US3835050A - Grease compositions having high tractive coefficients - Google Patents

Grease compositions having high tractive coefficients Download PDF

Info

Publication number
US3835050A
US3835050A US00143237A US14323771A US3835050A US 3835050 A US3835050 A US 3835050A US 00143237 A US00143237 A US 00143237A US 14323771 A US14323771 A US 14323771A US 3835050 A US3835050 A US 3835050A
Authority
US
United States
Prior art keywords
tractive
grease
traction
fluids
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00143237A
Inventor
Richard L Green
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Priority to US00143237A priority Critical patent/US3835050A/en
Priority to FR7216776A priority patent/FR2137753B1/fr
Priority to DE19722223307 priority patent/DE2223307A1/en
Priority to CA142,206A priority patent/CA1000259A/en
Priority to GB4065774A priority patent/GB1394443A/en
Priority to IT24258/72A priority patent/IT955450B/en
Priority to JP47047147A priority patent/JPS5812319B1/ja
Priority to GB4065674A priority patent/GB1394442A/en
Priority to GB2235772A priority patent/GB1394441A/en
Priority to SE7206302A priority patent/SE382822B/en
Application granted granted Critical
Publication of US3835050A publication Critical patent/US3835050A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M7/00Solid or semi-solid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single solid or semi-solid substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/002Traction fluids

Definitions

  • This invention relates to functional fluids particularly adapted for use in tractive drives and more specifically to greases having high coefl'lcients of traction and comprising mixtures of tractive fluids and organic or inorganic thickening agents.
  • a tractive drive is a device in which torque is transmitted from an input element to an output element through nominal point or line contact typically with a rolling action by virtue of the traction between the contacting elements. While tractive elements are commonly spoken of as being in contact, it is generally accepted that a fluid film is present therebetween. Almost all tractive drives require fluids to remove heat, to prevent wear at the contact surfaces and to lubricate bearings and other moving parts associated with the drive. Thus, instead of metal to metal rolling contact there is a film of fluid introduced into the contact zone and interposed between the metal elements. The nature of this fluid determines to a large extent the limits in performance and the capacity of the drive.
  • tractive drives are designed to operate with a tractive fluid which preferably has a coefficient of traction above about 0.06, a viscosity in the range of about 420,000 cs. over a temperature range of 100 F. to 0 F. and good thermal and oxidative stabillty.
  • the fluid should also be noncorrosive to common materials of construction and have good load-bearing and low wear-rate properties.
  • the novel composit ons of the present invention are prepared by thickening tractive fluids having a coefficient of traction of at least about 0.06 with organic or inorganic thickeners to yield a grease having a coeflicient of traction in excess of 0.10 as measured at 100 F. and 200,000 p.S.i. maximum Hertz stress.
  • the tractive fluid is preferably a compound containing from about 12 to carbon atoms, up to 8 of which can be replaced by oxygen, nitrogen, phosphorus, or silicon, and having a structure which includes either a cyclic radical having at least one saturated carbon-containing ring of at least 6 member atoms or an acyclic radical in which there are at least 3 quaternary carbon atoms.
  • the thickeners are preferably colloidal silica or polyurea.
  • the greases comprise a major amount of a tractive fluid and a minor amount, generally in the range of from about 5 to 25 percent by weight of a thickening agent.
  • compositions of the present invention comprise tractive fluids thickened to a grease consistency by the use of organic or inorganic thickeners.
  • Typical tractive fluids useful in the present invention include those described at lengths in US. Pat. 3,411,369 and US. Pat. 3,440,894. These fluids are defined in terms of certain structural units or elements present within their molecules which render the fluids particularly suitable for use in tractive devices.
  • suitable fluids are those organic compounds (1) having from about 12 to about 70 carbon atoms, up
  • Tractants encompassed within the above definition are enumerated in US. Pat. 3,440,894 from column 7 line 26 to column 10 line 57, and this disclosure is specifically incorporated herein by reference.
  • tractive fluids encompassed within the above definition are cyclododecane, bicyclohexyl, 1,2-tercyclohexyl, dicyclohexylmethane, 2, 3 dicyclohexyl-Z,S-dimethylbutane, 2,4-dicycloheXyl-2- methyl pentane, and mixtures thereof.
