US3839042A - Hardening hydrophilic colloid silver halide emulsion layer with a 2-haloethylsulfonyl compound - Google Patents

Hardening hydrophilic colloid silver halide emulsion layer with a 2-haloethylsulfonyl compound Download PDF

Info

Publication number
US3839042A
US3839042A US00293697A US29369772A US3839042A US 3839042 A US3839042 A US 3839042A US 00293697 A US00293697 A US 00293697A US 29369772 A US29369772 A US 29369772A US 3839042 A US3839042 A US 3839042A
Authority
US
United States
Prior art keywords
bis
compound
photographic element
haloethylsulfonyl
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00293697A
Inventor
R Silverman
C Wright
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Priority to US00293697A priority Critical patent/US3839042A/en
Priority to DE19732348194 priority patent/DE2348194C3/en
Priority to FR7334232A priority patent/FR2201486B1/fr
Priority to GB4537673A priority patent/GB1424750A/en
Priority to BE136209A priority patent/BE805502A/en
Priority to JP11005273A priority patent/JPS4973122A/ja
Priority to US05/466,092 priority patent/US3957882A/en
Application granted granted Critical
Publication of US3839042A publication Critical patent/US3839042A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/02Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
    • C07C317/10Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing rings

Definitions

  • XCH2CHzSOgQEQQMSOzCIhCHQX H XCH CH S 0 S OECHZCHIX in which X is halogen and R is hydrogen, phenyl or alkyl having from one to six carbon atoms.
  • This invention relates to hardeners containing plural 2-haloethylsulfonyl radicals.
  • this invention relates to certain novel bis(2-haloethyl)sulfonyl compounds.
  • this application relates to hardenable hydrophilic colloid compositions containing bis-(2-haloethyl)sulfonyl hardeners, which in photographic applications also exhibit anti-fogging characteristics, and to photographic elements incorporating such compositions. in a further aspect this invention relates to processes for preparing such compositions and photographic elements.
  • addenda are employed to alter the properties of both the gelatin and the silver halide grains.
  • hydrophilic colloids such as gelatins ingest large quantities of water when brought into contact with aqueous solutions, causing appreciable swelling, and are easily abraded.
  • unmodified gelatin coatings tend to melt at relatively low temperatures, thereby limiting their temperature range of utility.
  • hardener addenda may be incorporated into radiation-sensitive compositions and coatings to obviate at least one of the above undesirable gelatin characteristics.
  • the hardener should cause hardening or setting of the emulsion sufficiently slowly to permit coating of the photographic emulsion onto a support, but it should not set up so slowly that after-hardening takes place-Le. the emulsion continues to harden undesirably during storage of a fabricated photographic element.
  • the hardener should possess sufficiently low levels of toxicity so as not to pose a significant hazard to manufacturing personnel. Further, the hardener should not undesirably reduce or interfere with the desired photographic properties of the element into which it is incorporated.
  • the hardener should not contribute to the reduction of silver halide to produce fogging of a photographic emulsion or coating.
  • the hardener is only a part of what typically is a comparatively complex photographic system.
  • the radiation-sensitive silver halide and the gelatin to be hardened photographic emulsions typically contain numerous additional addenda.
  • Bis(2-chloroethyl) sulfide mustard gas
  • mustard gas is best known for its toxicity.
  • 2,2-bis(2-chloroethyl-sulfonyl) propane is disclosed by Ruchi et al Helv. Chim. Acta, 42, 1368 (1959).
  • Tesoro does not teach or suggest any utility of these crosslinking agents with hydrophilic colloids nor utility in a photographic environment.
  • Belgium Pat. No. 606,234, issued July 18, 1961 teaches the use of bis(2-chloroethyl) sulfone as a protein hardener; however, its toxicity is comparable to that of mustard gas. Additionally, bis(2-chloroethyl) sulfone possesses comparatively inferior hardening characteristics at elevated temperatures and with respect to after-hardening characteristics.
  • this invention contemplates adding to a hydrophilic colloid a hardening concentration of a compound having two 2-haloethylsulfonyl radicals coupled through an aliphatic or phenyl substituted aliphatic divalent linking radical to form a novel hardened hydrophilic colloid composition.
  • the preferred hardeners are a novel class of compounds having two 2-haloethylsulfonyl radicals coupled through an unsubstituted or hydrocarbon-substituted methylene linking radical.
  • the 2-haloethylsulfonyl compounds defined as useful in the practice of this invention produce in hydrophilic col loids a combination of useful hardening characteristics and when utilized in radiation-sensitive colloids--e.g. photographic emulsions, produce both the desired combination of hardening characteristics and antifogging characteristics.
  • These 2haloethylsulfonyl compounds harden hydrophilic colloids to reduce swelling and abrasion thereof. Additionally, these 2haloethylsulfonyl compounds harden hydrophilic colloids at elevated temperatures.
  • colloids hardened with these 2haloethylsulfonyl compounds are not hardened so rapidly as to interfere with their being coated ontoa support, yet they are free of undesirable afterhardening characteristics
  • colloids hardened with the 2haloethylsulfonyl compounds utilized in the practice of this invention do not pose a hazard to manufacturing personnel.
  • hydrophilic colloids hardened with 2haloethylsulfonyl compounds according to this invention possess this combination of hardening, high temperature hardening and low physiological activity characteristics.
  • the hydrophilic colloid is a radiation-sensitive colloid, such as a photographic emulsion
  • the 2haloethylsulfonyl compounds of this invention perform both the functions of hardening and high-temperature hardening and additionally are capable of functioning as anti-foggant add'enda.
  • a class of compounds which can be combined with hydrophilic colloids according to this invention to provide a combination of desirable colloid hardening characteristics and, in photographic applications, antifogging properties are defined by the structural formula:
  • X is halogen
  • Q is an aliphatic or phenyl substituted aliphatic divalent hydrocarbon radical having from one to six aliphatic carbon atoms and m is an integer of from zero to three inclusive.
  • Preferred compounds as of the type set forth above are those novel compounds which can be defined by the structural formula:
  • H xcmoms 0,0 s 020112032X in which X is halogen and R is hydrogen, phenyl or alkyl having from one to six carbon atoms.
  • Specific preferred novel compounds useful in accordance with this invention include bis(2haloethylsulfonyl)methane; 1,- 1-bis(2haloethylsulfonyl)ethane, l,1-bis(2-haloethylsulfonyl )propane; 1,1-bis(2--haloethylsulfonyl)butane; 1,1-bis(2haloethylsulfonyl)pentane; 1,1-bis(2- haloethylsulfonyl )hexane; 1,1-bis( 2haloethylsulfonyl)heptane; and alpha, alpha-bis(2haloethylsulfonyl)to
  • novel compounds can be prepared by reacting the aldehyde or acetal corresponding to the divalent methylene linking radical desired with 2-ha1oethanethiol. This produces the bis(Z-haloethylsulfide) compound corresponding to the desired compound. The sulfide can then be converted to the bis( 2haloethylsulfonyl) methane compound desired using an oxidizing agent such as hydrogen peroxide, m-chloro-perbenzoie acid, and the like.
  • an oxidizing agent such as hydrogen peroxide, m-chloro-perbenzoie acid, and the like.
  • Such compounds include bis(2-haloethylsulfonyl) alkanes, bis(2-haloethylsulfonyl) alkenes and bis(2-haloethylsulfonyl) oxaalkanes, such as dialkyl ethers and dioxaalkanes.
  • exemplary of these are 1,2-bis(2haloethylsulfonyl )ethane; 1,3-bis( 2- haloethylsulfonyl)propane; l,4-bis(2 haloethylsulfonyl)butane; 1,4-bis(2haloethylsulfonyl)-2butene;
  • the haloethyl moiety may be chloroethyl, bromoethyl and the like.
  • the processes for preparing these known compounds are, of course, known in the art and form no part of this invention.
  • the Tesoro patent noted above teaches the preparation of compounds of this general type.
  • Other preparations are reported in the Journal of Organic Chemistry, vol. 12, at pp. 249 and 255.
  • Q in each occurrence in formula (A) be identically chosen.
  • the hydrophilic colloids which are hardenable by the above bis(2-haloethylsulfonyl) compounds can be formed from one or more hydrophilic, water permeable colloid forming natural or synthetic polymers.
  • Specific polymers which can be hardened according to the practice of this invention include hardenable polymers such as gelatin, colloidal albumin, acid or water-soluble vinyl polymers, collulose derivatives, proteins, various polyacrylamides, dispersed polymerized vinyl compounds, particularly those which increase the dimensional stability of photographic materials as exemplitied by amine-containing polymers of alkyl acrylates, methacrylates, acrylic acid, sulfoalkyl acrylates and methacrylates, acrylic acid-acrylate copolymers, and the like.
  • Suitable synthetic polymers include those described, for example, in Nottorf U.S. Pat. No. 3,142,568, issued July 28, 1964; White U.S. Pat. No. 3,193,386, issued July 6, 1965; Houck et al U.S. Pat. No. 3,062,674, issued Nov. 6, 1962; Houck et a1 U.S. Pat. No. 3,220,844, issued Nov. 30, 1965; Ream et al U.S. Pat. No. 3,287,289, issued Nov. 22, 1966; Dykstra U.S. Pat. No. 3,411,911, issued Nov. 19, 1968; Smith U.S. Pat. No. 3,488,708 issued Jan. 6, 1970, and Dykstra Canadian Patent No. 774,054.
  • the hydrophilic colloid to be hardened is typically utilized as a layer or coating on a support.
