.
1 1 POLE REINFORCEMENT INSTALLATION [75] Inventors: James E. Warjone, Seattle, Wash;
Albert C. Wilkison, New Westminster, British Columbia,
Canada [731 Assignee: Truckweld Equipment Co., Seattle,
Wash.
[22] Filed: May 1, 1972 211 Appl. No.: 249,249
[52] US. Cl 173/134, 173/46, 173/112 [51] Int. Cl E04h 12/34, E04h 12/20 [58] Field of Search 173/124-128, 173/130, 53-56, 90, 112, 134; 31/535; 52/170, 742
[56] References Cited UNITED STATES PATENTS 1,050,668 1/1913 Le Duc 173/126 2,785,575 8/1956 Wampach..... 173/134 X 3,009,522 11/1961 Bedner 173/125 3.313,.356 4/1967 Clevenger 173/126 3,320,714 5/1967 Barrett 173/112 X 3,442,338 5/1969 Broderson. 91/436 X 3,605,912 9/1971 Fisher 173/112 X FOREIGN PATENTS OR APPLICATIONS 1.022.241 3/1966 Great Britain 61/535 1 Nov. 12, 1974 Primary Examiner-Frank L. Abbott Assistant ExaminerWilliam F. Pate, Ill Attorney, Agent, or Firm-Seed, Berry, Vernon & Baynham 57 ABSTRACT Apparatus for installing a splint adjacent a vertically standing power pole or the like including means for lifting the metallic splint and placing it in proper position and then driving same to the proper depth. The driving mechanism is self contained and need only be supported in driving position and provided with a source of momentum to drive the splint. The driving mechanism includes a hammer or anvil having a depending tongue which serves to support the splint during movement of the splint from the supply tothe position adjacent the pole. The tongue also serves as a guide for the hammering means assuring proper driving contact with the splint during the driving process. The driving mechanism will be supported at the outboard end of the boom which may be held in a relatively rigid position by an adjustable deadleg which is pivotally secured to the outboard end of the boom or alternatively may be held rigid by securement to the pole.
13 Claims, 14 Drawing Figures SHEEI 1 OF 4 PAIENTEB NOV 12 I974 PMENIEnnuvmmM 3L84-7L231 SIEET 20F 4 PATENTEBNnv 12 I974 sum no? 4 FIGO 11.3
' FIUGO M POLE REINFORCEMENT INSTALLATION BACKGROUND OF THE INVENTION The majority of currently used poles, such as for power or telephone, are wooden poles which have been treated to retard rotting and the like. In spite of the efforts to retard the rotting these poles are, after a short life span, weakened by rotting and erosion, normally at the ground level.
It has been the practice in the past to set a wooden stub along the side of the pole to be reinforced and bind the stub to the weakened pole thus lending the strength of the stub to the pole. This method of pole reinforcement is not only unsightly but further requires an excavation for setting the stub. The necessity of excavation prior to setting the stub involves considerable cost and inconvenience.
Efforts have been made to reinforce poles with the use of metallic stubs, which are less bulky in cross sectional area than the wooden stubs and which are not as unsightly. In the main, however, most metallic stubs have been of structural steel such as an I-beam and although these stubs are easy to drive they are not structurally suited for pole reinforcement. The point contact of the aforementioned stubs or splints tends to cause a loosening of the attachment band due to their gradually becoming more embedded in the pole due to the relative movement under cyclic loading.
To improve upon the splinting of wooden poles, me-
tallic stubs have been designed having a small crosssectional area to permit easy driving into the ground and have been shaped to provide a pair of spaced apart pole engagement surfaces which either are shaped complementarily to the curvature or engage tangentially with the poles. These configurations reduce the formation of water retaining pockets and the like which tend to result in'the rotting of the pole. While the new splints have many advantages, as noted. above, one. of the problems with the contoured splint has been in the driving of the splint down immediately adjacent the pole. For the greatest utilization of the splint, contact should be along the entire length of the splint. When placing the splint it must be located adjacent the pole and maintained in a contiguous placement during the insertion period.
It is an object of this invention to provide an apparatus for quickly and easily placing and drivingsplints adjacent vertical wooden poles which are partially buried in the ground.
It is another object ofthe present invention to provide a driving mechanism for accurately and rapidly driving a splintadjacent a vertical pole including means assuring proper contact between the driving means and the splint resulting in a splint contiguous with the pole the entire length of the splint.