  • a nonexclusive list of other suitable tractive compositions includes for example isodecylcyclohexane, isopentadecylcyclohexane, cyclododecane, bicyclohexyl, 4-(1- methylethyl) bicyclohexyl, 4,4-bis( l-methylethyl bicyclohexyl, X-isohexyl 4-isopropylbicyclohexyl, x-cyclopentylbicyclohexyl, dicyclohexylmethane, (x-ethylcyclohexyl) cyclohexylmethane, [x-cyclohexyl( l-methylethyl) ]cyclohexylmethane, bis(2,4,6-trimethylcyclohexyl)methane, 1, 1 dicyclohexylethane, 1,1,3 tricyclohexylpropane, trimethylo
  • tercyclohexyl 1,2-isopropyltercyclohexyl, 1,3-isopropyltercyclohexyl, bis( 1,3 cyclohexyloxy)-cyclohexane, 1,xbis-(methylcyclohexyl)-cyclohexane, dicyclohexyl cyclohexane 1,3-dicarboxylate, x,x'-quatercyclohexyl, 6-ethyl- 2,2,4,4,11,11,13,13 octamethyltetradecane and 2,2,4,4,13, 13,15,15 octamethylhexadecane, tricyclohexylmethane, N-cyclohexylpiperidine, neopentyl glycol dineotridecanoate, bicyclooctyl, bicyclododecyl, cyclohexyl cyclododecane, cycloheptyl
  • suitable and useful tractive fluids are those organic compounds defined in U.S. Pat. 3,411,369 which have a coefiicient of traction of at least about 0.06, and which have from 2 to 9 fused, saturated, carboncontaining rings and from about 9 to about 60 carbon atoms, up to 8 of which can be replaced by atoms other than carbon atoms such as oxygen, nitrogen, phosphorus and silicon.
  • a comprehensive disclosure of suitable fused ring compounds is given in U.S. Pat. 3,411,369 from column 7 line 4 to column 9 line 18, which disclosure is specifically incorporated herein by reference.
  • a nonexclusive list of some particularly preferred compounds encompassed by this reference include for example cis-Decalin, cisand trans-Decalin, 2,3-dimethylDecalin, isopropylDecalin, t-butylDecalin, perhydrofluorene, perhydrophenanthrene, perhydromethylcyclopentadiene (trimer), perhydrofiuoranthene, 1 cyclohexyl-1,3,3-trimethylhydrindane, x-hexylperhydrofiuoranthene, x-cyclohexylperhydrofluoranthene, poly(ethyl 1 methyl)perhydrofluoranthene, x-isopropylperhydrofiuoranthene, perhydrofiuorene x cyclohexyl, perhydrofiuorene-x-isododecyl, 1 cyclohexylDecalin, 2 (cyclohexy
  • the useful fused ring compounds can be either substituted or unsubstituted, and the substituents can be alkyl or alicyclic hydrocarbons or heterocyclic carbon-containing ring structures.
  • the alkyl substituents can be either straight chain or branched compounds and can contain from 1 to 18 or more carbon atoms.
  • the thickening agents can be any of a number of materials commonly used to thicken mineral oils to lubricating viscosity, including both organic and inorganic compositions such as metallic soaps, synthetic polymers, organosiloxanes, clays, bentonite, and colloidal silica.
  • the metallic soaps most commonly employed as thickeners for mineral oils are the fatty acid soaps of lithium, sodium, calcium and aluminum, and to a lesser extent of potassium, magnesium, barium, and lead.
  • the usual fatty acids used to form such gelling agents are those having from 8 to 32 carbon atoms and may be naphthenic acids, rosin acids, abietic acids, petroleum sulphonic acids or seturated, unsaturated or polar-substituted fatty acids.
  • Saturated fatty acids are, for example, capric, lauric, myristic, palmitic and stearic, and the unsaturated fatty acids are, for example, arachidic, behenic, oleic, linoleic, linolenic, cotton seed fatty acids, palm oil fatty acids, soya bean fatty acids, castor oil fatty acids, tallow fatty acids and tall oil fatty acids.
  • the unsaturated fatty acids may be partially or completely hydrogenated and/ or hydroxylated and/or epoxidized or otherwise oxidized.
  • Other fatty acids include those produced by oxidation of petroleum oils, petroleum waxes and naturally occurring waxes such as montan wax.
  • the soaps may be of any of the known types, such as those made from the oxides or hydroxides of one or several metals from Groups I, II, III, IV and VIII of Mendeleelfs periodic table.
