US3839520A - Process for producing porous acrylic fibers - Google Patents
Process for producing porous acrylic fibers Download PDFInfo
- Publication number
- US3839520A US3839520A US00330765A US33076573A US3839520A US 3839520 A US3839520 A US 3839520A US 00330765 A US00330765 A US 00330765A US 33076573 A US33076573 A US 33076573A US 3839520 A US3839520 A US 3839520A
- Authority
- US
- United States
- Prior art keywords
- liquid
- spinning solution
- fiber
- spinning
- aqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920002972 Acrylic fiber Polymers 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title description 42
- 239000007788 liquid Substances 0.000 claims abstract description 72
- 238000009987 spinning Methods 0.000 claims abstract description 55
- 238000009835 boiling Methods 0.000 claims abstract description 54
- 239000011261 inert gas Substances 0.000 claims abstract description 29
- 239000000701 coagulant Substances 0.000 claims abstract description 17
- 239000006185 dispersion Substances 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910001867 inorganic solvent Inorganic materials 0.000 claims abstract description 10
- 239000003049 inorganic solvent Substances 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 229920000642 polymer Polymers 0.000 claims abstract description 8
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000178 monomer Substances 0.000 claims abstract description 5
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 5
- 238000004326 stimulated echo acquisition mode for imaging Methods 0.000 claims abstract 2
- ORGHESHFQPYLAO-UHFFFAOYSA-N vinyl radical Chemical class C=[CH] ORGHESHFQPYLAO-UHFFFAOYSA-N 0.000 claims abstract 2
- 239000000243 solution Substances 0.000 description 42
- 239000000835 fiber Substances 0.000 description 41
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 229920002239 polyacrylonitrile Polymers 0.000 description 8
- 239000000499 gel Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000002166 wet spinning Methods 0.000 description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 230000001112 coagulating effect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000008246 gaseous mixture Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 229920000592 inorganic polymer Polymers 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- CZHLPWNZCJEPJB-UHFFFAOYSA-N 1-chloro-3-methylbutane Chemical compound CC(C)CCCl CZHLPWNZCJEPJB-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical compound CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 description 1
- FJSKXQVRKZTKSI-UHFFFAOYSA-N 2,3-dimethylfuran Chemical compound CC=1C=COC=1C FJSKXQVRKZTKSI-UHFFFAOYSA-N 0.000 description 1
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical compound ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- RLDQYSHDFVSAPL-UHFFFAOYSA-L calcium;dithiocyanate Chemical class [Ca+2].[S-]C#N.[S-]C#N RLDQYSHDFVSAPL-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- MCWXGJITAZMZEV-UHFFFAOYSA-N dimethoate Chemical compound CNC(=O)CSP(=S)(OC)OC MCWXGJITAZMZEV-UHFFFAOYSA-N 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- SNMVRZFUUCLYTO-UHFFFAOYSA-N n-propyl chloride Chemical compound CCCCl SNMVRZFUUCLYTO-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- RZWZRACFZGVKFM-UHFFFAOYSA-N propanoyl chloride Chemical compound CCC(Cl)=O RZWZRACFZGVKFM-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 239000011240 wet gel Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/24—Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
- D01D5/247—Discontinuous hollow structure or microporous structure
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/06—Wet spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/18—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/28—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/38—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/2935—Discontinuous or tubular or cellular core
Definitions
- PROCESS FOR PRODUCING POROUS ACRYLIC FIBERS Filed Feb. 8. 1973 H c g I I /0 20 30 RATE OF /N TRODUC r/o/v 0F INERT 6A6 (//v 5) VOLUME BASED 0/ ⁇ / VOLUME 0F SPl/V/V/lVG SOLUT/ON/ RATE OF I/VTRODUCT/O/V 0F //V/?7' L/OU/D (/IV B) WE/GHT BASED ON WEIGHT 0F .SPl/V/V/NG SOLUTION) United States Patent 3,839,520 PROCESS FOR PRODUCING POROUS ACRYLIC FIBERS Toshiyuki Kobashi, Tsulrubo-gun, and Noboru Abe, Okayama, Japan, assignors to American Cyanamid Company, Stamford, Conn.