It is yet another object of the present invention to provide a splint driving mechanism which also serves as a stabilizing and placing means for locating the splint adjacent the pole to be reinforced.
It is still another object to provide a stabilizing and bracing element for use in conjunction with a boom when driving the splint adjacent a pole.
It is yet another object of the present invention to provide a tool for driving splints adjacent a vertical pole which includes as an integral part thereof a contoured means for close placement with the pole and further a depending guiding means for insertion in the splint during the driving assuring that the driving tool contacts the splint vertically.
A further object of the present invention is to provide a driving mechanism which is capable of driving splints for wooden poles, pipes or rods, and further, is relatively portable enabling the mechanism to be easily transported to the locus of the desired drive. It is another object to provide a method for efficiently and safely handling splints from a supply to a location adjacent a pole.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of the driving tool as seen from the side which would be in contact with the pole to be reinforced, and with the splint driving attachment in position.
FIG. 2 is a perspective view of the attachment which is used in conjunction with driving a pipe or rod.
FIG. 3 is an isometric view of the splint driving tool from the opposite side as shown in FIG. 1 showing the location of the ram.
FIG. 4-is a sectional view along lines 44 of FIG. 1 with a splint in position for driving adjacent a pole.
FIG. 5 is a partial vertical sectional view showing the relationship of the elements of the splint driving tool when in driving position adjacent the pole.
FIG. 6 is a view depicting the means for using the driving tool to transfer the splint to the proper position.
FIG. 7 is an isometric view of a splint adapted for use with the present driving means.
FIG. 8 is an enlarged view of the outboard end of the boom which is used for driving splints and showing the attachment of one stabilizing means.
FIG. 9 is an environmental view showing the relative elements of the boom mechanism as mounted upon the truck which would also carry splints.
FIG. 10 shows the boom with a-splint attached and the deadleg dropped to a relatively usable position.
FIG. 11 shows the splint being raised to position with the deadleg in proper position for disposal against the supporting ground.
FIG. 12 is an environmental view showing the splint deadleg and boom in position adjacent a vertical wooden pole to be reinforced.
FIG. 13 is a schematic of the preferred hydraulic system for the present invention.
FIG. 14 is an enlarged schematic of a dual range hydraulic system.
DETAILED DESCRIPTION OF THE DRAWINGS As can be seen in FIG. lthe splint driving head comprises a heavy, solid generally rectangular main body portion 2 having at its upper end an outwardly projecting hammer. head or anvil 4 and at its lower end a pair of outwardly protruding protective members 6. Because of the relative length of the tongue 8 with respect to the other dimensions of the head and because of its location, it is subject to damage and the members 6 provide support for the driving head when not in use, relieving the tongue from undue strain.
Tongue 8, as explained in greater detail hereafter, serves only as a guide and is removably secured by a bracket 9 to the hammer head or anvil 4 so it presents a smooth driving surface. The tongue is removable to allow the substitution of various sized tongues guiding other types of objects and different size splints.
As seen in FIG. 2, the tongue 8 may be replaced with a guide 10 of square cross section having a bracket 11 which is secured in the same manner as bracket 9.
Both in the case of tongue 8 and guide 10, the element being driven contacts the hammer head or anvil 4 directly and so places no strain upon the supporting bracket.
Mounted within the main body portion 2 is a fluid ram or other conventional cylinderrod apparatus 12 having an eye l3-secured to the end of its piston rod. A fluid connection 14 allows introduction of fluid into the interior of the ram or cylinder above the piston rod 12, and as will be explained in greater detail hereinafter, raises the cylinder relative to the rod to cause the entire driving tool to be raised.
The fluid conduit 14 is of sufficient internal diameter that once the valve (not shown in this figure) is open to the sump, the weight of the tool causes rapid evacuation without significantly impeding the free fall or reducing the inertia.
Mounted to the rear of the driving too] is a carrying hook 16 which, as will be explained in greater detail with respect to FIGS. 6 and 9 12, is used for supporting the splint as it is moved from the truck to the proper position for placement of the splint or stub.