  • supports such as polymeric film, wood, metal, glass and the like, may be utilized to form hydrophilic colloid coated elements according to this invention.
  • the support can take such forms as those set forth in paragraph X of Product Licensing Index, Vol. 92, Dec. 1971, publication 9,232, at page 108.
  • the hydrophilic colloid is to be utilized in combination with a support to form a photographic element, it will contain in or on it a radiation-sensitive material.
  • This material can be panchromatic or orthochromatic material, sensitive only to X-rays or sensitive to selected portions of the electromagnetic spectrum.
  • the radiation-sensitive portion of the photographic element can contain a single, unitary hydrophilic colloid layer having dispersed therein the radiation-sensitive material together with photographic addenda to form a photographic emulsion layer or coating.
  • the radiationsensitive portion of the photographic element can comprise a plurality of layers with the radiation-sensitive material or materials being contained in some or all of the layers. For example, as is characteristic of color photography, a plurality of layers can be present sensitized within separate segments of the visible spectrum.
  • Suitable radiation-sensitive colloids which can be employed in practicing this invention are sensitive to electromagnetic radiation and include such diverse materials as silver salts, zinc oxide, photosensitive polycarbonate resins and the like.
  • Silver halides are preferred radiation-sensitive materials and are preferably associated with a colloid dispersion vehicle to form an emulsion coating or layer. Specific preferred silver halide containing photographic emulsions and processes for their preparation and use are disclosed in paragraph I of Product Licensing Index, Vol. 92, Dec. 1971, publication 9,232, at page 107.
  • the radiation-sensitive colloids can additionally include a variety of conventional photographic addenda, such as development modifiers, plasticizers and lubricants, brighteners, spectral sensitization agents and color forming materials as st forth in paragraphs IV, XI, XIV, XV and XXII, respectively, of Product Licensing Index, Vol. 92, Dec. 1971, publication 9,232, at pages 107-1 10.
  • conventional photographic addenda such as development modifiers, plasticizers and lubricants, brighteners, spectral sensitization agents and color forming materials as st forth in paragraphs IV, XI, XIV, XV and XXII, respectively, of Product Licensing Index, Vol. 92, Dec. 1971, publication 9,232, at pages 107-1 10.
  • 2-haloethylsulfonyl compounds utilized in the practice of this invention may serveas the sole hardener and/or anti-foggant addenda present, it is appreciated that other conventional hardeners and/or antifoggants may also be incorporated into the hydrophilic colloid, such as those set forth, for example, in paragraphs V and VII of Product Licensing Index, Vol. 92, Dec. 1971, publication 9,232, pages 107 and 108.
  • the dry weight (excluding the weight of any water present) of the gelatin or the like making up the colloid It has been found that about 1 percent to about 3 percent by weight, based on the weight of the hardenable material present in the hydrophilic colloid, is particularly effective in achieving both superior hardening and, in radiation-sensitive colloids, anti-fogging activity.
  • the 2-haloethylsulfonyl compound is dissolved in a volatile solvent, such as a lower alkyl alcohol, acetone, etc., and the solution is uniformly blended with the hydrophilic colloid to be modified.
  • a volatile solvent such as a lower alkyl alcohol, acetone, etc.
  • the hydrophilic colloid has at this stage an amount of water associated therewith which is in excess of that ultimately desired.
  • the colloid is deposited on a suitable support to form a layer or coating.
  • the colloid is then hardened on the support and such volatile solvent and/or dispersants as are associated with the colloid and 2-haloethylsulfonyl compound solution are removed by evaporation either at ambient or elevated temperatures, typically below about C.
  • the 2-haloethylsulfonyl compounds of this invention may be associated with hydrophilic colloids after they have been positioned on supports as coatings or layers.
  • the support bearing a hydrophilic colloid coating to be hardened may be immersed in a solution containing the 2-haloethylsulfonyl compound therein so that the solution either surface hardens the colloid layer or permeates the uniformly hardens the colloid layer.
  • This hardening technique referred to as prehardening, finds particular utility in hardening certain photographic elements after exposure but before processing to form the photographic image. In this way a level of hardening can be imparted to the photographic element that might be objectionable in storage and use prior to exposure, but which is quite advantageous in preventing damage to the colloid layer of the photographic element during processing.
  • Hardencr l Bis(2-chloroethylsulfonylmethyl) Ether Hardener II Bisl2-(2-chloroethylsulfonyl)ethyl] Ether Hardcncr lll Bisl4-(2-chloroethylsulfonyl)butyl] Ether Hardener lV l,8-Bis(2-chloroethylsulfonyl)-3,6-
  • Hardeners II, III and IV can be prepared in the same general manner starting with bis( 2-chloroethyl) ether, bis(4-chlorobutyl) ether and 1,8-dichloro-3,6- dioxaoctane, respectively.
  • Hardener V can be prepared by the procedure of Price and Roberts, J. Org. Chem., 12, 255 (1947).
  • Hardeners VI, VII and VIII can be prepared by the procedure of Schultz et al, J. Org. Chem., 28, 1,140 (1963).
  • Hardener IX can be prepared in the same general manner as Hardener I starting with trans- 1,4-dichloro-2-butene.
  • Hardener X Bis(2-chloroethylsulfonyl)methane This compound is prepared from the sulfide (EJ. Gasson et al J. Chem. Soc. 1948, 45) by oxidation with hydrogen peroxide according to H.S. Schultz et al J. Org. Chem. 28, l 140 (1963).
  • the sulfonediol obtained is a colorless solid, having a m.p. of 715 to 77C.
  • a solution of 22 g of the diol and 0.6 g of N,N-dimethylformamide in 240 ml of acetonitrile is treated at reflux with 23 g of thionyl chloride.
  • Hardener XI l,1-Bis(2-chloroethylsulfonyl) ethane a 1,l-Bis(2-chloroethylthioethane) is first prepared by heating to reflux, a solution of 16.2 g of acetal and 26.4 g of 2-chloroethanethiol and 0.05 g of p-toluenesulfonic acid in 75 ml of benzene. The benzene-ethanol azeotrope is distilled slowly through a short packed column until reaction appears complete. This solution is cooled, filtered, neutralized with aqueous sodium bicarbonate and than evaporated to give 28.8 g of colorless oil. The nmr spectrum appears reasonable in confirming the product.
  • Hardener XII a,a-Bis(2-chloroethylsulfonyl)toluene a First formed is a,a-Bis(2-chloroethylthio)toluene from a solution of 10.5 g of benzaldehyde and 19.2 g of 2-chloroethanethiol in ether saturated with hydrogen chloride at a reaction temperature of 10 to 15C. After 18 hours at 6C, the ether is evaporated, replaced with benzene, and the resulting product isolated as described above. The nmr spectrum conforms to the expected structure.
  • b. a,a-Bis(2-chloroethylsulfonyl)toluene is prepared by the oxidation of the sulfide with m-chloroperbenzoic acid as in Example XIV but with the reaction tempera ture held at 25 to 30C for 4.5 hours after the addition. After filtration of the cold (-5C) reaction mixture, the chloroform solution is evaporated on a 40C bath to dryness. Recrystallization from benzene and then methanol yields colorless crystals having a m.p. 106 to 108C in 83 percent yield.
  • bis(2-bromoethylsulfonyl) hardeners can be prepared according to the illustrative procedures set forth above.
  • Hardeners I through XII which are'considered to be representative of this invention, these hardeners are added in amounts expressed as percent by weight, based on the gelatin weight, to portions of high speed gelatin silver bromoiodide photographic emulsion with one portion of the emulsion being maintained hardener-free and identified as a control.
  • the hardener is diluted in a solvent, such as acetone or methanol, and blended with photographic emulsion.
  • Each emulsion is immediately thereafter coated onto a cellulose acetate film support at a coverage of 459 mg of silver and 1,040 mg of gelatin per square foot.
  • Films coated with a single layer magenta coating containing 3 percent by weight bis(2- chloroethyl) sulfone based on the weight of dry gelatin(0.157 mol. hardener/g. gelatin) are not provided with sufficient high temperature hardening to permit color development processing at 86C, while 3 percent by weight bis( 2-chloroethylsulfonyl )methane, based on dry gelatin weight, allows successful color development processing of otherwise idential film coatings at temperatures of 125C. This illustrates a dramatic improvement in high temperature hardening characteristics.
  • a photographic element comprising a support and at least one hydrophilic colloid layer containing a radiation-sensitive silver halide hardened with a compound having the structural formula:
  • X in each occurrence is halogen
  • Q is an aliphatic or phenyl substituted aliphatic divalent hydrocarbon radical having from one to six aliphatic carbon atoms, said radical being selected from the group consisting of alkylene and alkenylene
  • m is an integer of from zero to three inclusive.
  • a photographic element comprising a support and at least one gelatin layer containing a radiationsensitive silver halide hardened with a compound having the structural formula:
  • X in each occurrence is halogen
  • Q is an aliphatic or phenyl substituted aliphatic divalent hydrocarbon radical having from one to six aliphatic carbon atoms, said radical being selected from the group consisting of alkylene and alkenylene
  • m is an integer of from zero to three inclusive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Photographic elements are disclosed containing a hydrophilic colloid layer hardened with a compound having the structural formula:

