US3835686A - Method of manufacturing a steel component having a head part and a hollow shank part - Google Patents
Method of manufacturing a steel component having a head part and a hollow shank part Download PDFInfo
- Publication number
- US3835686A US3835686A US00338946A US33894673A US3835686A US 3835686 A US3835686 A US 3835686A US 00338946 A US00338946 A US 00338946A US 33894673 A US33894673 A US 33894673A US 3835686 A US3835686 A US 3835686A
- Authority
- US
- United States
- Prior art keywords
- punch
- slug
- die cavity
- component
- bore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K21/00—Making hollow articles not covered by a single preceding sub-group
- B21K21/08—Shaping hollow articles with different cross-section in longitudinal direction, e.g. nozzles, spark-plugs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/76—Making machine elements elements not mentioned in one of the preceding groups
- B21K1/762—Coupling members for conveying mechanical motion, e.g. universal joints
Definitions
- a steel slug is positioned in a die cavity having a narrow portion which defines the shape of the shank part of the required component.
- One end of the slug extends into the narrow portion of the die cavity and engages a first punch defining the shape of the bore in the hollow shank part, whereas the other end of the slug extends into a wide portion of the die cavity and engages a second punch.
- the first and second punches are then caused to undergo relative movement towards each other so that the first punch enters the one end of the slug.
- the first punch As the first punch enters the slug, it produces the required bore for the shank part of the component and the region of the slug surrounding the first punch moves relative thereto substantially without constraint.
- the first punch inentering the slug, causes metal to flow towards the other end of the slug and into the wide portion of the die cavity, which is so dimensioned that the metal is not constrained to conform to the shape of the wide portion of the die cavity.
- This invention relates to a method of manufacturing a steel component having a head part and a hollow shank part.
- a method includes the steps of:
- a method includes the steps of:
- said abutment is in the form of a hollow punch surrounding said first punch, the hollow punch being capable of limited movement relative to the first punch, with a fixed stop serving to limit movement of the hollow punch so that, when engaging the fixed stop, the hollow punch prevents movement of said region of the slug relative to the first punch.
- the invention resides in a method of manufacturing a roller clutch sleeve of the kind having a head portion and a shank portion, the bore in the sleeve being stepped to define a wide portion within the head portion and a narrow portion within the shank portion, and the wall of the wide portion of the bore defining an internal cam surface in the head portion, the method including the steps of starting with a component manufactured in accordance with the second aspectof the invention so that the hollow shank part of the component defines the shape of the shank portion of the sleeve, and further including the steps of:
- step (d) is performed by a piercing tool.
- the steel slug is produced by cropping a substantially cylindrical steel bar so that the slug has a length to diameter ratio of not less than 0.75 and a diameter substantially equal to the external diameter of the shank part of the component.
- the length to diameter ratio of the cropped slug is greater than one.
- the slug is then heat treated to remove any work. hardening produced during cropping.
- FIG. 1 is a sectional view of a roller clutch sleeve
- FIGS. 2 to 5 are sectional views illustrating four stages respectively during a method according to a first example of the invention of producing the sleeve shown in FIG. 1.
- a roller clutch sleeve 9 the sleeve having a cylindrical head portion 9a and a cylindrical shank portion 9b joined to the head portion by a tapering portion 90.
- the bore 10 in the sleeve 9 is stepped to define a wide portion 10a in the head portion 9a and a narrow portion 10b in the shank portion 9b, and the wall of the wide portion 10a is arranged to define an internal cam surface (not shown) in the head portion 9a.
- the sleeve 9 was manufactured from a cylindrical steel bar '11, conveniently a centreless, turned steel bar 11, or alternatively a bright drawn steel bar or an as-rolled bar.
- the bar 11 was first fed into a cropping tool 12 and was cropped to produce a slug 13, the feeding of the bar 11 into the tool 12 being controlled by means of a fixed stop (not shown) so that the cropping operation produced a slug 13 of predetermined weight, the weight of the slug to be formed being determined by the volume of the slug necessary to produce a tinished sleeve 9 of the desired dimensions.