A latch member 18 extends through the main body portion 2 of the driving tool and is seated in a bore 20 in the tongue 8. When the latch member 18 is in the position as shown in FIG. 3, it extends through a splint and serves to lock it in place between the body of the driving tool and the tongue 8 for transport to the position adjacent the pole-As will be noted in FIG. 3, latch 18 may be locked in the inner, or splint supporting, position by turning the latch so that it is captured, since its handle 19 projects behind L-shaped bracket 22.
As seen in FIGS. 4 and 5, the splint 30, when being driven, is in a position adjacent the pole and has its back against the plate 23 which overlies and shields the cylinder 12 and has the tongue 8 extending to its hollow interior. When the splint is in position for driving the pin 18 and is moved to the position shown in phantom where it is outside the plane of the back of the splint it will allow the splint to be contacted by the hammer and thus driven into the ground. I
Although the description has been directed mainly to the driving of a splint, it is to be understood that essentially the same procedure would be used to drive a pipe or rod. The pipe or rod would extend through the guide and directly contact the hammer or anvil 4 during the driving process.
Referring now to FIG. 6 it can be seen that the splint or stub 30 is transported to the driving position by being locked to the driving tool. A sling 31 permits the splint or stub 30 to be picked up by the derrick winch, the sling secured to eye 13 and loop 16. The splint or stub 30 is captured between the tongue 8, the hammer head 4 and is held in position by latch 18.
FIG. 7 shows the preferred configuration of the splint, although the present invention is not intended to be limited to this particular configuration. It is to be noted that the splint has a fairly large concave inner surface 32 which is adapted to be in contact with and givea large surface support to the pole to be splinted. The ends of the inner surface 32 of splint 30 are left relatively open to allow the tool to be easily inserted and retracted and the outer portion 34 of the splint is curved to give a pleasing appearance and the maximum strength for the amount of material involved.
FIG. 8 will now be described in conjunction with FIGS. 9 through 13 which sequentially show the steps of moving a splint from the truck to the position adjacent a standing pole for insertion into the ground thereby. As can be seen in FIG. 9, the truck is in travel condition with a boom 50 in an approximately horizontal condition generally parallel to the framework of the vehicle. Secured to the underside of the boom is a deadleg 52 for purposes to be hereinafter described. The boom 50 would normally be mounted upon a turntable shown schematically as 54 and which would include a winch and the controls. As can be seen in FIG. 12 the truck would also include an operators station adjacent the turntable allowing complete control of the boom. The truck would normally have a flatbed storage area whereat a plurality of splints 30 may be carried. As seen in FIG. 12 the deadleg 52 has been moved to a position appropriate for use and the driving tool has been secured to the cable trained over the outer pulley boom 50. The driving head has been placed within a splint 30 and the splint lifted for movement to proper position.
In FIG. 11 the boom has been extended to move the splint to a position adjacent the pole and the cable has been released from eye 16 to allow the splint to be swung to a vertical position. When the splint is appropriately placed, the deadleg 52 will be extended with its lower portion 54 such that it contacts the ground and provides a rigid support for the boom 50 during the driving operation. As can be seen, the driving tool 2 is hung by a cable and has appropriate interconnection such that it will continuously raise and drop the hammer until the splint is properly driven to the ground.
Following driving, the splint is then strapped to the pole by means well known in the art and forms a permanent and rigid reinforcement.
Referring back now to FIG. 8 the outer end of the boom 50 is shown and it includes a pulley 60 to guide the cable or other flexible means for supporting the driving too] during operation. Welded to the bottom portion of the boom 50 is a plate 62 having an arm 64 pivotally secured thereto. The arm 64 is pivotally secured to plate 62 that they may be moved to either side of the cable or flexible means as is appropriate. The plate 62 permits arm 64 to be placed at any appropriate angle and still give rigid support against downward movement at the boom, since it is secured to plate 62 at one point and contacts the plate at a second point.