Description

United States Patent 1 Silverman et al.
1451 Oct. 1, 1974 HARDENING HYDROPHILHC COLLOID SILVER HALIDE EMULSION LAYER WITH A Z-HALOETHYLSULFONYL COMPOUND [75] Inventors: Robert A. Silverman; Wright,
Charles 3., both of Rochester, N.Y.
[73] Assignee: Eastman Kodak Company,
Rochester, NY.
[22] Filed: Sept. 29, 1972 [21] Appl. No.: 293,697
[52] US. Cl. 96/50 R, 96/50 PT, 96/109, 96/1 1 l [51] Int. Cl. G03c 5/26, G03c 1/34, G030 1/30 [58] Field of Search 96/109, 111, 50 R, 50 PT [56] References Cited UNITED STATES PATENTS 3,305,376 2/]967 Burness et al. 96/109 3,647,453 3/1972 l-laist et a1 96/109 Primary Examiner--Ronald H. Smith Assistant Examiner-Won H. Louie, Jr. Httbrney, Agent, or Firm-John T. Lewis [5 7 ABSTRACT Photographic elements are disclosed containing a hydrophilic colloid layer hardened with a compound having the structural formula:
XCH2CHzSOgQEQQMSOzCIhCHQX H XCH CH S 0 S OECHZCHIX in which X is halogen and R is hydrogen, phenyl or alkyl having from one to six carbon atoms.
11 Claims, No Drawings HARDENING HYDROPH ILIC COLLOID SILVER HALIDE EMULSION LAYER WITH A Z-HALOETHYLSULFONYL COMPOUND This invention relates to hardeners containing plural 2-haloethylsulfonyl radicals. In one aspect this invention relates to certain novel bis(2-haloethyl)sulfonyl compounds. In another aspect this application relates to hardenable hydrophilic colloid compositions containing bis-(2-haloethyl)sulfonyl hardeners, which in photographic applications also exhibit anti-fogging characteristics, and to photographic elements incorporating such compositions. in a further aspect this invention relates to processes for preparing such compositions and photographic elements.
In the photographic arts hydrophilic colloids-- typically refined gelatins-have been used to suspend silver halide grains and thereby to form radiation-sensitive compositions which when coated onto suitable supports are capable of forming photographic elements. Typically a variety of addenda are employed to alter the properties of both the gelatin and the silver halide grains. It has been recognized previously in the art that without special modifiers hydrophilic colloids such as gelatins ingest large quantities of water when brought into contact with aqueous solutions, causing appreciable swelling, and are easily abraded. Also, unmodified gelatin coatings tend to melt at relatively low temperatures, thereby limiting their temperature range of utility. To alter these deficiencies of unmodified photographic gelatins it has heretofore been recognized that certain addenda generically designated as hardener addenda or simply hardeners may be incorporated into radiation-sensitive compositions and coatings to obviate at least one of the above undesirable gelatin characteristics.
In order to serve the needs of the photographic arts it is desirable not only that a hardener ameliorate the deficiencies of gelatins as noted above, but that the hardener meet certain additional practical criteria. For example, the hardener should cause hardening or setting of the emulsion sufficiently slowly to permit coating of the photographic emulsion onto a support, but it should not set up so slowly that after-hardening takes place-Le. the emulsion continues to harden undesirably during storage of a fabricated photographic element. Also, the hardener should possess sufficiently low levels of toxicity so as not to pose a significant hazard to manufacturing personnel. Further, the hardener should not undesirably reduce or interfere with the desired photographic properties of the element into which it is incorporated. For example, the hardener should not contribute to the reduction of silver halide to produce fogging of a photographic emulsion or coating. These criteria for hardeners are all the more challenging when it is bore in mind that the composition of photographic galatins are themselves not fully understood and that the mechanisms of hardening are not entirely appreciated.
In addition to the above considerations, it must be recognized that the hardener is only a part of what typically is a comparatively complex photographic system. For example, in addition to the radiation-sensitive silver halide and the gelatin to be hardened photographic emulsions typically contain numerous additional addenda. With so many criteria being applied to hardeners and in view of the complexity of photographic emulsions it is not then surprising that there is presently no known way of predicting the suitability of significantly differing types of compounds as hardeners in photographic emulsions, and the art has relied upon empirical methods to discover new types of hardeners. Beyond this, the selection of hardeners having both satisfactory hardening and other desirable and advantageous photographic characteristics permitting their substitution for or supplementing of other photographic addend'a has remained in the realm of chance discovery.
A number of bis( 2-haloethyl) compounds are known. Bis(2-chloroethyl) sulfide, mustard gas, is best known for its toxicity. The preparation of 2,2-bis(2-chloroethyl-sulfonyl) propane is disclosed by Ruchi et al Helv. Chim. Acta, 42, 1368 (1959). Tesoro US. Pat. No. 3,201,434, issued Aug. 17, 1965, teaches the utility of certain bis(2-chloroethyl) compounds containing hydrocarbon and ether linking radicals (but excluding methylene linking radicals) as crosslinking agents for fibrous polymers. Tesoro, however, does not teach or suggest any utility of these crosslinking agents with hydrophilic colloids nor utility in a photographic environment. Belgium Pat. No. 606,234, issued July 18, 1961, teaches the use of bis(2-chloroethyl) sulfone as a protein hardener; however, its toxicity is comparable to that of mustard gas. Additionally, bis(2-chloroethyl) sulfone possesses comparatively inferior hardening characteristics at elevated temperatures and with respect to after-hardening characteristics. Burness Pat. No. 3,106,468, issued Oct. 8, 1963; teaches the use of bis(2-haloethyl) urea type compounds as photographic gelatin hardeners. None of the above patents teach or suggest the utility of bis( 2-haloethylsulfonyl) compounds an anti-foggants in photographic compositions and elements.
It is one object of this invention to provide a new class of compounds having a combination of desirable characteristics rendering them useful as hardeners for hydrophilic colloids.
It is a second object of this invention to provide a new class of compounds capable of functioning simultaneously as hardener and anti-foggant addenda in radiation-sensitive hydrophilic colloidsi.e. photographic emulsions.
It is another object to provide novel hydrophilic colloid compositions utilizing a hardener that is free of objectionable physiological activity, that is capable of producing hardening at ambient and elevated temperatures and that exhibits adesirable rate of hardening.
It is a more specific object of provide novel photographic compositions and elements containing a photographic emulsion that is hardened both at ambient and elevated temperatures, that is free of objectionable physiological activity and that exhibits anti-foggant characteristics.
It is an additionalobject to provide a process of hardening a hydrophilic colloid.
In a broad aspect this invention contemplates adding to a hydrophilic colloid a hardening concentration of a compound having two 2-haloethylsulfonyl radicals coupled through an aliphatic or phenyl substituted aliphatic divalent linking radical to form a novel hardened hydrophilic colloid composition. The preferred hardeners are a novel class of compounds having two 2-haloethylsulfonyl radicals coupled through an unsubstituted or hydrocarbon-substituted methylene linking radical.
