US3835747A - Fabric web hold-down apparatus for tailoring machines - Google Patents

Fabric web hold-down apparatus for tailoring machines Download PDF

Info

Publication number
US3835747A
US3835747A US38456273A US3835747A US 3835747 A US3835747 A US 3835747A US 38456273 A US38456273 A US 38456273A US 3835747 A US3835747 A US 3835747A
Authority
US
United States
Prior art keywords
chamber
chambers
cutting
fabric
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
B Bystron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rieter Ingolstadt Spinnereimaschinenbau AG
Original Assignee
Schubert und Salzer Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schubert und Salzer Maschinenfabrik AG filed Critical Schubert und Salzer Maschinenfabrik AG
Application granted granted Critical
Publication of US3835747A publication Critical patent/US3835747A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/01Means for holding or positioning work
    • B26D7/018Holding the work by suction
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06HMARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
    • D06H7/00Apparatus or processes for cutting, or otherwise severing, specially adapted for the cutting, or otherwise severing, of textile materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S83/00Cutting
    • Y10S83/929Particular nature of work or product
    • Y10S83/936Cloth or leather
    • Y10S83/939Cloth or leather with work support
    • Y10S83/94Cutter moves along bar, bar moves perpendicularly
    • Y10S83/941Work support comprising penetratable bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/647With means to convey work relative to tool station
    • Y10T83/6579With means to press work to work-carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/748With work immobilizer