The outboard end of arm 64 has an extension 66 at its outer end which is tapered to an appropriate size to fit within a cap 68. Cap 68 is mounted to the outer end of 66 and have pivotally depending therefrom the deadleg 52. As will readily be seen the connection between 52 and the boom 50 when properly secured is rigid and when the lower portion 54 of deadleg 52 is placed in contact with the ground the boom itself is a relatively stable apparatus and serves as a base for driving the splint into proper position.
As an alternative support for boom 50, a clamp rigidly secured to the boom may be caused to interact with the pole itself preventing vertical movement of the boom. This means of stabilization is possible because the weakness of the pole is not relative to vertical movement but relative to horizontal movement.
Referring now to FIG. 13, the preferred hydraulic circuit for control of the stub or splint driving system is shown. Located in the lower lefthand corner of the diagram is a schematic representation of the hammer lift cylinder 12. Mounted for fluid communication with the hammer lift cylinder 12 is the conduit 14 capable of handling 33 gallons per minute and is interconnected with a solenoid-operated dump valve 104. The lower conduit 106 from the dump valve 104 leads directly to the hydraulic oil reservoir or sump 108. A second conduit 110 leads from the dump valve 104 to a control valve 112 which has a manually actuated control lever 114. From the control valve 112 a conduit 116 likewise leads to the sump 108 such that fluid will be circulated even if the valve is closed. Directly connected to the control valve 112 and the sump 108 by means of conduits 118 and 120 is a pump 122 to provide the pressure necessary for operation of the mechanism.
The hammer may be operated either manually by means of the control lever 114, as explained in greater detail hereinafter, or alternately controlled by an automatic system which includes a source of power such as a battery 124 which is interconnected with the ignition switch 126 and then to an automatic control box 128 having a selective on-off switch 130 as well as two control knobs 132 and 134. The control knob 132 predetermines the length of time when the current is off. During the time the current is off the cylinder raises along the piston rod and weight is lifted to its uppermost position. The control knob 134 controls the length of time the current is on. During the time when the current is on the piston rod can extend and the weight falls. Thus, it can be seen that if the automatic control box is placed into operation, the hammer will be automatically lifted and dropped at a predetermined timed sequence controlled by the knobs 132 and 134. However, if it is desirable to manually control the hammer, the automatic control box will notbe engaged and the lever 114 will be used to raise and drop the hammer.
Referring now to FIG. 14, a modified, non-preferred dual range hammer lift system can be seen and includes the input conduit 102 which feeds directly into the cylinder 140'forcing the outer cylindrical shell to extend and through conventional direction reversing sheaves and cables, not shown, causes its attached hammer to move upwardly relative to the splint. In addition to the conduit 102 a secondary conduit 150 interconnects conduit 102 with the enclosed area behind the ram allowing communication therewith. ln the event that the selector valve 152 is in its lowered or pushed down position, fluid canpass through conduit 150 to the back side of the piston rod 142 and the cylinder will generate,
18,000 pounds force. Alternatively to the above, the selector valve 152 may be pulled up, directing any fluid behind the piston rod 142 to the sump or reservoirvia conduit 154 and then the cylinder will generate 24,000 pounds of force. The difference in force generated is only illustrative and caused by the fluid pressure behind the piston rod. The actual forces will depend both upon the pressure within the main conduit 102 and the relative surface areas on opposite sides of the ram subjected to the pressure.
As can be seen, the hereinabove described tool and method allows a pole to be rapidly and inexpensively splinted since the entire operation involves only one vehicle and the vehicle, as shown in FIG. 11, can include a plurality of other mechanisms. The driving tool itself is of a small enough size that it can be appropriately carried along with a plurality of splints while the vehicle is doing other operations and upon the noticing of a pole which needs to be splinted the vehicle need only stop for a short time, have the tool interconnected with the boom, have a splint placed upon the driving tool, move to proper position by the control of the boom and, if necessary have connected the deadleg or clamp, then driven to the appropriate depth. Following the driving as explained hereinabove the splint is wrapped to the pole to provide a rigid securement.