- the tool 12 was arranged to produce a slug 13 of weight between 480 and 500 grams and length 2. [75 inch.
- the diameter of the slug was arranged to be substantially equal to the diameter of the shank portion 9b of the sleeve and to have a value of 1.535 inch.
- the slug 13 was then heat treated to remove any work hardening of the steel which may have resulted during the cropping operation.
- the heat treatment was a normalising operation, with the slug 13 being heated at 925C for 1 hour, or alternatively the heat treatment was a spheroidising operation, with the slug being heated at 680C for 4 hours.
- the slug 13 was lubricated by a standard phosphating and soaping treatment and was positioned in the die cavity 14 of an extrusion die set 15. It is, however, to be appreciated that means other than cropping could have been employed to obtain the slug 13, such as, for example, sawing or turning, in which case heat treatment of the slug may not have been necessary.
- the die cavity 14 was defined in a die part 21 and included a narrow, cylindrical portion 14a and a wide, cylindrical portion 14b.
- the portion 14a had a diameter substantially equal to the external diameter of the shank portion 9b of the sleeve 9 and the portion 14b. a diameter substantially equal to the external diameter of the head portion 9a.
- the slug 13 was positioned in the die cavity 14 so that one end 13a of the slug engaged a punch assembly 16 extending into the portion 140 and so that the other end 13b of the slug extended into the portion 14b of the cavity.
- the punch assembly 16 included a central, fixed punch 18, defining the shape of the narrow portion b of the bore in the sleeve 9, and an outer, hollow punch 19 slidable relative to the punch 18 and die cavity 14.
- the die part 21 was resiliently mounted above a base 22 of the die set, and hence was slidable relative to the punch assembly 16 towards and away from the base 22.
- a further punch 17 was secured to a movable platen (not shown) of the die set by way of a support assembly 31 which was positioned above the die part 21.
- the assembly 31 engaged the die part 21 so that, during further movement of the platen, the punch 17 was effectively secured to the die part 21 so that the punch 17 and the die part 21 moved together.
- Removable spacers (not shown) were provided within the assembly 31 so that, prior to movement of the movable platen, the position of the punch 17 in relation to the die cavity 14 could be adjusted.
- the punch 17, the surface and the wall of the portion 14b were arranged so that together they defined an annular space 20 of volume greater than the total volume of metal displaced towards the end 13b of the slug during the forming operation so that, at all times, the displaced metal flowed freely into the portion 14b and was not constrained to conform to the shape of the portion 14b.
- the portion 14b had a diameter of 2.32 inch and it was found that the preferred volume for the space 20 was obtained when the maximum axial distance between the punch 17 and the surface 140 was 0.650 inch. In fact, it was found that, only by ensuring that metal flowed substantially freely during the forming operation, was it possible to maintain the stresses on the punch 18 within tolerable limits. Also, it is to be understood that since the punch 19 was arranged to be slidable relative to the punch 18, the region of the end 13a of the slug surrounding the punch 18 was able to move during the forming operation substantially without constraint.
- a fixed stop 23 was positioned in the path of movement of the punch 19.
- the punch 19 defined an abutment preventing further movement of the punch 19 relative to the punch 18, and hence further movement of the punch 18 into the slug 13.
- the arrangement was such that when the punch 19 engaged the fixed stop 23 to prevent further movement of the punch 19, the die parts 21 and punch 17 were capable of further movement relative to the punch assembly 16.
- the component 24 had an overall length of l.775 inch and included a head part 24a of maximum diameter 2.32 inch.
- the component further included a hollow shank part 24b defining the shank portion 9b of the required roller clutch sleeve, the diameter of the bore in the part 24b being 0.782 inch.