Definitions

  • the carrier may be reciprocated, and the vacuum chamber series may be fixed relative to-the cutting tool in the direction of carrier reciprocation.
  • the cutting tool may be reciprocable relative to a stationary vacuum chamber series, and chamberevacuating means may be operable to change the absolute subatmospheric pressures, though not their relative pressure differentials, in synchronism with such reciprocation.
  • the present invention relates to apparatus for holding fabric webs on an air-pervious carrier by means of suction during tailoring of the fabric by a cutting tool.
  • the foregoing object can be accomplished in accordance with the present invention by providing a series of vacuum chambers on the side of the fabric carrier opposite the fabric webs, which chambers are gradationally evacuated so that the chamber located directly in the cutting area has a pressure farther below atmospheric than the chamber adjacent to it. It is advantageous to provide vacuum chambers which are stationary to avoid the problems of air leakage associated with movable chambers.
  • a modification of the present invention is to provide in conjunction with a cutting area movable lengthwise relative to the fabric carrier, a series of vacuum chambers arranged along the carrier having a gradational pressure system which is variable in synchronism with travel of the cutting area, so that the subatmospheric pressure in particular chambers is variable to create stronger or weaker suction on the fabric lay-up as required.
  • FIG. 1 is a schematic longitudinal section through tailoring mechanism showing one form of a gradational suction system according to the present invention, for use with a reciprocable fabric carrier; and FIG. 2 is a similar view of a modified suction system.
  • FIG. 3 is a schematic longitudinal section through tailoring mechanism showing another form of gradational suction system, for use with a cutting tool reciprocable lengthwise of a series of vacuum chambers.
  • the stack 2 of fabric webs is covered by a foil or paper overlayer l and lies on a perforated backing sheet 20.
  • the composite layup is carried on an airpervious fabric carrier 3 supported by rollers 30 for lengthwise reciprocation in the direction of arrows P1 and P2 relative to a cutting tool 4.
  • Such cutting tool is vertically movable toward and away from carrier 3, and
  • the leading edge of the paper or foil overlayer l which extends beyond the leading edge of fabric stack 2 and backing sheet 20 is first subject to a relatively weak suction force from chamber 5 upon transition from the suction-free area to the suction area.
  • a relatively weak suction force is sufficient to hold the composite lay-up l, 2, 20 firmly on fabric carrier 3 during the forward travel of the lay-up toward the cutting region.
  • the strong suction force necessary to hold the fabric web stack 2 in fixed position on the carrier 3 against the cutting force is not applied to the overlayer 1 or fabric 2 until the lay-up is moved to a position over chamber 6 located beneath the cutting tool 4. As the leading edge of the lay-up moves to a position overlying chamber 7, the suction is reduced.
  • FIG. 2 A series of five chambers 52, 62, 72, 82 and 92 is shown in FIG. 2 located below the perforate carrier 3, which chambers are connected to a vacuum system (not shown) by conduits 53, 63, 73, 83 and 93, respectively.
  • the conduits can be regulated as described in connection with FIG. 1 to achieve selectively the desired relative pressures and the desired degree of evacuation necessary for different types of fabric in the cutting region. All of the chambers will be evacuated to subatmospheric pressures, but chamber 72, which is located in the cutting region, will have the lowest pressure.
  • the adjacent chambers 62 and 82 immediately fore and aft of chamber 72, respectively, will have a pressure higher than chamber 72 but lower than the pressure in outwardly-adjacent chambers 52 and 92.
  • the air pressure therefore increases in the individual chambers with increased distance from cutting tool 4, or, stated conversely, the suction forces on the lay-up decrease with increased distance from the cutting tool. It has been found that the combined effect of the gradational suction system holds the lay-up so securely that the relatively low suction from the outer chambers 52 and 92 is sufficient to hold the portions of fabric stack 2 in their effective regions on the carrier 3 sufficiently securely so that the fabric webs wont slip relative to each other or relative to the carrier.
  • the present invention is advantageously applicable to a tailoring machine having a stationary fabric carrier 32, as shown in FIG. 3.
  • the cutting tool is mounted for horizontal travel in the directions of both the X and Y coordinates of the cutting line, as well as such tool being movable in a vertical direction to be withdrawn from and inserted into the fabric stack 2.
  • the cutting tool 40 is mounted on a conventional carriage 41.
  • four vacuum chambers 54, 64, 74 and 84 are shown as being arranged in series to maintain the fabric webs of the stack 2 in their positions on the carrier 3, the lay-up including a backing sheet and an overlayer 1 of paper or foil.
  • each of the vacuum chambers has two evacuating conduits, of which only the conduits 55 and 56 for chamber 54 are shown.
  • Each conduit is closed by a valve or other closure member 57,58, 67,68, 77,78, 87,88, each of which members includes an actuation lever.
  • Cutting tool carriage 41 carries two arms 42 and 43 extending lengthwise relative to carrier 32.
  • Arm 42 is located to engage selectively the levers of the valves 57, 67, 77 and 87 connected in the lower capacity vacuum system for opening them, and projects substantially further fore and aft of carriage 41 than does arm 43.
  • Arm 42 is located to engage selectively the levers of the valves 57, 67, 77 and 87 connected in the lower capacity vacuum system for opening them, and projects substantially further fore and aft of carriage 41 than does arm 43.
  • chamber 74 is located in the cutting region defined by the area around cutting tool 40.
  • Closure member 77 is opened by arm 42, and closure member 78 is opened by arm 43, so that chamber 74 is evacuated to create a strong suction force sufficient to hold the fabric web securely during cutting.
  • arm 42 opens closure members 67 and 87 of vacuum chamber 64 and 84, which chambers are contiguous with cutting region chamber 74, so that the adjacent chambers are evacuated to a lesser degree than chamber 74 to create a gradationally weaker suction force than is effective in chamber 74.
  • high evacuating capacity closure member 68 is opened by arm 43 so that a strong suction force is produced in the newlylocated cutting region, while closure member 78 is released to reduce the suction force in chamber 74.
  • low capacity closure member 67 is maintained in its open condition as arm 42 projects progressively further beyond it toward the corresponding member 47 in chamber 57 immediately ahead of the cutting region chamber 64.
  • Closure member 87 is correspondingly released by arm 42 so that chamber 84 which is now remote from the cutting area is no longer subjected to evacuation.
  • apparatus for a tailoring machine for cutting fabric webs having a cutting tool, a cutting region surrounding the cutting tool, an air-pervious fabric carrier for supporting a stack of fabric webs in the cutting region through which suction force can be applied to 2.
  • the evacuating means includes regulating means operable to vary the degree of evacuation in each vacuum chamber for effecting selectively stronger and weaker suction forces, and selecting means for operating said regulating means in response to movement of the cutting region for effecting stronger suction forces in the one chamber of the series located in the cutting region, and weaker suction forces in the chambers adjacent to such cutting region chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Details Of Cutting Devices (AREA)
  • Nonmetal Cutting Devices (AREA)

Abstract

A fabric lay-up is held against the upper side of a porous carrier adjacent to a cutting tool by suction applied by vacuum chambers at the opposite carrier side. A series of vacuum chambers are located adjacent to the cutting tool, each being partially evacuated to a different subatmospheric pressure than adjacent chambers, the most reduced pressure being in the chamber directly opposite the cutting tool. The subatmospheric pressures in the other chambers are always higher fore and aft of the lowest pressure chamber. The carrier may be reciprocated, and the vacuum chamber series may be fixed relative to the cutting tool in the direction of carrier reciprocation. Alternatively, the cutting tool may be reciprocable relative to a stationary vacuum chamber series, and chamber-evacuating means may be operable to change the absolute subatmospheric pressures, though not their relative pressure differentials, in synchronism with such reciprocation.