The embodiments of'the invention in which an exclusive property or privilege is-claimed are defined as follows:
1. Driving means for forcing objects into the ground comprising:
hammer means having sufficient weight to impact drive an object into the ground,
fluid-powered cylinder-rod means having a cylinder secured to the hammer means and a rod, said cylinder extending downwardly from the hammer means along a substantial portion of the cylinder length,
means suspending the rod of the cylinder-rod means adjacent to and above the object to be driven, guide means coupled to the hammer means and in telescopic engagement with the object to assure proper contact with the object to be driven as the hammer falls downwardly, said guide means including a downwardly extending tongue adapted to extend into the interior of a hollow metallic splint and guide the hammer during driving of the splint, said guide means being approximately centrally located on said hammer means and extending downwardly parallel to said cylinder to guide the center of the mass of the hammer means and cylinder approximately along the center line of the splint, and
means providing an intermittent source of fluid under pressure in communication with the cylinder-rod means whereby admission of fluid raises the hammer means and exhaust of fluid allows the hammer means to drop upon the object to be driven for driving the object into the ground.
2. A driving means as in claim 1 wherein the hammer means is suspendedfrom a boom which is heldin a relatively stable position.
3. A driving means as in claim 2 whereinthe boom is held stable by a deadleg secured to the boom and pivotable from a travel position adjacent the boom to a stabling position which is relatively vertical and extends from the boom to the ground.
4. A driving means as in claim 2 wherein the boom is held stable by clamping the outboard end thereof to a vertical fixed object.
' 5. A driving means as in claim 1 wherein the fluid is intermittently supplied by automatic control means.
6. A driving means as in claim 1 wherein the fluid supplied to the ram is manually controlled.
7. A driving means as in claim 1 wherein the ram has at least two different capacities.
8. A tool for driving splints adjacent an upright pole comprising:
a generally rectangular, elongated main body portion having at one end a driving element,
combination supporting and guiding means secured to the bottom portion of the driving element and configured to fit between the pole and the splint during the driving of the splint, and
a fluid operated cylinder secured to the main body portion and interconnected to a supply of fluid under pressure and a piston rod, and wherein the piston rod of the cylinder will remain relatively stationary and the encompassing cylinder and attached body portion will reciprocate, causing a driving contact with the splint with the supporting and guiding means slidably guiding the driving element onto the splint.
9. A tool as in claim 8 wherein one surface of the tool is configured to complement the pole whereby the splint may be placed immediately adjacent the pole.
10. A tool as in claim 8 and further including a latch means adapted to extend between the main body portion and the guiding means whereby a splint may be captured and transported by the tool to the driving location.
11. A hammer for forcing elongated objects into the ground comprising:
anvil means ofrelatively heavy durable material hav- 8 ing shielding means and guiding means projecting therefrom,
fluid ram means secured to said anvil means and comprising a cylinder and piston,
said guiding means providing alignment between the anvil and the object and depending from the anvil approximately parallel to the shielding means and spaced therefrom so as to fit telescopically with the object,
said shielding means including an enlarged, generally rectangular plate overlying the guiding means for protecting the guiding means, and
fluid carrying conduit means directing fluid into the cylinder to elevate the anvil and means to exhaust the fluid to allow the anvil to free fall and impact upon the object to be driven.
12. A hammer as in claim 11 wherein the guide means is an elongated tongue adapted to extend into a hollow pole reinforcing splint and guide the anvil during the driving of the splint.
13. A hammer as in claim 11 wherein the guide means is an alongated hollow rod of rectangular cross section.