- the component 24 was removed from the die 15 and the head part 24a was pierced to produce a bore in the head part communicating with and of the same diameter as the bore in the shank part 24b.
- the pierced component was then treated at 680C for 4 hours, whereafter the component was lubricated by a standard phosphating and soaping application.
- the lubricated component 24 was then positioned in an extrusion die 25 and an impact extrusion operation was performed on the component.
- extrusion was effected by applying a load of 242 tons through an extrusion punch 26 to the free end of the head portion 24a of the component.
- a mandrel 27 was positioned in the bore in the component 24 and the free end of the hollow shank portion 24b of the component was held against movement by a stationary punch 28, whereby application of pressure to the component 24 through the punch 26 caused flow of metal in the opposite direction to the direction of movement of the punch.
- each of the ribs 29 defines an abutment against which a spring is flexed so as to urge a roller into engagement with the cam surface on the wall of the wide portion 10a of the bore 10.
- the ribs need not be formed integral with the sleeve 9, but could be formed by mounting separate pins in the stepped part of the wall of the bore 10 in the sleeve.
- the method described above was repeated, but in this modification, the final sleeve 9 was required to have reduced overall dimensions, as compared with the sleeve produced in the preceding example.
- the steel bar 11 was cropped to produce a slug of weight between 215 and 220 grams, of length 2.92 inch, and of diameter 0.7973 inch.
- the slug was formed in the die 15 by applying a pressure of 150 tons to the punch 17, with the punch being secured relative to the die part 21 so that the maximum axial distance between the surface 14c and the punch 17 was between 0.5 and 0.7 inch.
- the component 24 thus produced had an overall length of 1.6 inch, a head portion 24a of maximum diameter of 0.85 inch, which was arranged to be substantially equal to the diameter of the head part 9a of the finished sleeve 9, and had a hollow shank portion 24b defining the shank part 9b of the finished sleeve, with the bore in the portion 24b having a diameter of 0.64 inch.
- the head portion 24a was then pierced to produce a bore extending through the component and, following heat treatment and lubrication, an impact extrusion operation was performed on the head portion 24a by applying a load of 145 tons to the punch 26.
- the tapering portion 9c of the sleeve 9 was arranged to define an included angle of 170.
- the component produced in the example described above, together with the modification thereof is particularly designed for use as a roller clutch sleeve for a starter motor.
- the component 24 produced at an intermediate stage of the method may define a desirable end product, in which case, of course, further processing of the component to produce a roller clutch sleeve would not be performed.
- a method of manufacturing a steel component having a head part and a hollow shank part including the steps of:
- a method of manufacturing a steel component having a head part and a hollow shank part including the steps of:
- said abutment is in the form of a hollow punch surrounding said first punch, the hollow punch being capable of limited movement relative to the first punch, with a fixed stop serving to limit movement of the hollow punch so that, when engaging the fixed stop, the hollow punch prevents movement of said region of the slug relative to the first punch.