It has been discovered quite unexpectedly that the 2-haloethylsulfonyl compounds defined as useful in the practice of this invention produce in hydrophilic col loids a combination of useful hardening characteristics and when utilized in radiation-sensitive colloids--e.g. photographic emulsions, produce both the desired combination of hardening characteristics and antifogging characteristics. These 2haloethylsulfonyl compounds harden hydrophilic colloids to reduce swelling and abrasion thereof. Additionally, these 2haloethylsulfonyl compounds harden hydrophilic colloids at elevated temperatures. Still further, the colloids hardened with these 2haloethylsulfonyl compounds are not hardened so rapidly as to interfere with their being coated ontoa support, yet they are free of undesirable afterhardening characteristics At the same time colloids hardened with the 2haloethylsulfonyl compounds utilized in the practice of this invention do not pose a hazard to manufacturing personnel. It is quite surprising that hydrophilic colloids hardened with 2haloethylsulfonyl compounds according to this invention possess this combination of hardening, high temperature hardening and low physiological activity characteristics. It is even more surprising that, when the hydrophilic colloid is a radiation-sensitive colloid, such as a photographic emulsion, the 2haloethylsulfonyl compounds of this invention perform both the functions of hardening and high-temperature hardening and additionally are capable of functioning as anti-foggant add'enda.
A class of compounds which can be combined with hydrophilic colloids according to this invention to provide a combination of desirable colloid hardening characteristics and, in photographic applications, antifogging properties are defined by the structural formula:
i wherein X is halogen, Q is an aliphatic or phenyl substituted aliphatic divalent hydrocarbon radical having from one to six aliphatic carbon atoms and m is an integer of from zero to three inclusive.
Preferred compounds as of the type set forth above are those novel compounds which can be defined by the structural formula:
H xcmoms 0,0 s 020112032X in which X is halogen and R is hydrogen, phenyl or alkyl having from one to six carbon atoms. Specific preferred novel compounds useful in accordance with this invention include bis(2haloethylsulfonyl)methane; 1,- 1-bis(2haloethylsulfonyl)ethane, l,1-bis(2-haloethylsulfonyl )propane; 1,1-bis(2--haloethylsulfonyl)butane; 1,1-bis(2haloethylsulfonyl)pentane; 1,1-bis(2- haloethylsulfonyl )hexane; 1,1-bis( 2haloethylsulfonyl)heptane; and alpha, alpha-bis(2haloethylsulfonyl)to1uene. The haloethyl radical can be chloroethyl, bromoethyl and the like.
These novel compounds can be prepared by reacting the aldehyde or acetal corresponding to the divalent methylene linking radical desired with 2-ha1oethanethiol. This produces the bis(Z-haloethylsulfide) compound corresponding to the desired compound. The sulfide can then be converted to the bis( 2haloethylsulfonyl) methane compound desired using an oxidizing agent such as hydrogen peroxide, m-chloro-perbenzoie acid, and the like.
It is additionally recognized that compounds within the purview of formula (A) above may be utilized in the practice of this invention in addition to those preferred compounds set forth by formula (B). Generally the two 2haloethylsulfonyl radicals may be joined by any aliphatic or phenyl substituted aliphatic divalent hydrocarbon or ether linking radical. Alkylene, alkenylene, oxaalkylene and dioxaalkylene divalent linking radicals are specifically contemplated.
Such compounds include bis(2-haloethylsulfonyl) alkanes, bis(2-haloethylsulfonyl) alkenes and bis(2-haloethylsulfonyl) oxaalkanes, such as dialkyl ethers and dioxaalkanes. Exemplary of these are 1,2-bis(2haloethylsulfonyl )ethane; 1,3-bis( 2- haloethylsulfonyl)propane; l,4-bis(2 haloethylsulfonyl)butane; 1,4-bis(2haloethylsulfonyl)-2butene;
1,5-bis( 2haloethylsulfonyl )-2-pentene; 1,6- bis( 2haloethylsulfonyl )-2-hexene and 1,6-bis( 2haloethylsulfonyl )3-hexene; 1,5-bis( 2- haloethylsulfonyl )pentane; bis( 2haloethylsulfonylmethyl) ether; bisl 2-(2-haloethylsulfonyl )ethyl] ether; bis[4-(2-halosulfonyl)buty1] ether; l,6-bis(2-haloethylsulfonyl)-2,5-dioxahexane and 1,8-bis(2-haloethylsulfonyl)3,6-dioxaoctane. The haloethyl moiety may be chloroethyl, bromoethyl and the like. The processes for preparing these known compounds are, of course, known in the art and form no part of this invention. For example, the Tesoro patent noted above teaches the preparation of compounds of this general type. Other preparations are reported in the Journal of Organic Chemistry, vol. 12, at pp. 249 and 255. For ease of synthesis it is preferred that Q in each occurrence in formula (A) be identically chosen.
The hydrophilic colloids which are hardenable by the above bis(2-haloethylsulfonyl) compounds can be formed from one or more hydrophilic, water permeable colloid forming natural or synthetic polymers. Specific polymers which can be hardened according to the practice of this invention include hardenable polymers such as gelatin, colloidal albumin, acid or water-soluble vinyl polymers, collulose derivatives, proteins, various polyacrylamides, dispersed polymerized vinyl compounds, particularly those which increase the dimensional stability of photographic materials as exemplitied by amine-containing polymers of alkyl acrylates, methacrylates, acrylic acid, sulfoalkyl acrylates and methacrylates, acrylic acid-acrylate copolymers, and the like. Suitable synthetic polymers include those described, for example, in Nottorf U.S. Pat. No. 3,142,568, issued July 28, 1964; White U.S. Pat. No. 3,193,386, issued July 6, 1965; Houck et al U.S. Pat. No. 3,062,674, issued Nov. 6, 1962; Houck et a1 U.S. Pat. No. 3,220,844, issued Nov. 30, 1965; Ream et al U.S. Pat. No. 3,287,289, issued Nov. 22, 1966; Dykstra U.S. Pat. No. 3,411,911, issued Nov. 19, 1968; Smith U.S. Pat. No. 3,488,708 issued Jan. 6, 1970, and Dykstra Canadian Patent No. 774,054. The use of the hardeners of this invention with polymers having active ketomethylene groups, as described in Smith U.S. Pat. No. 3,488,708, cited above, is the separate invention of Osterhoudt and Smith disclosed in concurrently filed patent application U.S. Ser. No. 293,695, titled Photographic Element Comprising a Vinylsulfonyl Crosslinked Polymer Having Active Ketomethylene Groups.
The hydrophilic colloid to be hardened is typically utilized as a layer or coating on a support. A wide variety of supports, such as polymeric film, wood, metal, glass and the like, may be utilized to form hydrophilic colloid coated elements according to this invention. Where a photographic element is contemplated the support can take such forms as those set forth in paragraph X of Product Licensing Index, Vol. 92, Dec. 1971, publication 9,232, at page 108.
Where the hydrophilic colloid is to be utilized in combination with a support to form a photographic element, it will contain in or on it a radiation-sensitive material. This material can be panchromatic or orthochromatic material, sensitive only to X-rays or sensitive to selected portions of the electromagnetic spectrum. In one form of the invention the radiation-sensitive portion of the photographic element can contain a single, unitary hydrophilic colloid layer having dispersed therein the radiation-sensitive material together with photographic addenda to form a photographic emulsion layer or coating. In alternative forms the radiationsensitive portion of the photographic element can comprise a plurality of layers with the radiation-sensitive material or materials being contained in some or all of the layers. For example, as is characteristic of color photography, a plurality of layers can be present sensitized within separate segments of the visible spectrum.