Claims (13)

1. Driving means for forcing objects into the ground comprising: hammer means having sufficient weight to impact drive an object into the ground, fluid-powered cylinder-rod means having a cylinder secured to the hammer means and a rod, said cylinder extending downwardly from the hammer means along a substantial portion of the cylinder length, means suspending the rod of the cylinder-rod means adjacent to and above the object to be driven, guide means coupled to the hammer means and in telescopIc engagement with the object to assure proper contact with the object to be driven as the hammer falls downwardly, said guide means including a downwardly extending tongue adapted to extend into the interior of a hollow metallic splint and guide the hammer during driving of the splint, said guide means being approximately centrally located on said hammer means and extending downwardly parallel to said cylinder to guide the center of the mass of the hammer means and cylinder approximately along the center line of the splint, and means providing an intermittent source of fluid under pressure in communication with the cylinder-rod means whereby admission of fluid raises the hammer means and exhaust of fluid allows the hammer means to drop upon the object to be driven for driving the object into the ground.
2. A driving means as in claim 1 wherein the hammer means is suspended from a boom which is held in a relatively stable position.
3. A driving means as in claim 2 wherein the boom is held stable by a deadleg secured to the boom and pivotable from a travel position adjacent the boom to a stabling position which is relatively vertical and extends from the boom to the ground.
4. A driving means as in claim 2 wherein the boom is held stable by clamping the outboard end thereof to a vertical fixed object.
5. A driving means as in claim 1 wherein the fluid is intermittently supplied by automatic control means.
6. A driving means as in claim 1 wherein the fluid supplied to the ram is manually controlled.
7. A driving means as in claim 1 wherein the ram has at least two different capacities.
8. A tool for driving splints adjacent an upright pole comprising: a generally rectangular, elongated main body portion having at one end a driving element, combination supporting and guiding means secured to the bottom portion of the driving element and configured to fit between the pole and the splint during the driving of the splint, and a fluid operated cylinder secured to the main body portion and interconnected to a supply of fluid under pressure and a piston rod, and wherein the piston rod of the cylinder will remain relatively stationary and the encompassing cylinder and attached body portion will reciprocate, causing a driving contact with the splint with the supporting and guiding means slidably guiding the driving element onto the splint.
9. A tool as in claim 8 wherein one surface of the tool is configured to complement the pole whereby the splint may be placed immediately adjacent the pole.
10. A tool as in claim 8 and further including a latch means adapted to extend between the main body portion and the guiding means whereby a splint may be captured and transported by the tool to the driving location.
11. A hammer for forcing elongated objects into the ground comprising: anvil means of relatively heavy durable material having shielding means and guiding means projecting therefrom, fluid ram means secured to said anvil means and comprising a cylinder and piston, said guiding means providing alignment between the anvil and the object and depending from the anvil approximately parallel to the shielding means and spaced therefrom so as to fit telescopically with the object, said shielding means including an enlarged, generally rectangular plate overlying the guiding means for protecting the guiding means, and fluid carrying conduit means directing fluid into the cylinder to elevate the anvil and means to exhaust the fluid to allow the anvil to free fall and impact upon the object to be driven.
12. A hammer as in claim 11 wherein the guide means is an elongated tongue adapted to extend into a hollow pole reinforcing splint and guide the anvil during the driving of the splint.
13. A hammer as in claim 11 wherein the guide means is an alongated hollow rod of rectangular cross section.
US00249249A 1972-05-01 1972-05-01 Pole reinforcement installation Expired - Lifetime US3847231A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US00249249A US3847231A (en) 1972-05-01 1972-05-01 Pole reinforcement installation
CA158,661A CA988311A (en) 1972-05-01 1972-12-12 Pole reinforcement installation
US05/483,944 US3938293A (en) 1972-05-01 1974-06-28 Pole reinforcement installation
CA241,145A CA1002769A (en) 1972-05-01 1975-12-05 Pole reinforcement installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00249249A US3847231A (en) 1972-05-01 1972-05-01 Pole reinforcement installation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/483,944 Division US3938293A (en) 1972-05-01 1974-06-28 Pole reinforcement installation