- step (d) is performed by a piercing tool.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Forging (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1441072A GB1411632A (en) | 1972-03-28 | 1972-03-28 | Method of manufacturing a steel component having a head part and a hollow shank part |
Publications (1)
Publication Number | Publication Date |
---|---|
US3835686A true US3835686A (en) | 1974-09-17 |
Family
ID=10040706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00338946A Expired - Lifetime US3835686A (en) | 1972-03-28 | 1973-03-07 | Method of manufacturing a steel component having a head part and a hollow shank part |
Country Status (11)
Country | Link |
---|---|
US (1) | US3835686A (xx) |
JP (1) | JPS5622300B2 (xx) |
AR (1) | AR197891A1 (xx) |
BR (1) | BR7302232D0 (xx) |
DE (1) | DE2312624A1 (xx) |
ES (1) | ES412977A1 (xx) |
FR (1) | FR2178099B1 (xx) |
GB (1) | GB1411632A (xx) |
IN (1) | IN138529B (xx) |
IT (1) | IT979555B (xx) |
ZA (1) | ZA731400B (xx) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4341106A (en) * | 1977-04-13 | 1982-07-27 | Gleason Works | Apparatus for controlling the movement of a reciprocatory hydraulically driven element of a metal forming machine |
US4847968A (en) * | 1985-10-16 | 1989-07-18 | Nippondenso Co., Ltd. | Forging method for producing a pulley |
US4882924A (en) * | 1987-09-15 | 1989-11-28 | Sanshin Industry Co., Ltd. | Method and apparatus for manufacturing hollow cylindrical guide roller for magnetic recording tape |
US4945749A (en) * | 1989-10-30 | 1990-08-07 | General Motors Corporation | Cold forming dies and cold forming process |
US5296317A (en) * | 1992-09-03 | 1994-03-22 | Water Gremlin Co. | High torque battery terminal and method of making same |
US5373720A (en) * | 1992-09-03 | 1994-12-20 | Water Gremlin Company | Method of making battery terminal with necked flange |
US20050153202A1 (en) * | 2003-07-03 | 2005-07-14 | Water Gremlin | Two part cold formed battery terminal |
US20060068279A1 (en) * | 2002-06-04 | 2006-03-30 | Tulip Corporation | Cold formed battery terminal |
US7838145B2 (en) | 2004-01-02 | 2010-11-23 | Water Gremlin Company | Battery part |
US8497036B2 (en) | 2009-04-30 | 2013-07-30 | Water Gremlin Company | Battery parts having retaining and sealing features and associated methods of manufacture and use |
US8512891B2 (en) | 2002-03-29 | 2013-08-20 | Water Gremlin Company | Multiple casting apparatus and method |
US8701743B2 (en) | 2004-01-02 | 2014-04-22 | Water Gremlin Company | Battery parts and associated systems and methods |
US9748551B2 (en) | 2011-06-29 | 2017-08-29 | Water Gremlin Company | Battery parts having retaining and sealing features and associated methods of manufacture and use |
US9954214B2 (en) | 2013-03-15 | 2018-04-24 | Water Gremlin Company | Systems and methods for manufacturing battery parts |
US11038156B2 (en) | 2018-12-07 | 2021-06-15 | Water Gremlin Company | Battery parts having solventless acid barriers and associated systems and methods |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH026135U (xx) * | 1988-06-27 | 1990-01-16 | ||
CN114054656B (zh) * | 2021-11-15 | 2023-10-20 | 中北大学 | 一种大投影面积的异形箱体挤压成形方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3283556A (en) * | 1961-03-24 | 1966-11-08 | Textron Inc | Apparatus for forming articles |
US3540255A (en) * | 1967-12-13 | 1970-11-17 | Lamson & Sessions Co | Method and apparatus for making hollow metal articles |
US3589164A (en) * | 1969-03-11 | 1971-06-29 | Verson Allsteel Press Co | Method and apparatus for extruding double-ended metal extrusions |
US3651683A (en) * | 1969-03-15 | 1972-03-28 | Rudolf Liebergeld | Cold moulding press |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1112344A (fr) * | 1953-11-12 | 1956-03-13 | Kabel U Metallwerke Neumeyer A | Procédé et dispositif d'estampage à la presse, en particulier à froid, de pièces de forme à collerette, en métal, de préférence en acier |