  • a water-soluble soap such as the sodium, potassium or ammonium soap is usually first prepared and the insoluble metal soap of the organic acid is then precipitated by adding a water-soluble salt of the precipitating metal.
  • Sodium, potassium, lithium, calcium, magnesium, barium, strontium, cadmium, zinc, aluminum, lead, cobalt and tin soaps are effectively used to thicken tractive grease compositions of this invention.
  • Examples of preferred soaps for use either alone or in admixture are: sodium stearate, sodium hydroxystearate, sodium oleate, potassium stearate, potassium rosinate, potassium oleate, lithium stearate, lithium hydroxystearate, lithium rincinoleate, calcium stearate, calcium hydroxystearate, barium stearate, barium hydroxystearate, strontium stearate, cadmium oleate, cadmium stearate, cadmium rosinate, zinc steal-ate, aluminum naphthenates, aluminum stearate, aluminum hydrostearate, lead naphthenates, lead stearate, lead hydroxystearate, magnesium stearate, magnesium oleate, magnesium rosinate, magnesium naphthenate, magnesium hydroxystearate, tin stearates, and tin naphthenates. Soaps of amines such as stearyl amine or triethanolamine may also be used
  • Organic thickeners useful in preparing the tractive greases of this invention include, for example, p-polyphenyl, biphenylene diisocy-anates, monophenylenediisocyanates, arylureas, polyarylureas, 1,3,5-triazene compounds including diamino-alkyl-triazene and diaminoaryl triazene, bis(triphenylsilyl) perfluorodicarboxylic acid esters, alkyl silox-anes, and aryl si'loxanes such as phenylsiloxane.
  • Inorganic thickeners include materials such as clay, colloidal silica, silica aeroge'l, alumina, graphite, mica, talc and diatomaceous earth.
  • a Widfi latitude in thickener composition is permitted since the selection of thickeners is not critical to the present invention provided the thickener has no adverse effect upon the tractive coefficient.
  • Particularly preferred organic thickeners which give excellent results to the tractive base stock fluids are the polyureas, and a particularly preferred inorganic thickener is finely divided amorphous silica. Each of these agents provides a grease having excellent physical properties and performance characteristics.
  • Amorphous silica is conventionally prepared by the high temperature vapor phase hydrolysis of silicon tetrachloride. It may also be prepared by the high temperature vapor phase thermal decomposition of silicon compounds such as silicon esters, or by the high temperature vapor phase hydrolysis of silicon compounds such as silicon esters or silanes with super heated steam. Amorphous silica prepared according to any of these methods is extremely fine with particles ranging in size from 0.015 to 0.020 microns, and is a preferred thickener for tractive grease formulations.
  • arylurea and polyarylurea thickeners are readily prepared by reacting arylisocyanates and aryl amines according to conventional procedures.
  • suitable aryl isocyanates which can be used in the preparation of these thickeners include the following:
  • the tractive grease compositions of this invention are prepared by dispersing a selected thickener in a tractive fluid by suitable mechanical means such as rapid stirring or milling.
  • the tractive fluid generally comprises a major proportion, i.e'. in excess of about 50% by weight, of the grease composition, while the thickener preferably comprises from about 5% to 25% by weight of the grease, although greater amounts of thickener up to about 50% by weight may be used to advantage in some formulations.
  • the coeflicient of traction of the finished grease is determined on a rolling disc test machine which comprises two hardened steel rollers which may be loaded difference in velocities of the two roller surfaces, and is essentially independent of load and the mean velocity of the roller surfaces.
  • the rates of sliding that are of significance in the transmission of power usually range from approximately 1 in./sec. up to in./sec.
  • the best criterion of the tractive capacity of a grease is the value of the coeflicient of traction over this range of sliding.
  • the tractive coefiicients reported herein were obtained at an operating temperature of 100 F. and a Hertz stress of 200,000 p.s.i.
  • the coeflicients of traction reported are the average coefiicients over a range of from 1 to 8 percent slip at sliding speeds of from 1 in./sec. to 50 in./sec. and a mean surface velocity of from 330 ft./min. to 4,640 ft./min.
  • Grease AA tractive fluid comprising a base stock of 2,4-dicyclohexyl-Z-methyl pentane (hereinafter designated as TF-l) thickened with 16 percent by weight polyurea.
  • Grease BTF1 thickened with 9 percent by weight of amorphous silica.