Description

United States Patent [191 Bystron [111 3,835,747 Sept. 17,1974
FABRIC WEB HOLD-DOWN APPARATUS FOR TAILORING MACHINES Inventor: Bruno Bystron, lngolstadt, Germany Assignee: Schubert & Salzer Maschineniabrik Aktiengesellschaft, lngolstadt, Germany Filed: Aug. 1, 1973 Appl. No.: 384,562
Foreign Application Priority Data Aug. 5, 1972 Germany 2238746 US. Cl. 83/422, 83/451, 83/925 CC Int. Cl D06h 7/24 Field of Search 83/374, 422, 451, 925 CC;
References Cited UNITED STATES PATENTS Gerber et al 83/451 X Primary ExaminerJ. M. Meister I Attorney, Agent. or Firm-Robert W. Beach; Ms. R. M. Van Winkle [57] ABSTRACT A fabric lay-up is held against the upper side of a porous carrier adjacent to a cutting tool by suction applied by vacuum chambers at the opposite carrier side. A series of vacuum chambers are located adjacent to the cutting tool, each being partially evacuated to a different subatmospheric pressure than adjacent chambers, the most reduced pressure being in the chamber directly opposite the cutting tool. The subatmospheric pressures in the other chambers are always higher fore and aft of the lowest pressure chamber. The carrier may be reciprocated, and the vacuum chamber series may be fixed relative to-the cutting tool in the direction of carrier reciprocation. Alternatively, the cutting tool may be reciprocable relative to a stationary vacuum chamber series, and chamberevacuating means may be operable to change the absolute subatmospheric pressures, though not their relative pressure differentials, in synchronism with such reciprocation.
3 Claims, 3 Drawing Figures The present invention relates to apparatus for holding fabric webs on an air-pervious carrier by means of suction during tailoring of the fabric by a cutting tool.
It is conventional to arrange suction devices below an air-pervious fabric carrier so that the fabric webs are pressed against the carrier and held thereon. For economic reasons, the suction created by subatmospheric pressure is applied on the fabric within the limited region in which the cutting tool moves. The amount of suction applied is calculated to assure that the fabric lay-up is neither lifted nor displaced during the motion of the cutting tool; Experience has shown, however, particularly in devices with reciprocable fabric carriers, that the fabric webs carried thereon are subjected to sudden displacement in the transition zone between the suction-free area and the suction area as a result of the sudden application of pressure substantially below atmospheric, producing a thrashing effect on the carrier and causing folds or wrinkles in the fabric which lead to cutting distortions during fabric tailoring. The thrashing effect persists even when a foil or paper layer is laid on top of the fabric stack for the purposes of improving fabric hold-down and preventing imperfect fabric travel by penetration of the cutting tool.
It is the principal object of the present invention to eliminate fabric displacement in the transition from the suction-free area to the suction area in such tailoring machines.
The foregoing object can be accomplished in accordance with the present invention by providing a series of vacuum chambers on the side of the fabric carrier opposite the fabric webs, which chambers are gradationally evacuated so that the chamber located directly in the cutting area has a pressure farther below atmospheric than the chamber adjacent to it. It is advantageous to provide vacuum chambers which are stationary to avoid the problems of air leakage associated with movable chambers. A modification of the present invention is to provide in conjunction with a cutting area movable lengthwise relative to the fabric carrier, a series of vacuum chambers arranged along the carrier having a gradational pressure system which is variable in synchronism with travel of the cutting area, so that the subatmospheric pressure in particular chambers is variable to create stronger or weaker suction on the fabric lay-up as required.
FIG. 1 is a schematic longitudinal section through tailoring mechanism showing one form of a gradational suction system according to the present invention, for use with a reciprocable fabric carrier; and FIG. 2 is a similar view of a modified suction system.
FIG. 3 is a schematic longitudinal section through tailoring mechanism showing another form of gradational suction system, for use with a cutting tool reciprocable lengthwise of a series of vacuum chambers.
In the embodiment of the present invention shown in FIG. 1, the stack 2 of fabric webs is covered by a foil or paper overlayer l and lies on a perforated backing sheet 20. The composite layup is carried on an airpervious fabric carrier 3 supported by rollers 30 for lengthwise reciprocation in the direction of arrows P1 and P2 relative to a cutting tool 4. Such cutting tool is vertically movable toward and away from carrier 3, and
is reciprocable transversely of the carrier. A backing roller 31 supports the fabric lay-up directly beneath cutting tool 4 to maintain the lay-up height in opposition to the downward force exerted by the cutting tool. Below the fabric carrier 3 are three vacuum chambers 5, 6 and 7, which are connected by conduits 50, 60 and 70, respectively, to an evacuating system (not shown). The subatmospheric pressure of each chamber can be adjusted by regulating means, such as regulating valves 51, 61 and 71, for example, or cam shutoffs or other conventional pressure-regulating means.