FR1339449A (fr) * | 1962-11-26 | 1963-10-04 | Procédé et outil pour le pressage à froid de vis à bride et à tige creuse |
-
1972
- 1972-03-28 GB GB1441072A patent/GB1411632A/en not_active Expired
-
1973
- 1973-02-27 IT IT20951/73A patent/IT979555B/it active
- 1973-02-28 ZA ZA731400A patent/ZA731400B/xx unknown
- 1973-03-07 IN IN503/CAL/1973A patent/IN138529B/en unknown
- 1973-03-07 US US00338946A patent/US3835686A/en not_active Expired - Lifetime
- 1973-03-14 DE DE2312624A patent/DE2312624A1/de not_active Withdrawn
- 1973-03-24 ES ES412977A patent/ES412977A1/es not_active Expired
- 1973-03-27 JP JP3499173A patent/JPS5622300B2/ja not_active Expired
- 1973-03-28 BR BR732232A patent/BR7302232D0/pt unknown
- 1973-03-28 AR AR247289A patent/AR197891A1/es active
- 1973-03-28 FR FR7311105A patent/FR2178099B1/fr not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3283556A (en) * | 1961-03-24 | 1966-11-08 | Textron Inc | Apparatus for forming articles |
US3540255A (en) * | 1967-12-13 | 1970-11-17 | Lamson & Sessions Co | Method and apparatus for making hollow metal articles |
US3589164A (en) * | 1969-03-11 | 1971-06-29 | Verson Allsteel Press Co | Method and apparatus for extruding double-ended metal extrusions |
US3651683A (en) * | 1969-03-15 | 1972-03-28 | Rudolf Liebergeld | Cold moulding press |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4341106A (en) * | 1977-04-13 | 1982-07-27 | Gleason Works | Apparatus for controlling the movement of a reciprocatory hydraulically driven element of a metal forming machine |
US4847968A (en) * | 1985-10-16 | 1989-07-18 | Nippondenso Co., Ltd. | Forging method for producing a pulley |
US4882924A (en) * | 1987-09-15 | 1989-11-28 | Sanshin Industry Co., Ltd. | Method and apparatus for manufacturing hollow cylindrical guide roller for magnetic recording tape |
US4945749A (en) * | 1989-10-30 | 1990-08-07 | General Motors Corporation | Cold forming dies and cold forming process |
US5296317A (en) * | 1992-09-03 | 1994-03-22 | Water Gremlin Co. | High torque battery terminal and method of making same |
US5349840A (en) * | 1992-09-03 | 1994-09-27 | Water Gremlin Company | Method of making a high torque battery terminal |
US5373720A (en) * | 1992-09-03 | 1994-12-20 | Water Gremlin Company | Method of making battery terminal with necked flange |
US8512891B2 (en) | 2002-03-29 | 2013-08-20 | Water Gremlin Company | Multiple casting apparatus and method |
US9034508B2 (en) | 2002-03-29 | 2015-05-19 | Water Gremlin Company | Multiple casting apparatus and method |
US20060068279A1 (en) * | 2002-06-04 | 2006-03-30 | Tulip Corporation | Cold formed battery terminal |
US20050153202A1 (en) * | 2003-07-03 | 2005-07-14 | Water Gremlin | Two part cold formed battery terminal |
US7838145B2 (en) | 2004-01-02 | 2010-11-23 | Water Gremlin Company | Battery part |
US8202328B2 (en) | 2004-01-02 | 2012-06-19 | Water Gremlin Company | Battery part |
US10283754B2 (en) | 2004-01-02 | 2019-05-07 | Water Gremlin Company | Battery parts and associated systems and methods |
US9190654B2 (en) | 2004-01-02 | 2015-11-17 | Water Gremlin Company | Battery parts and associated systems and methods |
US8701743B2 (en) | 2004-01-02 | 2014-04-22 | Water Gremlin Company | Battery parts and associated systems and methods |
US8802282B2 (en) | 2009-04-30 | 2014-08-12 | Water Gremlin Company | Battery parts having retaining and sealing features and associated methods of manufacture and use |
US9917293B2 (en) | 2009-04-30 | 2018-03-13 | Water Gremlin Company | Battery parts having retaining and sealing features and associated methods of manufacture and use |