  • Grease C--A tractive fluid comprising a base stock of equal parts' 2,4-dicyclohexyl-Z-methyl pentane and dicylohexyl-1,2-cyclohexane dicarboxylate (hereinafter designated as TF-2) thickened with 17 percent by weight of polyurea.
  • Grease DTF2 thickened with 9 percent by weight amorphous silica.
  • the two test rollers are 1% chromium ball bearings steel hardened to -62 to 65 Rockwell C. They have a diameter of 6 inches and are crowned to a radius of 3 inches to give a spherical contact zone, and are carried at the ends of shafts running in heavy duty ball and roller bearings. Roller surface temperature is indicated by thermocouple which bears lightly against the rim of the lower roller.
  • the coefficient of traction is a function of the sliding velocity, e.g., the
  • the tractive greases have an average coefficient of traction of greater than about 0.10 as determined at a sliding velocity of 10 in./ sec. under the conditions of the test described above.
  • the tractive greases of this invention add a new dimension to tractive compositions and provide means for obtaining exceptionally high performance from tractive drives where power transmission is dependent upon the coeflicient of traction of the tractive fluid.
  • the exceptionally high coefficients of traction provided by these greases have not heretofore been known, and are not now available from any other source.
  • the discovery that such high coefficients of traction could be provided by the compositions of the instant invention represents a significant advance in the state of the art relating to power transmission, and allows greater power to be derived from smaller units than was heretofore possible.
  • the use of tractive grease eliminates the need for fluid seals thereby simplifying design of the tractive units and reducing construction and maintenance costs.
  • the grease compositions of the instant invention can contain any of a variety of additives useful in compounding greases such as for example, antioxidants, corrosion inhibitors, V.I. improvers or other viscosity control agents, EP lubricating agents, and the like. Compositions including such additives are accordingly included within the scope of the present invention as defined in the claims attached hereto.
  • a grease composition comprising (A) a grease thickening amount of a thickener, and
  • a tractive fluid consisting essentially of a compound containing from about 12 to 70 carbon atoms, said compound having in its structure a radical selected from the group consisting of cyclic radicals having at least one saturated carbon-containing ring of at least 6 atoms and acyclic radicals of at least 3 quaternary carbon atoms, and said tractive fluid having a coeflicient of traction of at least about 0.06.
  • a grease composition comprising (A) a greasethickening amount of a thickener, and
  • (B) a major amount of a tractive fluid consisting esing of clay, silica, alumina, graphite, mica, talc, and diatomaceous earth.
  • composition of Claim 3 wherein the thickener is an organic material selected from the group consisting of metallic soaps, synthetic polyureas, and organosiloxanes.
  • a composition of Claim 1 wherein the tractive fluid is selected from the group consisting of dicyclohexyl, alkyldicyclohexyl, tercyclohexyl, alkyltercyclohexyl, quartercyclohexyl, quinquicyclohexyl, 2,3 dicyclohexyh 2,3-dimei-hylbutane, 2,4-dicyclohexyl-2-methyl pentane, and mixtures thereof.
  • composition of Claim-2 wherein the tractive fluid is selected from the group consisting of Decalin, alkyl- Decalin, cyclohexylDecalin, alkylcyclohexyDecalin, 1- cyclohexyl1,3,3,-trimethylhydrindane, and mixtures thereof.
  • a composition of Claim 1 wherein the tractive fluid is 2,4-dicyclohexyl-Z-methyl pentane and the thickener is polyurea.
  • a composition of Claim 1 wherein the tractive fluid is 2,4-dicyclohexyl-2-methyl pentane and the thickener is silica.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

GREASES HAVING HIGH COEFFICIENTS OF TRACTION ARE PREPARED BY THICKENING TRACTIVE FLUIDS COMPRISING SYNTHETIC CYCLIC HYDROCARBONS HAVING A COEFFICIENT OF TRACTION IN EXCESS OF ABOUT 0.06 WITH AN ORGANIC OR INORGANIC THICKENER SUCH AS SILICA OR POLYUREA. THE GREASES ARE USEFUL AS LUBRICATING AGENTS AND AS POWER TRANSMITTING FLUIDS IN TRACTIVE DRIVES.