- This invention relates to a process for preparing porous acrylic fibers from a spinning solution prepared by dissolving a fiber-forming acrylonitrile polymer in an aqueous inorganic solvent therefor.
- the present invention relates to an industrially advantageous process for producing porous acrylic fibers containing numerous stable fine cavities therein and having excellent physical properties, which process comprises dispersing in a spinning solution of an acrylonitrile polymer in an aqueous inorganic solvent both an inert low-boiling liquid which is substantially in soluble therein and an inert gas, wet-spinning the thus modified spinning solution into an aqueous coagulant under conditions such that said low-boiling liquid is not evaporated or dissolved, and thereafter heating the thus coagulated filaments so as to evaporate the low-boiling li uid.
- an inert gas is dispersed in the spinning solution and the resulting dispersion is spun into fibers.
- the process requires use of a special dispersing device such as a colloid mill to disperse the gas as fine bubbles Within the spinning solution.
- a special dispersing device such as a colloid mill to disperse the gas as fine bubbles Within the spinning solution.
- it is extremely difficult to provide gas bubbles of the fine diameter necessary. Consequently, the process leads to frequent stoppages due to filament breakages in spinning and stretching steps and it has not been possible to maintain the necessary continuity of processing necessary for commercial production.
- a low-boiling liquid is dispersed in the spinning solution, the modified spinning solution is then Wet-spun and coagulated, and the liquid is evaporated.
- an insufiicient number of cavities are obtained in the filaments obtained to provide the desired degree of porosity.
- Increasing usage of the low-boiling liquid to increase porosity not only increases production costs dramatically but also leads to unacceptable fiber properties, particularly strength and elongation.
- a process for preparing porous acrylic fibers which comprises preparing a spinning solution of a fiber-forming acrylonitrile polymer containing at least about 70 weight percent acrylonitrile and the balance of one or more vinyl monomers copolymerizable therewith in an aqueous inorganic solvent therefor, dispersing therein as bubbles of an average diameter less than about 50 3,839,520 Patented Oct. 1, 1974 "Ice microns both an inert liquid having a boiling point in the range of 30l00 C.
- the low-boiling liquid useful in the process of the present invention is an inorganic or organic compound which is substantially insoluble in the spinning composition and in the aqueous coagulant used therewith. It must have a boiling point in the range of 30 to 100 C., and preferably in the range of 60 to C.
- Suitable lowboiling liquids are exemplified by carbon tetrachloride, butyl chloride, propionyl chloride, propyl chloride, allyl chloride, isoamyl chloride, trichloroethylene, trichloroethane, benzene, n-hexane, cyclohexane, cyclohexadiene, cyclopentane, dimethylbutane, dimethylfuran and carbon disulfide.
- a preferred liquid is n-hexane.
- the low-boiling liquid is soluble in the spinning composition, it will be impossible to obtain fiber having the porosity characteristics that are the object of the present invention. Furthermore, if the low-boiling liquid is soluble in the aqueous coagulant, it will also be impossible to obtain fiber having the porosity characteristics that are the object of the present invention.
- the term substantially insoluble as used in the present specification and claim is intended to refer to a low-boiling liquid whose solubility does not exceed about 0.5 weight percent at 20 C. in either the spinning solution or the aqueous coagulant.
- Low-boiling liquids having boiling points below about 30 C. cannot be employed in the process of the present invention because the spinning solutions involving aqueous inorganic polymer solvents are generally employed in wet-spinning at temperatures that would cause premature evaporation of the low-boiling liquid and consequent loss of the desired fiber porosity.
- Liquids having boiling points above about C. cannot be effectively employed in the process of the present invention because they are too difiicult to expand quickly and to evaporate from the fiber under the conditions normally associated with wet processing of wet-spun acrylic fibers.
- the inert gas useful in the process of the present invention is non-reactive with and substantially insoluble in the spinning solution and coagulant.