Vacuum chamber 6, which lies directly in the cutting region is evacuated to a pressure substantially below atmospheric to create a strong suction force required for precisely holding the fabric stack 2 during cutting. The subatmospheric pressure in chambers 5 and 7 is higher than the pressure in chamber 6, and such chambers 5 and 7 are located adjacent to chamber 6, fore and aft thereof, relative to the length of carrier 3.
Assuming that a fabric lay-up is to be fed to the cutting tool 4 by carrier 3 moving in the direction of arrow P1, the leading edge of the paper or foil overlayer l which extends beyond the leading edge of fabric stack 2 and backing sheet 20 is first subject to a relatively weak suction force from chamber 5 upon transition from the suction-free area to the suction area. Such suction force is sufficient to hold the composite lay-up l, 2, 20 firmly on fabric carrier 3 during the forward travel of the lay-up toward the cutting region. The strong suction force necessary to hold the fabric web stack 2 in fixed position on the carrier 3 against the cutting force is not applied to the overlayer 1 or fabric 2 until the lay-up is moved to a position over chamber 6 located beneath the cutting tool 4. As the leading edge of the lay-up moves to a position overlying chamber 7, the suction is reduced.
The procedure just described also occurs when the fabric stack 2 is transported to the cutting area in the direction of arrow P2 or when the carrier 3 is reciprocated to control cutting movement along one coordinate of the cutting pattern. In the latter case, cutting tool 4 describes cutting movement along the other cutting coordinate by moving transversely of the direction of movement of carrier 3. As can now be seen, the fabric stack 2 is subjected to progressively increased or decreased suction forces, and is compressed or relieved gradually thereby so that the transitional change in suction force is far less abrupt than in conventional tailoring machines.
By increasing the number of vacuum chambers in the series, variation in compression of the fabric web stack 2 can be achieved even more gradually to an optimal value in the cutting region. A series of five chambers 52, 62, 72, 82 and 92 is shown in FIG. 2 located below the perforate carrier 3, which chambers are connected to a vacuum system (not shown) by conduits 53, 63, 73, 83 and 93, respectively. The conduits can be regulated as described in connection with FIG. 1 to achieve selectively the desired relative pressures and the desired degree of evacuation necessary for different types of fabric in the cutting region. All of the chambers will be evacuated to subatmospheric pressures, but chamber 72, which is located in the cutting region, will have the lowest pressure. The adjacent chambers 62 and 82 immediately fore and aft of chamber 72, respectively, will have a pressure higher than chamber 72 but lower than the pressure in outwardly- adjacent chambers 52 and 92. The air pressure therefore increases in the individual chambers with increased distance from cutting tool 4, or, stated conversely, the suction forces on the lay-up decrease with increased distance from the cutting tool. It has been found that the combined effect of the gradational suction system holds the lay-up so securely that the relatively low suction from the outer chambers 52 and 92 is sufficient to hold the portions of fabric stack 2 in their effective regions on the carrier 3 sufficiently securely so that the fabric webs wont slip relative to each other or relative to the carrier.
It is, of course, possible to provide a separate evacuating system for each of the chambers 5, 6 and 7, or 52, 62, 72, 82 and 92, whereby each such system can have an optimal capacity correlated to the particular evacuating requirements of the vacuum chamber to which it is connected. In such case, it would be possible to eliminate the regulating means 51, 61 and 71. However, it is preferred that such regulating mechanism be supplied so that the pressure in each chamber can be varied to obtain an overall gradational suction system best adapted to the type and quantity of fabric webs which make up the stack 2.
The present invention is advantageously applicable to a tailoring machine having a stationary fabric carrier 32, as shown in FIG. 3. The cutting tool is mounted for horizontal travel in the directions of both the X and Y coordinates of the cutting line, as well as such tool being movable in a vertical direction to be withdrawn from and inserted into the fabric stack 2. The cutting tool 40 is mounted on a conventional carriage 41. By way of example, four vacuum chambers 54, 64, 74 and 84 are shown as being arranged in series to maintain the fabric webs of the stack 2 in their positions on the carrier 3, the lay-up including a backing sheet and an overlayer 1 of paper or foil. In this instance, each of the vacuum chambers has two evacuating conduits, of which only the conduits 55 and 56 for chamber 54 are shown. Each conduit is closed by a valve or other closure member 57,58, 67,68, 77,78, 87,88, each of which members includes an actuation lever.