Publications (1)

Publication Number Publication Date
US3847231A true US3847231A (en) 1974-11-12

Family

ID=22942643

Family Applications (1)

Application Number Title Priority Date Filing Date
US00249249A Expired - Lifetime US3847231A (en) 1972-05-01 1972-05-01 Pole reinforcement installation

Country Status (2)

Country Link
US (1) US3847231A (en)
CA (1) CA988311A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991367A (en) * 1989-09-11 1991-02-12 Mcginnis Henry J Apparatus and method for reinforcing a wooden pole
US20100158616A1 (en) * 2008-12-24 2010-06-24 Nippon Sharyo, Ltd. Pile Driver
USD731559S1 (en) * 2014-02-24 2015-06-09 Matt Nelson Shearable drive coupler
USD733191S1 (en) * 2014-02-06 2015-06-30 Rhino Tool Company Post driver chuck tube
USD755251S1 (en) * 2014-02-06 2016-05-03 Rhino Tool Company Post driver crankcase cap
US20220341265A1 (en) * 2021-04-23 2022-10-27 Birch Resources, LLC Self-moving tubular storage rigs and methods for the use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1050668A (en) * 1912-06-15 1913-01-14 Constant Le Duc Well-driving apparatus.
US2785575A (en) * 1953-01-19 1957-03-19 Marshall E Francisco Reciprocating system
US3009522A (en) * 1957-03-27 1961-11-21 Julius W Bedner Pile-driver with a hydraulically operated pile rammer
GB1022241A (en) * 1962-11-19 1966-03-09 Albert George Bodine Vibratory pile driver
US3313356A (en) * 1964-10-28 1967-04-11 Elmer R Clevenger Post driver
US3320714A (en) * 1966-06-10 1967-05-23 Kamphausen Company Method of and apparatus for pole reinforcing
US3442338A (en) * 1967-01-23 1969-05-06 Dean E Broderson Hydraulic circuit for mobile hydraulic hammer
US3605912A (en) * 1970-05-05 1971-09-20 Arthur L Fisher Post setting apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1050668A (en) * 1912-06-15 1913-01-14 Constant Le Duc Well-driving apparatus.
US2785575A (en) * 1953-01-19 1957-03-19 Marshall E Francisco Reciprocating system
US3009522A (en) * 1957-03-27 1961-11-21 Julius W Bedner Pile-driver with a hydraulically operated pile rammer
GB1022241A (en) * 1962-11-19 1966-03-09 Albert George Bodine Vibratory pile driver
US3313356A (en) * 1964-10-28 1967-04-11 Elmer R Clevenger Post driver
US3320714A (en) * 1966-06-10 1967-05-23 Kamphausen Company Method of and apparatus for pole reinforcing
US3442338A (en) * 1967-01-23 1969-05-06 Dean E Broderson Hydraulic circuit for mobile hydraulic hammer
US3605912A (en) * 1970-05-05 1971-09-20 Arthur L Fisher Post setting apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991367A (en) * 1989-09-11 1991-02-12 Mcginnis Henry J Apparatus and method for reinforcing a wooden pole
US20100158616A1 (en) * 2008-12-24 2010-06-24 Nippon Sharyo, Ltd. Pile Driver
US8636082B2 (en) * 2008-12-24 2014-01-28 Nippon Sharyo, Ltd. Pile driver
USD733191S1 (en) * 2014-02-06 2015-06-30 Rhino Tool Company Post driver chuck tube
USD755251S1 (en) * 2014-02-06 2016-05-03 Rhino Tool Company Post driver crankcase cap
USD731559S1 (en) * 2014-02-24 2015-06-09 Matt Nelson Shearable drive coupler
US20220341265A1 (en) * 2021-04-23 2022-10-27 Birch Resources, LLC Self-moving tubular storage rigs and methods for the use thereof

Also Published As

Publication number Publication date
CA988311A (en) 1976-05-04

Similar Documents

Publication Publication Date Title
US3774780A (en) Portable pipe pick-up, conveying and racking device
US3847231A (en) Pole reinforcement installation
US3938293A (en) Pole reinforcement installation
US3479077A (en) Hydraulically actuated bucket closing means
GB2262128A (en) Tunnel shuttering
CN214570148U (en) Hoisting and overturning device for pipe joints of rectangular-like large-caliber pipe-jacking tunnel
US5417406A (en) Method and apparatus for lifting objects
US2096943A (en) Pile driving attachment
CN213294418U (en) Lifting appliance suitable for concrete pipe pile
EP0520544A1 (en) Improved device for lifting and hammering foundation piles for offshore structures
CN211737159U (en) Integral arch center mounting trolley
US4813499A (en) Movable mount concrete drill
US2907473A (en) Vehicle derrick
US2274895A (en) Traversing hoist
CN220845353U (en) Hole pile slag tapping device
CN101475125A (en) Overturning and hoisting fixture for concrete segment
FI71713C (en) Grip claw for lifting elongated objects.
US4412817A (en) Canopy kiln system
CN215635352U (en) Municipal drainage pipeline laying device
US3593530A (en) Marine platform with removal column clamps
US2876920A (en) Mechanically adjustable boom type pull shovel attachment for cranes
US4756509A (en) Mobile lifting jack
CN212425224U (en) Conveying device
JPH11200358A (en) Method and device for creating sand pile
JP2585286Y2 (en) Equipment for transporting and driving prefabricated sheet pile arcs