Description

United States Patent US. Cl. 252-28 11 Claims ABSTRACT OF THE DISCLOSURE Greases having high coeflicients of traction are prepared by thickening tractive fluids comprising synthetic cyclic hydrocarbons having a coeflicient of traction in excess of about 0.06 with an organic or inorganic thickener such as silica or polyurea. The greases are useful as lubricating agents and as power transmitting fluids in tractive drives.
BACKGROUND OF THE INVENTION Field of the Invention This invention relates to functional fluids particularly adapted for use in tractive drives and more specifically to greases having high coefl'lcients of traction and comprising mixtures of tractive fluids and organic or inorganic thickening agents.
Description of Prior Art Traction is broadly defined as the adhesive friction of a body on a surface on which it moves. A tractive drive is a device in which torque is transmitted from an input element to an output element through nominal point or line contact typically with a rolling action by virtue of the traction between the contacting elements. While tractive elements are commonly spoken of as being in contact, it is generally accepted that a fluid film is present therebetween. Almost all tractive drives require fluids to remove heat, to prevent wear at the contact surfaces and to lubricate bearings and other moving parts associated with the drive. Thus, instead of metal to metal rolling contact there is a film of fluid introduced into the contact zone and interposed between the metal elements. The nature of this fluid determines to a large extent the limits in performance and the capacity of the drive. Most tractive drives are designed to operate with a tractive fluid which preferably has a coefficient of traction above about 0.06, a viscosity in the range of about 420,000 cs. over a temperature range of 100 F. to 0 F. and good thermal and oxidative stabillty. The fluid should also be noncorrosive to common materials of construction and have good load-bearing and low wear-rate properties.
A detailed discussion of tractive drives and fluid properties is given in US. 3,411,369 and US. Pat. 3,440,- 894. These patents define certain classes of fluids characterized by high coeflicients of traction and preferred molecular structures which were found to be superior for tractive drives. The fluids described in these references generally possess the desirable properties enumerated above and are considered to be among the best of any fluids known for conventional tractive drives with respect to general performance. There are, however, certain applications which place a premium on high tractive coefficient and at the same time do not require the fluid to dissipate large quantities of heat. These applications are generally found in small, light duty, precision type drives such as those used to drive table feeds for milling machines, operate and control textile machinery, operate conveyors and positioning equipment, drive precision displacement pumps, actuate switches, valves, and controls, and many other applications where light duty power transmission is required. Although known tractive fluids can 3,335,050 Patent-ed Sept. 10, 1974 ice be used in these applications, such fluids are specifically designed for heavy duty applications and the fluid properties are not optimum for light duty drives where a premium is placed on tractive coefficient.
It is accordingly an object of the present invention to provide tractive compositions having exceptionally high tractive coeflicients. It is a further object of this invention to provide a new class of greases suitable for use as the power transmitting compositions in tractive drive apparatus.
SUMMARY The novel composit ons of the present invention are prepared by thickening tractive fluids having a coefficient of traction of at least about 0.06 with organic or inorganic thickeners to yield a grease having a coeflicient of traction in excess of 0.10 as measured at 100 F. and 200,000 p.S.i. maximum Hertz stress. The tractive fluid is preferably a compound containing from about 12 to carbon atoms, up to 8 of which can be replaced by oxygen, nitrogen, phosphorus, or silicon, and having a structure which includes either a cyclic radical having at least one saturated carbon-containing ring of at least 6 member atoms or an acyclic radical in which there are at least 3 quaternary carbon atoms. The thickeners are preferably colloidal silica or polyurea. The greases comprise a major amount of a tractive fluid and a minor amount, generally in the range of from about 5 to 25 percent by weight of a thickening agent.
DESCRIPTION OF PREFERRED EMBODIMENTS The compositions of the present invention comprise tractive fluids thickened to a grease consistency by the use of organic or inorganic thickeners. Typical tractive fluids useful in the present invention include those described at lengths in US. Pat. 3,411,369 and US. Pat. 3,440,894. These fluids are defined in terms of certain structural units or elements present within their molecules which render the fluids particularly suitable for use in tractive devices.
As defined in US. Pat. 3,440,894, suitable fluids are those organic compounds (1) having from about 12 to about 70 carbon atoms, up
to 8 of which can be replaced by atoms other than carbon atoms and can be selected from such atoms as oxygen, nitrogen, phosphorus and silicon, and
(2) containing (a) at least one saturated carbon atom containing ring having at least 6 member atoms or (b) an acyclic structure in which there are at least 3 quaternary carbon atoms, and
(3) having a coefiicient of traction of at least 0.06.