The vacuum system to which the conduits carrying valves 58, 68, 78 and 88 are connected for respective chambers 54, 64, 74 and 84, has a greater vacuumcreating capacity than the vacuum system in which the conduits carrying valves 57, 67, 77 and 87 are connected. Consequently, the pressure in the chamber 54, for example, can be reduced to create a relatively weak suction force by opening valve 57 while valve 58 is closed. A relatively higher suction force is created in chamber 54 when valve 58 is opened, while valve 57 is closed. If both valves are opened, the cumulative effect would be to reduce the pressure in the chamber below the pressure which can be achieved by opening valve 58 alone. In the particular construction shown in FIG. 3, both valves will be closed or the lower capacity valve of a particular chamber will be opened, or both valves will be opened, as explained below. The actuation of the valve is effected synchronously with translation of the cutting tool along the X coordinate in this example.
Cutting tool carriage 41 carries two arms 42 and 43 extending lengthwise relative to carrier 32. Arm 42 is located to engage selectively the levers of the valves 57, 67, 77 and 87 connected in the lower capacity vacuum system for opening them, and projects substantially further fore and aft of carriage 41 than does arm 43. Arm
43 is located to engage selectively the levers of valves 58, 68, 78 and 88 of the higher capacity vacuum system for opening them. All of such valve members are normally closed, such as by spring force means (not shown), operable on the valve levers. In the example shown, arm 42 engageable with the low capacity valve members can open the corresponding valves of three chambers simultaneously, namely, the chamber in the cutting region, defined by the location of carriage 41 and its cutting tool, and the chambers on either side of the cutting region chamber. Arm 43 engageable with the high capacity valve levers can open only one such valve at a time, namely, the high capacity valve of the cutting region vacuum chamber.
With carriage 41 in the position shown in FIG. 3, chamber 74 is located in the cutting region defined by the area around cutting tool 40. Closure member 77 is opened by arm 42, and closure member 78 is opened by arm 43, so that chamber 74 is evacuated to create a strong suction force sufficient to hold the fabric web securely during cutting. Simultaneously, arm 42 opens closure members 67 and 87 of vacuum chamber 64 and 84, which chambers are contiguous with cutting region chamber 74, so that the adjacent chambers are evacuated to a lesser degree than chamber 74 to create a gradationally weaker suction force than is effective in chamber 74.
If the carriage 41 and cutting tool 40 are moved to the left, from the position shown in FIG. 3, to translate the cutting region toward chamber 64, high evacuating capacity closure member 68 is opened by arm 43 so that a strong suction force is produced in the newlylocated cutting region, while closure member 78 is released to reduce the suction force in chamber 74. Simultaneously, low capacity closure member 67 is maintained in its open condition as arm 42 projects progressively further beyond it toward the corresponding member 47 in chamber 57 immediately ahead of the cutting region chamber 64. Closure member 87 is correspondingly released by arm 42 so that chamber 84 which is now remote from the cutting area is no longer subjected to evacuation. Consequently, it can be seen that, regardless of which vacuum chamber is located directly beneath the cutting tool, the lowest pressure will be in the chamber corresponding to the cutting region and the chambers immediately adjacent to opposite sides thereof will be partially evacuated to create a weaker suction force. Regardless of which chamber has the lowest pressure, and therefore exerts the strongest suction, the gradational suction system is maintained relative to the cutting region.
As indicated above, the number of vacuum chambers could be increased, and additional vacuum systems could be supplied, together with corresponding closure members and carriage-mounted valve-opening arms, so that the difference in pressure between adjacent chambers can be reduced. In the case of a movable carrier, such as shown in FIG. 1, for example, the vacuum chambers and their corresponding closure members could be mounted for movement with the carrier and the valve-opening arm could be stationary.
I claim:
1. In apparatus for a tailoring machine for cutting fabric webs having a cutting tool, a cutting region surrounding the cutting tool, an air-pervious fabric carrier for supporting a stack of fabric webs in the cutting region through which suction force can be applied to 2. The apparatus defined in claim 1, in which the vacuum chamber series is stationary.
3. The apparatus defined in claim 1, in which the cutting region is movable relative to the vacuum chamber series, and the evacuating means includes regulating means operable to vary the degree of evacuation in each vacuum chamber for effecting selectively stronger and weaker suction forces, and selecting means for operating said regulating means in response to movement of the cutting region for effecting stronger suction forces in the one chamber of the series located in the cutting region, and weaker suction forces in the chambers adjacent to such cutting region chamber.