Suitable radiation-sensitive colloids which can be employed in practicing this invention are sensitive to electromagnetic radiation and include such diverse materials as silver salts, zinc oxide, photosensitive polycarbonate resins and the like. Silver halides are preferred radiation-sensitive materials and are preferably associated with a colloid dispersion vehicle to form an emulsion coating or layer. Specific preferred silver halide containing photographic emulsions and processes for their preparation and use are disclosed in paragraph I of Product Licensing Index, Vol. 92, Dec. 1971, publication 9,232, at page 107. The radiation-sensitive colloids can additionally include a variety of conventional photographic addenda, such as development modifiers, plasticizers and lubricants, brighteners, spectral sensitization agents and color forming materials as st forth in paragraphs IV, XI, XIV, XV and XXII, respectively, of Product Licensing Index, Vol. 92, Dec. 1971, publication 9,232, at pages 107-1 10. While it is contemplated that the 2-haloethylsulfonyl compounds utilized in the practice of this invention may serveas the sole hardener and/or anti-foggant addenda present, it is appreciated that other conventional hardeners and/or antifoggants may also be incorporated into the hydrophilic colloid, such as those set forth, for example, in paragraphs V and VII of Product Licensing Index, Vol. 92, Dec. 1971, publication 9,232, pages 107 and 108.
While a wide range in concentrations of 2-ha1oethylsulfonyl compounds disclosed herein is effective for achieving the desired combination of hardening characteristics in hydrophilic colloids and, in radiationsensitive colloids, anti-foggant characteristics,-a particularly effective concentration is from about 0.5 to 6 percent by weight, based on the weight of the hardenable material present in the hydrophilic colloid-Le.
the dry weight (excluding the weight of any water present) of the gelatin or the like making up the colloid. It has been found that about 1 percent to about 3 percent by weight, based on the weight of the hardenable material present in the hydrophilic colloid, is particularly effective in achieving both superior hardening and, in radiation-sensitive colloids, anti-fogging activity.
In order to achieve uniform hardening and/or antifogging activity it is preferred to uniformly disperse the 2-haloethylsulfonyl compounds in the hydrophilic colloid to be modified. According to one technique, referred to as forehardening, the 2-haloethylsulfonyl compound is dissolved in a volatile solvent, such as a lower alkyl alcohol, acetone, etc., and the solution is uniformly blended with the hydrophilic colloid to be modified. Typically the hydrophilic colloid has at this stage an amount of water associated therewith which is in excess of that ultimately desired. Immediately after blending the colloid is deposited on a suitable support to form a layer or coating. The colloid is then hardened on the support and such volatile solvent and/or dispersants as are associated with the colloid and 2-haloethylsulfonyl compound solution are removed by evaporation either at ambient or elevated temperatures, typically below about C.
It is also contemplated that the 2-haloethylsulfonyl compounds of this invention may be associated with hydrophilic colloids after they have been positioned on supports as coatings or layers. The support bearing a hydrophilic colloid coating to be hardened may be immersed in a solution containing the 2-haloethylsulfonyl compound therein so that the solution either surface hardens the colloid layer or permeates the uniformly hardens the colloid layer. This hardening technique, referred to as prehardening, finds particular utility in hardening certain photographic elements after exposure but before processing to form the photographic image. In this way a level of hardening can be imparted to the photographic element that might be objectionable in storage and use prior to exposure, but which is quite advantageous in preventing damage to the colloid layer of the photographic element during processing.
To further illustrate this invention the following specific, exemplary embodiments are set forth:
Preparation of Hardencrs:
Hardencr l Bis(2-chloroethylsulfonylmethyl) Ether Hardener II Bisl2-(2-chloroethylsulfonyl)ethyl] Ether Hardcncr lll Bisl4-(2-chloroethylsulfonyl)butyl] Ether Hardener lV l,8-Bis(2-chloroethylsulfonyl)-3,6-
dioxaoctane Hardcner V l.2-Bis(2-chloroethylsulfonyl)ethane Hardcncr Vl l,3Bis(2-chloroethylsulfonyl)propanc Hardcner Vll l.4-Bis(2-chloroethylsulfonyl)butane Hardencr Vlll l,5-Bis(2-chlorocthylsulfonyl) entanc Hardcner lX transl ,4-Bis(2-chloroethylsulffmyl)- 2-butenc sulfone diol is converted to its dichloride, by refluxing a solution of 22 g ofthe diol and 0.6 g of N,N-dimethylformamide in 240 ml of acetonitrile and treating at reflux with 23 grams thionyl chloride. After a 3-hour reflux period the solution is treated with charcoal, filtered and evaporated on a 40C bath. Recrystallization from methanol gives a colorless chloride in rather a high yield and has a m.p. of 8384C.
Hardeners II, III and IV can be prepared in the same general manner starting with bis( 2-chloroethyl) ether, bis(4-chlorobutyl) ether and 1,8-dichloro-3,6- dioxaoctane, respectively. Hardener V can be prepared by the procedure of Price and Roberts, J. Org. Chem., 12, 255 (1947). Hardeners VI, VII and VIII can be prepared by the procedure of Schultz et al, J. Org. Chem., 28, 1,140 (1963). Hardener IX can be prepared in the same general manner as Hardener I starting with trans- 1,4-dichloro-2-butene.
In addition to the foregoing hardeners additional representative hardeners are prepared which are novel compounds falling within structural formula B set forth previously.
Hardener X Bis(2-chloroethylsulfonyl)methane This compound is prepared from the sulfide (EJ. Gasson et al J. Chem. Soc. 1948, 45) by oxidation with hydrogen peroxide according to H.S. Schultz et al J. Org. Chem. 28, l 140 (1963). The sulfonediol obtained is a colorless solid, having a m.p. of 715 to 77C. A solution of 22 g of the diol and 0.6 g of N,N-dimethylformamide in 240 ml of acetonitrile is treated at reflux with 23 g of thionyl chloride. After a 3-hour reflux period the solution is treated with charcoal, filtered and evaporated on a 40C bath. The resulting semi-solid residue is first crystallized from n-propanol and then from 3:1 toluene-ligroin to give 7.5 g of colorless solid having a m.p. of 108-109.5C. Upon analysis the following is found for Calculated C. 22.3; H. 3.8; S, 23.8 C H, Cl O,S
Found c. 22.3; H, 3.5; s. 23.6
Hardener XI l,1-Bis(2-chloroethylsulfonyl) ethane a. 1,l-Bis(2-chloroethylthioethane) is first prepared by heating to reflux, a solution of 16.2 g of acetal and 26.4 g of 2-chloroethanethiol and 0.05 g of p-toluenesulfonic acid in 75 ml of benzene. The benzene-ethanol azeotrope is distilled slowly through a short packed column until reaction appears complete. This solution is cooled, filtered, neutralized with aqueous sodium bicarbonate and than evaporated to give 28.8 g of colorless oil. The nmr spectrum appears reasonable in confirming the product.
b. To a solution of 13.1 g of the above sulfide in 450 ml of dry chloroform is gradually added with stirring, 50.3 g of 85 percent M-chloroperbenzoic acid at 25 to 27C. After being heated at 35 to 40C for 3.5 hours the mixture is cooled below 0C and filtered. The filtrate is then shaken with several portions of cold, aqueous sodium bicarbonate solution until the aqueous extract no longer gives a precipitate when acidified. The chloroform solution is dried over magnesium sulfate and evaporated. Recrystallization from ethanol produces 13 g of colorless solid having a m.p. of 85 to 89C.
Upon analysis the following is obtained for Calculated C. 25.4; H. 4.2; CI, 25.1
Found C. 25.7; H. 4.2: CI. 24.8
Hardener XII a,a-Bis(2-chloroethylsulfonyl)toluene a. First formed is a,a-Bis(2-chloroethylthio)toluene from a solution of 10.5 g of benzaldehyde and 19.2 g of 2-chloroethanethiol in ether saturated with hydrogen chloride at a reaction temperature of 10 to 15C. After 18 hours at 6C, the ether is evaporated, replaced with benzene, and the resulting product isolated as described above. The nmr spectrum conforms to the expected structure.