Tractants encompassed within the above definition are enumerated in US. Pat. 3,440,894 from column 7 line 26 to column 10 line 57, and this disclosure is specifically incorporated herein by reference.
Examples of particularly preferred tractive fluids encompassed within the above definition are cyclododecane, bicyclohexyl, 1,2-tercyclohexyl, dicyclohexylmethane, 2, 3 dicyclohexyl-Z,S-dimethylbutane, 2,4-dicycloheXyl-2- methyl pentane, and mixtures thereof.
.A nonexclusive list of other suitable tractive compositions includes for example isodecylcyclohexane, isopentadecylcyclohexane, cyclododecane, bicyclohexyl, 4-(1- methylethyl) bicyclohexyl, 4,4-bis( l-methylethyl bicyclohexyl, X-isohexyl 4-isopropylbicyclohexyl, x-cyclopentylbicyclohexyl, dicyclohexylmethane, (x-ethylcyclohexyl) cyclohexylmethane, [x-cyclohexyl( l-methylethyl) ]cyclohexylmethane, bis(2,4,6-trimethylcyclohexyl)methane, 1, 1 dicyclohexylethane, 1,1,3 tricyclohexylpropane, trimethylolpropane tricyclohexanecarboxylate, 1,2-tercycl0- hexyl, 1,3 tercyclohexyl, x (1,1 dimethylbutyl) 1,3 tercyclohexyl, x (1,1 dimethylbutyl) 1,2
tercyclohexyl, 1,2-isopropyltercyclohexyl, 1,3-isopropyltercyclohexyl, bis( 1,3 cyclohexyloxy)-cyclohexane, 1,xbis-(methylcyclohexyl)-cyclohexane, dicyclohexyl cyclohexane 1,3-dicarboxylate, x,x'-quatercyclohexyl, 6-ethyl- 2,2,4,4,11,11,13,13 octamethyltetradecane and 2,2,4,4,13, 13,15,15 octamethylhexadecane, tricyclohexylmethane, N-cyclohexylpiperidine, neopentyl glycol dineotridecanoate, bicyclooctyl, bicyclododecyl, cyclohexyl cyclododecane, cycloheptyl cyclohexanecarboxylate, cyclooctyl cyclohexanecarboxylate, cyclododecyl cyclohexanecarboxylate, bis,cis and trans 1,2-cyclohexyl cyciohexanedicarboxylate, 1,1 dicyclohexyl Z-methylpropane, 1,1-dicyclohexyl-2- methylbutane, 1,1 dicyclohexyl-Z,S-dimethylhexane, 1,1- dicyclohexylpentane, 1,2 dicyclohexylpropane, i,2-di(xethylcyclohexyl)propane, 2,2 dicyclohexylpropane, 2,3- dicyclohexyl 2,3 dimethylbutane, 1,3-dicyclohexyl-2- methylbutane, 1,3-dicyclohexylbutane, 1,2,3-tricyclohexylpropane, and cyclopentamethylene dicyclohexylsilane.
Other suitable and useful tractive fluids are those organic compounds defined in U.S. Pat. 3,411,369 which have a coefiicient of traction of at least about 0.06, and which have from 2 to 9 fused, saturated, carboncontaining rings and from about 9 to about 60 carbon atoms, up to 8 of which can be replaced by atoms other than carbon atoms such as oxygen, nitrogen, phosphorus and silicon. A comprehensive disclosure of suitable fused ring compounds is given in U.S. Pat. 3,411,369 from column 7 line 4 to column 9 line 18, which disclosure is specifically incorporated herein by reference.
A nonexclusive list of some particularly preferred compounds encompassed by this reference include for example cis-Decalin, cisand trans-Decalin, 2,3-dimethylDecalin, isopropylDecalin, t-butylDecalin, perhydrofluorene, perhydrophenanthrene, perhydromethylcyclopentadiene (trimer), perhydrofiuoranthene, 1 cyclohexyl-1,3,3-trimethylhydrindane, x-hexylperhydrofiuoranthene, x-cyclohexylperhydrofluoranthene, poly(ethyl 1 methyl)perhydrofluoranthene, x-isopropylperhydrofiuoranthene, perhydrofiuorene x cyclohexyl, perhydrofiuorene-x-isododecyl, 1 cyclohexylDecalin, 2 (cyclohexyl-x-methyl)- bicyclo(2,2,l)heptane, perhydropyrene, ethylperhydrofluorene, perhydroanthracene, bis Z-Decalin, 1,2-dihydrindane, perhydrocyclopentadiene trimer, 1 cyclohexyl- Decalin, 2 cyclohexylDecalin, dimethyl cyclohexylDecalin, and 4,S-methyleneperhydrophenanthrene.