- Suitable gases include, for example, air, nitrogen, argon, helium, and
- the sole Figure of the present specification is an orthogonal coordinate diagram resulting from plotting the etfective usage levels of low-boiling liquid and inert gas and connecting the points so as to provide an enclosed effective area that represents the codependent relationship between usage of low-boiling liquid and usage of inert gas that is effective in the process of the present invention.
- the etfective coordinates connected are represented as A (1, 5), B (1, 0.01), C (30, .01). D (30, 0.5) and E (5, 5).
- the area represented by the smaller diagram results from connecting coordinates F (2, 2), G (2, 0.05), H (10, 0.05), I (10, 0.5) and J (5, 2) and indicates a preferred codependent relationship between usage of low-boiling liquid and usage of inert gas.
- the values of low-boiling liquid plotted are weight percentages based on the weight of the spinning solution.
- the values of inert gas are volume percentages based on the volume of spinning solution. Usages of low-boiling liquid and inert gas within the area defined by connecting the coordinates, as shown in the figure, lead to the desirable results of the present invention. Usages outside the area enclosed by connecting the coordinates result in loss of the desirable properties achieved by the present invention.
- the inert gas and low-boiling liquid may be introduced into the spinning solution by any convenient method for dispersion therein.
- the low-boiling liquid may be intro Jerusalem and dispersed in the spinning solution first, fol lowed by introduction and dispersion of the inert gas.
- the inert gas may first be introduced and dispersed in the spinning solution followed by introduction and dispersion of the low-boiling liquid.
- a particularly preferred method of introduction is to prepare first a gaseous mixture by dispersing the low-boiling liquid in the form of a gas or mist into the inert gas and then introducing and dispersing this gaseous mixture into the spinning solution. This preferred procedure of introduction and dispersion of low-boiling liquid and inert gas enables extremely fine bubble sizes to be obtained in the spinning solution.
- a particularly effective mechanical device is a planetary gear type liquid disintegrator or an in-line homomixer used in conjunction with transport of the solution. It is generally preferred to carry out dispersing until the average bubble diameter in the spinning solution is not more than about 50 microns, preferably not more than about microns, as measured from photomicrograph determinations, as later described. When the average bubble diameter exceeds about microns, problems with respect to spinnability, filament breakage at the time of spinning and stretching, and non-uniform pores may result. Therefore, it is desirable to maintain bubble diameter below about 50 microns to avoid such potential problems.
- the spinning solution with its dispersed content of low-boiling liquid and inert gas is then spun into an aqueous coagulating bath in accordance with conventional wet-spinning procedures.
- the aqueous coagulating bath is maintained at a temperature below about 20 C. and preferablybelow about 10 C. and coagulation is effectively accomplished.
- Use of aqueous coagulating bath temperatures in excess of about 20 C. results in devitrification of acrylic fibers obtained from aqueous inorganic solvent solutions of fiber-forming acrylonitrile polymers and is to be avoided.
- the bubbles introduced into the spinning solution by the combination of lowboiling liquid and inert gas are present in the fiber coagulated as specified.
- the coagulated fiber is water-washed, which may be accompanied by partial stretching, in accordance with conventional procedures. Such water-washing does not involve temperatures in excess of about 20 C.
- the washed fiber is then treated in hot water or steam at temperatures at or above the boiling point of the lowboiling liquid while the fiber is still in a homogeneous swollen gel state. By such treatment, the low-boiling liquid present in the liquid state in the swollen gel fiber is quickly evaporated so as to leave fine cavities Within the fiber.
- the cavities result from evaporation of the low-boiling liquid alone, such liquid in conjunction with inert gas, or from coalescence of cavities resulting from evaporation of lowboiling liquid and escape of inert gas entrapped in the initially coagulated fiber, i.e. prior to use of hot water or steam.
- the cavity-containing fiber is then stretched in hot water at a temperature above about C. Such stretching causes elongation of the cavities in the direction of stretching and the fiber thus obtains uniform elongated cavities over its entire length.