b. a,a-Bis(2-chloroethylsulfonyl)toluene is prepared by the oxidation of the sulfide with m-chloroperbenzoic acid as in Example XIV but with the reaction tempera ture held at 25 to 30C for 4.5 hours after the addition. After filtration of the cold (-5C) reaction mixture, the chloroform solution is evaporated on a 40C bath to dryness. Recrystallization from benzene and then methanol yields colorless crystals having a m.p. 106 to 108C in 83 percent yield.
Upon analysis the following is found fo Calculated C. 38.2; H. 4.]; CI. 20.5 Il H Z J Z Found C. 38.4; H. 4.5; CI. 20.8
It is recognized that bis(2-bromoethylsulfonyl) hardeners can be prepared according to the illustrative procedures set forth above.
Colloid Hardening and Anti-Fogging To illustrate the hardening and anti-fogging characteristics of Hardeners I through XII, which are'considered to be representative of this invention, these hardeners are added in amounts expressed as percent by weight, based on the gelatin weight, to portions of high speed gelatin silver bromoiodide photographic emulsion with one portion of the emulsion being maintained hardener-free and identified as a control. The hardener is diluted in a solvent, such as acetone or methanol, and blended with photographic emulsion. Each emulsion is immediately thereafter coated onto a cellulose acetate film support at a coverage of 459 mg of silver and 1,040 mg of gelatin per square foot. No undesirably rapid setting of the emulsion occurs to interfere with coating as occurs, for example, with aldehyde hardeners. A sample of each film coating can then be examined for hardness after three days incubation at 38C and 50 percent relative humidity by immersing in water at 20C for 5 minutes and calculating the percentage swell of the emulsion. The incubation fog values are obtained from identical emulsion coatings after a two-week period of incubation at 40C and 50 percent relative humidity. The coatings are exposed on an Eastman 1B sensitometer, processed for 5 minutes in a methyl-paminophenol-hydroquinone developer, fixed, washed and dried. The hardeners and hardened coatings pose no significant hazard to manufacturing personnel in terms of toxicity. Comparative data obtained in actual runs is set forth in Table I as follows:
TABLE I 2 Weeks, 50 percent Swell Relative Humidity. 49C Harden Relative to Control* Incubation Fog Swell Hardener Control l 71 3 '7: 6 7r 1 7r 3 7r 6 70 Control 1 71' 3 l 590 490 320 290 83 54 49 0.79 0.37 0.15 H 7lO 370 310 270 52 44 38 0.43 O.l4 0.12 I" 590 380 N.R. 450 64 N.R. 76 0.79 0.73 0.61 W 710 500 400 380 70 56 53.5 0.79 0.48 0.19 V 680 490 440 N.R. 72 65 NR 0.64 0.42 0.17 V1 810 390 N.R. N.R. 48 N.R. N.R 1.07 0.60 N.R. Vll 720 490 N.R. N.R. 68 N.R. N.R 1.07 0.44 N.R. Vlll 740 490 360 N.R. 66 49 N.R 0.79 0.50 0.24 lX 800 390 330 280 49 41 0.80 0.27 0.30 X 720 330 240 210 46 33 29 0.75 0.28 0.10 X1 890 420 310 290 47 35 33 0.94 0.31 0.13 Xll 750 430 390 330 57 52 44 1.10 N.R. O.l7
N.R. No run undertaken Control 100 Comparison with Known Toxic Hardener Bis(2-chloroethyl) sulfone, a known toxic hardene does not exhibit the degree of high temperature hardening nor the freedom from after-hardening that char acterizes the hardeners of this invention. in a specific comparison bis(2-chloroethylsulfonyl)methane and bis(2-chloroethyl) sulfone are incorporated into separate portions of a magenta dye-forming coupler film emulsion in the manner described above in connection with Table 1. Films coated with a single layer magenta coating containing 3 percent by weight bis(2- chloroethyl) sulfone based on the weight of dry gelatin(0.157 mol. hardener/g. gelatin) are not provided with sufficient high temperature hardening to permit color development processing at 86C, while 3 percent by weight bis( 2-chloroethylsulfonyl )methane, based on dry gelatin weight, allows successful color development processing of otherwise idential film coatings at temperatures of 125C. This illustrates a dramatic improvement in high temperature hardening characteristics.
To compare after-hardening characteristics it is noted that the above film coatings hardened with 1 and 2 percent bis(2-chloroethylsulfonyl)methane decrease in percent swell (based on original coating thickness) only 14 and 16 percent, respectively, after incubation at 49C and 50 percent relative humidity for 7 days. In direct comparison, with 3 percent by weight bis(2- chloroethyl) sulfone present in a similar film coating a change in swell of 103 percent is noted after incubation, indicating a much more pronounced afterhardening has occurred.
The invention has been described in detail with particular reference to preferred embodiments thereof but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
What is claimed is:
l. A photographic element comprising a support and at least one hydrophilic colloid layer containing a radiation-sensitive silver halide hardened with a compound having the structural formula:
wherein X in each occurrence is halogen; Q is an aliphatic or phenyl substituted aliphatic divalent hydrocarbon radical having from one to six aliphatic carbon atoms, said radical being selected from the group consisting of alkylene and alkenylene; and m is an integer of from zero to three inclusive.
2. A photographic element comprising a support and at least one gelatin layer containing a radiationsensitive silver halide hardened with a compound having the structural formula:
wherein X in each occurrence is halogen; Q is an aliphatic or phenyl substituted aliphatic divalent hydrocarbon radical having from one to six aliphatic carbon atoms, said radical being selected from the group consisting of alkylene and alkenylene; and m is an integer of from zero to three inclusive.
3. A photographic element according to claim 1 in which said layer contains from 0.5 to 6 percent by weight of said hardener compound based on the weight of hardenable colloid present in said layer.
4. A photographic element according to claim 1 in which said layer contains a dye-forming coupler.
5. A photographic element according to claim 1 in which said hardener compound has 2 2-chloroethylsulfonyl radicals coupled through an aliphatic hydrocarbon or ether linking radical.
6. A photographic element according to claim 1 in which said hardener compound is a bis(2-haloethylsulfonylalkyl) ether.
7. A photographic element according to claim 1 in which said hardener compound is a bis(2- haloethylsulfonyl)dioxaalkane.
8. A photographic element according to claim 1 in which said hardener compound is a bis(2-haloethylsulfonyl )-alkane.
9. A photographic element according to claim 1 in which said hardener compound is a bis(2-haloethylsulfonyl )-alkene.
10. A photographic element according to claim 1 in which said hardener compound exhibits the structural formula:
H XCH CH S 0 S OzCH CHgX atin coating to an image forming exposure, hardening the emulsion coating and developing within the gelatin coating a photographic record of the exposure image, the improvement comprising hardening the emulsion coating after exposure and before image development by introducing into the emulsion coating a hardening concentration of a compound having the structural formula:
carbon radical having from one to six aliphatic carbon atoms, said radical being sclcctcd from the group consisting of alkylene and alkenylcnc; and m is an integer wherein X is each occurrence is halogen; Q is an alifrom Zero to three mcluslvefig? v UNITED STATES PATEN OFFICE CERTIFICATE OF CORRECTI()N Patent No. 3,839,042 Dated Octoberl, 1974 Invmflmr(s) Robert A. Silverman and Charles J1 Wright "It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 1, line 57, "bore" should read -borne--; -1
Column 2, line 36, "an" should read ---as- Column 2, line 52, "of" should read --to Column 4, line 48; "collulose" should read --cellulosee-;
' Column 5, line 48, "st" should read ---set- Column 6, line 33, after "permeates", "the" should read ---and-; Column 10, line 37, (Claim 5) "has 2 2-" should read ---has two 2- Signed and sealed this 31st day of December 1974.
(SEAL) AtteSt: TkCOY M. GIBSON JR. C. MARSHALL DANN- Attesting Officer vCommissioner of Patents