US9935306B2 (en) | 2009-04-30 | 2018-04-03 | Water Gremlin Company | Battery parts having retaining and sealing features and associated methods of manufacture and use |
US8497036B2 (en) | 2009-04-30 | 2013-07-30 | Water Gremlin Company | Battery parts having retaining and sealing features and associated methods of manufacture and use |
US10910625B2 (en) | 2009-04-30 | 2021-02-02 | Water Gremlin Company | Battery parts having retaining and sealing features and associated methods of manufacture and use |
US11942664B2 (en) | 2009-04-30 | 2024-03-26 | Water Gremlin Company | Battery parts having retaining and sealing features and associated methods of manufacture and use |
US9748551B2 (en) | 2011-06-29 | 2017-08-29 | Water Gremlin Company | Battery parts having retaining and sealing features and associated methods of manufacture and use |
US10181595B2 (en) | 2011-06-29 | 2019-01-15 | Water Gremlin Company | Battery parts having retaining and sealing features and associated methods of manufacture and use |
US9954214B2 (en) | 2013-03-15 | 2018-04-24 | Water Gremlin Company | Systems and methods for manufacturing battery parts |
US10217987B2 (en) | 2013-03-15 | 2019-02-26 | Water Gremlin Company | Systems and methods for manufacturing battery parts |
US11038156B2 (en) | 2018-12-07 | 2021-06-15 | Water Gremlin Company | Battery parts having solventless acid barriers and associated systems and methods |
US11283141B2 (en) | 2018-12-07 | 2022-03-22 | Water Gremlin Company | Battery parts having solventless acid barriers and associated systems and methods |
US11804640B2 (en) | 2018-12-07 | 2023-10-31 | Water Gremlin Company | Battery parts having solventless acid barriers and associated systems and methods |
Also Published As
Publication number | Publication date |
---|---|
IN138529B (xx) | 1976-02-21 |
IT979555B (it) | 1974-09-30 |
JPS498456A (xx) | 1974-01-25 |
FR2178099B1 (xx) | 1979-03-09 |
FR2178099A1 (xx) | 1973-11-09 |
AR197891A1 (es) | 1974-05-15 |
AU5284573A (en) | 1974-09-05 |
JPS5622300B2 (xx) | 1981-05-25 |
ZA731400B (en) | 1973-11-28 |
ES412977A1 (es) | 1976-01-16 |
GB1411632A (en) | 1975-10-29 |
BR7302232D0 (pt) | 1974-08-15 |
DE2312624A1 (de) | 1973-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3835686A (en) | Method of manufacturing a steel component having a head part and a hollow shank part | |
US7634934B2 (en) | Forged roller | |
US5894752A (en) | Method and system for warm or hot high-velocity die forging | |
US9630240B2 (en) | Forged material sizing method and apparatus | |
EP3372324B1 (en) | Long cartridge case | |
EP0000438B1 (en) | Process for producing tubular articles | |
US3399560A (en) | Method of cold forming a solid ring | |
US3072933A (en) | Method of extruding shank portions with 50% or less cross-sectional area than that of the original blanks | |
US1929802A (en) | Method of forging cylinders for airplane motors | |
JPH03139B2 (xx) | ||
US3054177A (en) | Method of making valve lifter bodies or the like | |
US2642647A (en) | Method of making shell forgings | |
US3739620A (en) | Process for forming a flared end tubular metal part | |
US4068518A (en) | Method of manufacturing an extruded steel component | |
US2762108A (en) | Method for forming shell blanks | |
US3765218A (en) | Method of manufacturing a component for use in a roller clutch assembly | |
GB2088256A (en) | Manufacturing toothed racks | |
JPH0673712B2 (ja) | 変速用歯車の製造方法 | |
US10239113B2 (en) | Net shaped forging for fluid ends and other work pieces | |
US1916432A (en) | Apparatus for manufacturing forgings | |
US1396281A (en) | Process of forming metal articles | |
JPS6355381B2 (xx) | ||
JPH04366028A (ja) | 変速用歯車 | |
US3032858A (en) | Manufacture of missile casings | |
RU2085321C1 (ru) | Способ изготовления обкатыванием осесимметричных изделий |