Claims (3)

1. In apparatus for a tailoring machine for cutting fabric webs having a cutting tool, a cutting region surrounding the cutting tool, an air-pervious fabric carrier for supporting a stack of fabric webs in the cutting region through which suction force can be applied to hold the fabric webs in position for cutting, the improvement comprising a plurality of vacuum chambers arranged in series at the side of the fabric carrier opposite the stack of fabric webs, one of said chambers being disposed in the cutting region, evacuating means for evacuating said vacuum chambers differentially to subatmospheric pressures for effecting differential suction forces along the fabric carrier, the one of said chambers located in the cutting region being evacuated to a pressure lower than the pressure in the chambers of the series adjacent to said cutting region chamber.
2. The apparatus defined in claim 1, in which the vacuum chamBer series is stationary.
3. The apparatus defined in claim 1, in which the cutting region is movable relative to the vacuum chamber series, and the evacuating means includes regulating means operable to vary the degree of evacuation in each vacuum chamber for effecting selectively stronger and weaker suction forces, and selecting means for operating said regulating means in response to movement of the cutting region for effecting stronger suction forces in the one chamber of the series located in the cutting region, and weaker suction forces in the chambers adjacent to such cutting region chamber.
US38456273 1972-08-05 1973-08-01 Fabric web hold-down apparatus for tailoring machines Expired - Lifetime US3835747A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2238746A DE2238746C3 (en) 1972-08-05 1972-08-05 Device for cutting textile lengths of material

Publications (1)

Publication Number Publication Date
US3835747A true US3835747A (en) 1974-09-17

Family

ID=5852852

Family Applications (1)

Application Number Title Priority Date Filing Date
US38456273 Expired - Lifetime US3835747A (en) 1972-08-05 1973-08-01 Fabric web hold-down apparatus for tailoring machines

Country Status (7)