Claims (11)

1. A PHOTOGRAPHIC ELEMENT COMPRISING A SUPPORT AND AT LEAST ONE HYDROPHILIC COLLOID LAYER CONTAINING A RADIATIONSENSITIVE SILVER HALIDE HARDENED WITH A COMPOUND HAVING THE STRUCTURAL FORMULA:
2. A photographic element comprising a support and at least one gelatin layer containing a radiation-sensitive silver halide hardened with a compound having the structural formula: XCH2CH2SO2Q(OQ)mSO2CH2CH2X wherein X in each occurrence is halogen; Q is an aliphatic or phenyl substituted aliphatic divalent hydrocarbon radical having from one to six aliphatic carbon atoms, said radical being selected from the group consisting of alkylene and alkenylene; and m is an integer of from zero to three inclusive.
3. A photographic element according to claim 1 in which said layer contains from 0.5 to 6 percent by weight of said hardener compound based on the weight of hardenable colloid present in said layer.
4. A photographic element according to claim 1 in which said layer contains a dye-forming coupler.
5. A photographic element according to claim 1 in which said hardener compound has 2 2-chloroethylsulfonyl radicals coupled through an aliphatic hydrocarbon or ether linking radical.
6. A photographic element according to claim 1 in which said hardener compound is a bis(2-haloethylsulfonylalkyl) ether.
7. A photographic element according to claim 1 in which said hardener compound is a bis(2-haloethylsulfonyl)dioxaalkane.
8. A photographic element according to claim 1 in which said hardener compound is a bis(2-haloethylsulfonyl)-alkane.
9. A photographic element according to claim 1 in which said hardener compound is a bis(2-haloethylsulfonyl)-alkene.
10. A photographic element according to claim 1 in which said hardener compound exhibits the structural formula:
11. In a process comprised of the steps of forming a radiation-sensitive gelatin silver halide emulsion coating on a support, subjecting the radiation-sensitive gelatin coating to an image forming exposure, hardening the emulsion coating and developing within the gelatin coating a photographic record of the exposure image, the improvement comprising hardening the emulsion coating after exposure and before image development by introducing into the emulsion coating a hardening concentration of a compound having the structural formula: XCH2CH2SO2Q(OQ)mSO2CH2CH2X wherein X is each occurrence is halogen; Q is an aliphatic or phenyl substituted aliphatic divalent hydrocarbon radical having from one to six aliphatic carbon atoms, Said radical being selected from the group consisting of alkylene and alkenylene; and m is an integer of from zero to three inclusive.
US00293697A 1972-09-29 1972-09-29 Hardening hydrophilic colloid silver halide emulsion layer with a 2-haloethylsulfonyl compound Expired - Lifetime US3839042A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US00293697A US3839042A (en) 1972-09-29 1972-09-29 Hardening hydrophilic colloid silver halide emulsion layer with a 2-haloethylsulfonyl compound
DE19732348194 DE2348194C3 (en) 1972-09-29 1973-09-25 Photographic recording material
FR7334232A FR2201486B1 (en) 1972-09-29 1973-09-25
GB4537673A GB1424750A (en) 1972-09-29 1973-09-27 Photographic radiation-sensitive materials
BE136209A BE805502A (en) 1972-09-29 1973-09-28 NEW PHOTOGRAPHIC PRODUCT INCLUDING A TANNED COAT
JP11005273A JPS4973122A (en) 1972-09-29 1973-09-29
US05/466,092 US3957882A (en) 1972-09-29 1974-05-02 2-haloethylsulfonyl photographic hardener compounds, compositions, articles and preparation processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00293697A US3839042A (en) 1972-09-29 1972-09-29 Hardening hydrophilic colloid silver halide emulsion layer with a 2-haloethylsulfonyl compound