- Hot-stretching may be in a single step or in staged amounts in multiple steps. Some stretching may also accompany water-washing prior to cavity formation by taking advantage of the limited cold stretchability of the spun filament. Stretching may also be carried out by use of steam.
- the stretching contemplated is that conventionally employed for fiber orientation purposes.
- the swollen gel fiber containing cavities and oriented by hot-stretching is then compacted as to fiber structure by drying and may be subjected to such additional conventional processing steps as may be desired.
- additional steps include, for example, heat-relaxation, finishing agent treatment, and post-drying, as are conventionally employed.
- the acrylic fiber obtained by the process of the present invention has elongated fine cavities uniformly distributed over the entire fiber length. These cavities are not collapsed by any subsequent processing steps such as stretching, compacting, or crimping steps.
- the resulting fiber also has high strength and elongation properties and is eminently suitable for such uses as clothing, bedding, and stuffing by virtue of its light weight and elastic and insulating properties, which are important requirements for many industrial uses.
- the acrylonitrile polymer useful as the fiber-forming polymer may be a homopolymer of acrylonitrile or a co polymer containing at least about 70 weight percent acrylonitrile and the balance of one or more vinyl monomers copolymerizable therewith. A mixture of polymers may also be employed.
- an aqueous inorganic solvent is required.
- suitable inorganic solvents include concentrated aqueous solutions of thiocyanate salts, such as sodium, potassium, ammonium, and calcium thiocyanates, zinc chloride, and perchloric, nitric, and sulfuric acids.
- Organic solvents such as dimethylformamide, dimethylacetamide, or dimethyl sulfoxide, cannot be used in the process of the present invention since they dissolve the low-boiling liquid and do not enable the required dispersed state thereof to be achieved.
- the concentration of acrylonitrile polymer in the spinning solution is generally in the range of about 5 to 25 weight percent, based on the weight of the spinning solution, and is influenced by the molecular weight of the polymer, as'is known.
- the aqueous coagulant employed is that normally associated with the particular aqueous inorganic polymer solvent employed. No special requirements as to aqueous ratio of 5 in boiling water.
- the boiling water treatment also caused the low-boiling liquid to gasify and evaporate from the fiber with the entrapped air to provide cavities in the fiber.
- the fiber was then dried in air at 120 C. to compact the structure and finally heat-relaxed in saturated 5 coagulant are imposed by the process of the present insteam at 125 C.
- the various modifications and detalls vention. are given in Table I.
- Each portion of the spinning solution processed in accordance with the present invention was modified with both low-boiling liquid and inert gas (air) as indicated in Table I.
- the spinning solutions thus modified by incorporation of low boiling liquid and air were agitated by means of a planetary gear type liquid disintegrator so as to provide the average bubble diameter given in Table I.
- the low-boiling liquid and air were introduced into the spinning solution separately, the liquid being added first.
- the modified spinning solution in each instance, was spun into an aqueous coagulation bath at 0 C. consisting of a 12% aqueous solution of sodium thiocyanate.
- the spinnerette contained orifices, each of 0.1 millimeter diameter.