Country Link
US (1) US3835747A (en)
JP (1) JPS4952386A (en)
DE (1) DE2238746C3 (en)
FR (1) FR2194823B1 (en)
GB (1) GB1434742A (en)
IT (1) IT991364B (en)
NL (1) NL7310766A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060016A (en) * 1976-07-26 1977-11-29 Gerber Garment Technology, Inc. Method and apparatus for blanking out pattern pieces from a layup
DE3003273A1 (en) 1979-01-31 1980-08-07 Gerber Garment Technology Inc DEVICE AND METHOD FOR WORKING ON FOLLOWING FLAT MATERIAL SEGMENTS
USRE30757E (en) * 1977-04-22 1981-10-06 Gerber Garment Technology, Inc. Closed loop apparatus for cutting sheet material
US4322993A (en) * 1979-03-06 1982-04-06 Stumpf Guenter O Arrangement in a cutting apparatus for engaging and retaining a web-like material, particularly superposed material webs
US4485712A (en) * 1981-12-28 1984-12-04 Gerber Garment Technology, Inc. Method and apparatus for holding sheet material in a sectioned vacuum bed
US4528878A (en) * 1981-12-28 1985-07-16 Gerber Garment Technology, Inc. Method and apparatus for holding sheet material on a sectioned vacuum bed
US5727434A (en) * 1993-08-13 1998-03-17 Ryobi America Corporation Circular saw air table
US6021699A (en) * 1998-07-23 2000-02-08 Caspar; Roman C. Waterjet cutting head
US6681670B2 (en) 2001-03-07 2004-01-27 Paprima Industries Inc. Water jet edge cutter with integral trim chute
US6699353B1 (en) 1999-01-20 2004-03-02 Ahlstrom Lystil Sa Use of an air permeable paper sheet as support element for a stack of fabrics
US20050034576A1 (en) * 2003-08-11 2005-02-17 Ray Theodore M. Bun slicer
US20070204735A1 (en) * 2000-07-19 2007-09-06 Fmc Technologies, Inc. Three axis portioning method
WO2008128732A1 (en) * 2007-04-20 2008-10-30 Assyst Bullmer Spezialmaschinen Gmbh & Co. Kg Arrangement and method for cutting flexible materials in the correct position
CN100553906C (en) * 2004-01-30 2009-10-28 株式会社岛精机制作所 The attraction method of adjustment and the device of cutter
CN109571607B (en) * 2018-11-24 2020-08-18 深圳市格调家私有限公司 Multi-layer automatic cutting machine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2736401C2 (en) * 1977-08-12 1985-02-07 Continental Gummi-Werke Ag, 3000 Hannover Device for cross-cutting webs of flexible materials
FR2444109A1 (en) * 1978-12-12 1980-07-11 Hoglund Stig Cutter, for linings and waddings - having vacuum applied to table, to reduce bulk of porous materials to be cut
DE3326816A1 (en) * 1983-07-26 1985-02-14 Krauss U. Reichert Gmbh + Co Kg Spezialmaschinenfabrik, 7012 Fellbach Method and apparatus for cutting a stack consisting of a plurality of flat-material layers
ES8600997A1 (en) * 1983-08-16 1985-10-16 Gerber Garment Technology Inc Vacuum holddown system
US4587873A (en) * 1985-05-22 1986-05-13 Gerber Scientific, Inc. Apparatus with belt valve vacuum system for working on work material
GB2175237B (en) * 1985-05-22 1988-07-27 Gerber Scient Inc Apparatus and method for supporting and working on sheet material
IT1220898B (en) * 1988-06-13 1990-06-21 Buderus Sell COMPACT SYSTEM OF TEXTILE SURFACES IN CUTTING TABLES
KR930012210B1 (en) * 1990-11-16 1993-12-24 무도오 고오교오 가부시기가이샤 Auto-drawing machine
FR2774869B1 (en) * 1998-02-13 2000-04-14 Ahlstrom Lystil Sa SHEET STRUCTURE WHICH CAN BE USED AS A SUPPORT ELEMENT FOR A STACK OF FABRICS ON A CLOTHING LINE AND METHOD FOR OBTAINING SAME
US6042095A (en) * 1998-07-15 2000-03-28 Gerber Technology, Inc. Method and apparatus for retaining one or more layers of sheet type work material on a support surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495492A (en) * 1969-05-05 1970-02-17 Gerber Garment Technology Inc Apparatus for working on sheet material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2062508A5 (en) * 1969-09-22 1971-06-25 Muto Ind Cy Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3495492A (en) * 1969-05-05 1970-02-17 Gerber Garment Technology Inc Apparatus for working on sheet material