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/466,092 Division US3957882A (en) 1972-09-29 1974-05-02 2-haloethylsulfonyl photographic hardener compounds, compositions, articles and preparation processes

Publications (1)

Publication Number Publication Date
US3839042A true US3839042A (en) 1974-10-01

Family

ID=23130168

Family Applications (1)

Application Number Title Priority Date Filing Date
US00293697A Expired - Lifetime US3839042A (en) 1972-09-29 1972-09-29 Hardening hydrophilic colloid silver halide emulsion layer with a 2-haloethylsulfonyl compound

Country Status (2)

Country Link
US (1) US3839042A (en)
BE (1) BE805502A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028320A (en) * 1975-04-25 1977-06-07 Fujii Photo Film Co., Ltd. Method of hardening gelatin using sulfonyl compounds
US4067741A (en) * 1975-10-24 1978-01-10 Agfa-Gevaert, A.G. Hardening photographic layers containing silver halide with a 1-sulphonyl-4-amino-pyridinium salt
US4590151A (en) * 1982-11-29 1986-05-20 Eastman Kodak Company Reduction of reticulation in gelatin-containing elements
EP0600589A2 (en) * 1992-11-30 1994-06-08 Minnesota Mining And Manufacturing Company Photothermographic elements
CN100537529C (en) * 2007-02-14 2009-09-09 浙江工业大学 Method of synthesizing bis(2-chlorethylsulfuryl)methane compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305376A (en) * 1963-07-22 1967-02-21 Eastman Kodak Co Gelatin hardening composition
US3647453A (en) * 1970-06-01 1972-03-07 Eastman Kodak Co Stabilization of silver halide emulsions with 1,1 bis-sulfonyl alkanes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305376A (en) * 1963-07-22 1967-02-21 Eastman Kodak Co Gelatin hardening composition
US3647453A (en) * 1970-06-01 1972-03-07 Eastman Kodak Co Stabilization of silver halide emulsions with 1,1 bis-sulfonyl alkanes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028320A (en) * 1975-04-25 1977-06-07 Fujii Photo Film Co., Ltd. Method of hardening gelatin using sulfonyl compounds
US4067741A (en) * 1975-10-24 1978-01-10 Agfa-Gevaert, A.G. Hardening photographic layers containing silver halide with a 1-sulphonyl-4-amino-pyridinium salt
US4590151A (en) * 1982-11-29 1986-05-20 Eastman Kodak Company Reduction of reticulation in gelatin-containing elements
EP0600589A2 (en) * 1992-11-30 1994-06-08 Minnesota Mining And Manufacturing Company Photothermographic elements
EP0600589A3 (en) * 1992-11-30 1994-08-31 Minnesota Mining & Mfg
US6143487A (en) * 1992-11-30 2000-11-07 Eastman Kodak Company Photothermographic elements
CN100537529C (en) * 2007-02-14 2009-09-09 浙江工业大学 Method of synthesizing bis(2-chlorethylsulfuryl)methane compound

Also Published As

Publication number Publication date
BE805502A (en) 1974-03-28

Similar Documents

Publication Publication Date Title
US3642908A (en) Vinyl and ether containing sulfones
US3841872A (en) Hydrophilic-colloid silver halide emulsion hardened with a bisvinylsulfonyl compound
US2983611A (en) Gelatin compositions containing hardeners
US3547638A (en) N,n-disubstituted amino-methylthiocarboxylic acids and use thereof as antifoggants in photographic emulsions
US3226232A (en) Fog reduction in silver halide emulsions with a diphenyldisulfide dicarboxylic acid
US3232763A (en) Gelatin compositions containing a bisisomaleimide hardener
US3038805A (en) Non-polymeric open-chain sensitizers
US3499761A (en) Silver halide emulsions containing alkyl esters of benzimidazole carbamic acid antifogging agents
US2981624A (en) Antifoggants and stabilizers for photographic silver halide emulsion
US3839042A (en) Hardening hydrophilic colloid silver halide emulsion layer with a 2-haloethylsulfonyl compound
US3834902A (en) Photographic material containing a mesylate compound as hardener and antifoggant
US3165552A (en) Internal amide, nonpolymeric thioether sensitizers for photographic emulsions
US3161520A (en) Fog reduction in photographic silver halide emulsions
US2835581A (en) Tetrazaindenes and photographic emulsions containing them
JPH0635106A (en) Silver image forming photographic element and method of improving image of said element
US3957882A (en) 2-haloethylsulfonyl photographic hardener compounds, compositions, articles and preparation processes
US3226231A (en) Fog reduction in silver halide emulsions with 3-mercaptobenzoic acid
US3271175A (en) Aziridinyl phosphonitrile gelatin hardening agent
US3543292A (en) Photographic gelatin hardened with bis isoxazole compounds and their quaternary salts
EP0216973B1 (en) Photographic elements and compositions containing cyclic thioethers
US2948615A (en) Antifoggants and stabilizers for photographic silver halide emulsions
US3625697A (en) Sensitization of light-sensitive silver halide photographic emulsions
US3026201A (en) Antifoggants and stabilizers for photographic silver halide emulsions
US3671255A (en) Silver halide emulsion fog inhibited with quaternary ammonium,triazole and tetrazaindene compounds
US3008829A (en) Photographic materials and method of producing the same