- the coagulated fiber was water-washed at 20 C. and stretched at a stretch ratio of 2 in conjunction therewith. The washed fiber was then stretched at a stretch We claim:
- a process for preparing porous acrylic fibers which comprises preparing a spinning solution of a fiber-forming acrylonitrile polymer containing at least about 70 weight percent acrylonitrile and the balance of one or more vinyl monomers copolymerizable therewith in an aqueous inorganic solvent therefor, dispersing therein as bubbles of an average diameter less than about 50 microns both an inert liquid having a boiling point in the range of 30100 C.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP47035850A JPS51210B2 (cs) | 1972-04-10 | 1972-04-10 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3839520A true US3839520A (en) | 1974-10-01 |
Family
ID=12453452
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00330765A Expired - Lifetime US3839520A (en) | 1972-04-10 | 1973-02-08 | Process for producing porous acrylic fibers |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3839520A (cs) |
| JP (1) | JPS51210B2 (cs) |
| CA (1) | CA1038579A (cs) |
| ES (1) | ES413531A1 (cs) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2342358A1 (fr) * | 1976-02-27 | 1977-09-23 | Bayer Ag | Fibres et filaments hydrophiles en polymeres synthetiques |
| FR2343833A1 (fr) * | 1976-03-10 | 1977-10-07 | Bayer Ag | Procede de fabrication de fibres et de filaments hydrophiles a partir de polymeres synthetiques |
| EP0180097A3 (en) * | 1984-10-19 | 1988-09-07 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Foamed synthetic fiber and its manufacturing method |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6459782B2 (ja) * | 2015-05-29 | 2019-01-30 | 東洋インキScホールディングス株式会社 | 気泡含有液状物、およびその製造方法、並びにその利用 |
-
1972
- 1972-04-10 JP JP47035850A patent/JPS51210B2/ja not_active Expired
-
1973
- 1973-02-08 US US00330765A patent/US3839520A/en not_active Expired - Lifetime
- 1973-04-09 CA CA168,195A patent/CA1038579A/en not_active Expired
- 1973-04-10 ES ES413531A patent/ES413531A1/es not_active Expired
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2342358A1 (fr) * | 1976-02-27 | 1977-09-23 | Bayer Ag | Fibres et filaments hydrophiles en polymeres synthetiques |
| FR2343833A1 (fr) * | 1976-03-10 | 1977-10-07 | Bayer Ag | Procede de fabrication de fibres et de filaments hydrophiles a partir de polymeres synthetiques |
| EP0180097A3 (en) * | 1984-10-19 | 1988-09-07 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Foamed synthetic fiber and its manufacturing method |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS48103827A (cs) | 1973-12-26 |
| CA1038579A (en) | 1978-09-19 |
| ES413531A1 (es) | 1976-05-16 |
| JPS51210B2 (cs) | 1976-01-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4659529A (en) | Method for the production of high strength polyacrylonitrile fiber | |
| US4454091A (en) | Solutions, which can be shaped, from mixtures of cellulose and polyvinyl chloride, and shaped articles resulting therefrom and the process for their manufacture | |
| US3839520A (en) | Process for producing porous acrylic fibers | |
| US3073669A (en) | Method for producing shaped articles from polymers and copolymers of acrylonitrile | |
| US4316937A (en) | Water absorbent acrylic fiber | |
| US2907096A (en) | Shaped polyacrylonitrile structures | |
| US3851036A (en) | Method of making hollow fibers | |
| JPS6342910A (ja) | 炭素繊維製造用アクリロニトリル系繊維束の製造法 | |
| US3706828A (en) | Wet spinning non-circular polyacrylonitrile fibers by utilizing circular orifices and sequential coagulation | |
| US3781391A (en) | Method for producing acrylic hollow fibers | |
| US2670268A (en) | Wet spinning of polyacrylonitrile from salt solutions | |
| US4448740A (en) | Process for producing acrylic fibers with excellent surface smoothness | |
| US2721785A (en) | Acrylonitrile-styrene copolymer filaments and process of producing same | |
| US3399260A (en) | Production of acrylonitrile polymer fibers | |
| JPS6233817A (ja) | 高強度高弾性率アクリル系繊維の製造法 | |
| US3111366A (en) | Method for producing high shrinking acrylonitrile polymer fibres | |
| JPH10273821A (ja) | 吸水性アクリル繊維 | |
| US3330898A (en) | Method for preparing highly shrinkable acrylonitrile polymer fibers | |
| US3491179A (en) | Preparation of acrylonitrile polymer fibers | |
| US2879242A (en) | Spinning solvent for acrylic fibers | |
| US4831069A (en) | Acrylonitrile spinning solution and process for producing fibers therewith | |
| US3657409A (en) | Process for the production of acrylic filaments | |
| JPS6130042B2 (cs) | ||
| US3836616A (en) | Method of producing fibers having porous structures | |
| US3760053A (en) | Wet-spinning process for {37 dog-bone{38 {0 shaped acrylonitrile polymer fibers |