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060016A (en) * 1976-07-26 1977-11-29 Gerber Garment Technology, Inc. Method and apparatus for blanking out pattern pieces from a layup
USRE30757E (en) * 1977-04-22 1981-10-06 Gerber Garment Technology, Inc. Closed loop apparatus for cutting sheet material
DE3003273A1 (en) 1979-01-31 1980-08-07 Gerber Garment Technology Inc DEVICE AND METHOD FOR WORKING ON FOLLOWING FLAT MATERIAL SEGMENTS
DE3050324A1 (en) * 1979-01-31 1982-07-22
US4345496A (en) * 1979-01-31 1982-08-24 Gerber Garment Technology, Inc. Apparatus for working on successive segments of sheet material
US4322993A (en) * 1979-03-06 1982-04-06 Stumpf Guenter O Arrangement in a cutting apparatus for engaging and retaining a web-like material, particularly superposed material webs
US4485712A (en) * 1981-12-28 1984-12-04 Gerber Garment Technology, Inc. Method and apparatus for holding sheet material in a sectioned vacuum bed
US4528878A (en) * 1981-12-28 1985-07-16 Gerber Garment Technology, Inc. Method and apparatus for holding sheet material on a sectioned vacuum bed
US5727434A (en) * 1993-08-13 1998-03-17 Ryobi America Corporation Circular saw air table
US6021699A (en) * 1998-07-23 2000-02-08 Caspar; Roman C. Waterjet cutting head
US6699353B1 (en) 1999-01-20 2004-03-02 Ahlstrom Lystil Sa Use of an air permeable paper sheet as support element for a stack of fabrics
US20090149986A1 (en) * 2000-07-19 2009-06-11 John Bean Technologies Corporation Method and system for portioning foodstuff to user-specified shape
US20070204735A1 (en) * 2000-07-19 2007-09-06 Fmc Technologies, Inc. Three axis portioning method
US7841264B2 (en) 2000-07-19 2010-11-30 John Bean Technologies Corporation Three axis portioning method
US8025000B2 (en) 2000-07-19 2011-09-27 John Bean Technologies Corporation Three axis portioning method
US8166856B2 (en) 2000-07-19 2012-05-01 John Bean Technologies Corporation Method for portioning foodstuff to user-specified shape
US9770838B2 (en) 2000-07-19 2017-09-26 John Bean Technologies Corporation System for portioning foodstuff to user-specified shape
US6681670B2 (en) 2001-03-07 2004-01-27 Paprima Industries Inc. Water jet edge cutter with integral trim chute
US20050034576A1 (en) * 2003-08-11 2005-02-17 Ray Theodore M. Bun slicer
CN100553906C (en) * 2004-01-30 2009-10-28 株式会社岛精机制作所 The attraction method of adjustment and the device of cutter
WO2008128732A1 (en) * 2007-04-20 2008-10-30 Assyst Bullmer Spezialmaschinen Gmbh & Co. Kg Arrangement and method for cutting flexible materials in the correct position
CN109571607B (en) * 2018-11-24 2020-08-18 深圳市格调家私有限公司 Multi-layer automatic cutting machine

Also Published As

Publication number Publication date
GB1434742A (en) 1976-05-05
DE2238746A1 (en) 1974-02-07
DE2238746C3 (en) 1978-04-20
JPS4952386A (en) 1974-05-21
NL7310766A (en) 1974-02-07
FR2194823A1 (en) 1974-03-01
FR2194823B1 (en) 1975-08-22
DE2238746B2 (en) 1976-05-26
IT991364B (en) 1975-07-30

Similar Documents

Publication Publication Date Title
US3835747A (en) Fabric web hold-down apparatus for tailoring machines
US3598006A (en) Method for working on sheet material and other objects
US4528878A (en) Method and apparatus for holding sheet material on a sectioned vacuum bed
US4476756A (en) Apparatus for working limp sheet material on a conveyor
US3294396A (en) Sheet feeding mechanism having a single control member for actuating a suction, air pressure, and pump means
US3624807A (en) Sheet-conveying device
JPH05162098A (en) Cutting device for stacked material
CN107696150A (en) A kind of drop perforating device of automatic loading/unloading
US4253364A (en) Apparatus for discharging and separating skin packages
US4444078A (en) Apparatus for cutting sheet material
JPS6141719B2 (en)
JP2000061895A (en) Device and method of supporting single layer or multiple- layered sheet material on support surface
US5907984A (en) Parallel cutting assembly for cutting sheet material
US20020033006A1 (en) Packaging machine
US3841187A (en) Method and apparatus for holding sheet material
JP2017071029A (en) Cutting system, lug cutter, spreading device, and cutting device
JP4291972B2 (en) sewing machine
GB2146461A (en) Vacuum holddown system
KR101485508B1 (en) Cutting apparatus and method for fabric
US2634562A (en) Method of evacuating and heatsealing packages
US6050164A (en) Adjustable resealer
GB2105238A (en) Web processing machine such as automatic slitter scorer with web support
US3779186A (en) Self-aligning edge stitching apparatus for traveling webs
JPS61501143A (en) Packaging machine with sealing station
US3557517A (en) Method for the continuous production of evacuated packages and apparatus for the performance of the aforesaid method