As evident from the above list of tractive compositions, the useful fused ring compounds can be either substituted or unsubstituted, and the substituents can be alkyl or alicyclic hydrocarbons or heterocyclic carbon-containing ring structures. The alkyl substituents can be either straight chain or branched compounds and can contain from 1 to 18 or more carbon atoms.
The thickening agents can be any of a number of materials commonly used to thicken mineral oils to lubricating viscosity, including both organic and inorganic compositions such as metallic soaps, synthetic polymers, organosiloxanes, clays, bentonite, and colloidal silica.
The metallic soaps most commonly employed as thickeners for mineral oils are the fatty acid soaps of lithium, sodium, calcium and aluminum, and to a lesser extent of potassium, magnesium, barium, and lead. The usual fatty acids used to form such gelling agents are those having from 8 to 32 carbon atoms and may be naphthenic acids, rosin acids, abietic acids, petroleum sulphonic acids or seturated, unsaturated or polar-substituted fatty acids. Saturated fatty acids are, for example, capric, lauric, myristic, palmitic and stearic, and the unsaturated fatty acids are, for example, arachidic, behenic, oleic, linoleic, linolenic, cotton seed fatty acids, palm oil fatty acids, soya bean fatty acids, castor oil fatty acids, tallow fatty acids and tall oil fatty acids. The unsaturated fatty acids may be partially or completely hydrogenated and/ or hydroxylated and/or epoxidized or otherwise oxidized. Other fatty acids include those produced by oxidation of petroleum oils, petroleum waxes and naturally occurring waxes such as montan wax.
The soaps may be of any of the known types, such as those made from the oxides or hydroxides of one or several metals from Groups I, II, III, IV and VIII of Mendeleelfs periodic table. A water-soluble soap such as the sodium, potassium or ammonium soap is usually first prepared and the insoluble metal soap of the organic acid is then precipitated by adding a water-soluble salt of the precipitating metal. Sodium, potassium, lithium, calcium, magnesium, barium, strontium, cadmium, zinc, aluminum, lead, cobalt and tin soaps are effectively used to thicken tractive grease compositions of this invention. Examples of preferred soaps for use either alone or in admixture are: sodium stearate, sodium hydroxystearate, sodium oleate, potassium stearate, potassium rosinate, potassium oleate, lithium stearate, lithium hydroxystearate, lithium rincinoleate, calcium stearate, calcium hydroxystearate, barium stearate, barium hydroxystearate, strontium stearate, cadmium oleate, cadmium stearate, cadmium rosinate, zinc steal-ate, aluminum naphthenates, aluminum stearate, aluminum hydrostearate, lead naphthenates, lead stearate, lead hydroxystearate, magnesium stearate, magnesium oleate, magnesium rosinate, magnesium naphthenate, magnesium hydroxystearate, tin stearates, and tin naphthenates. Soaps of amines such as stearyl amine or triethanolamine may also be used either alone or in conjunction with the metal soaps.
Organic thickeners useful in preparing the tractive greases of this invention include, for example, p-polyphenyl, biphenylene diisocy-anates, monophenylenediisocyanates, arylureas, polyarylureas, 1,3,5-triazene compounds including diamino-alkyl-triazene and diaminoaryl triazene, bis(triphenylsilyl) perfluorodicarboxylic acid esters, alkyl silox-anes, and aryl si'loxanes such as phenylsiloxane.
Inorganic thickeners include materials such as clay, colloidal silica, silica aeroge'l, alumina, graphite, mica, talc and diatomaceous earth.
A Widfi latitude in thickener composition is permitted since the selection of thickeners is not critical to the present invention provided the thickener has no adverse effect upon the tractive coefficient. Particularly preferred organic thickeners which give excellent results to the tractive base stock fluids are the polyureas, and a particularly preferred inorganic thickener is finely divided amorphous silica. Each of these agents provides a grease having excellent physical properties and performance characteristics.
Amorphous silica is conventionally prepared by the high temperature vapor phase hydrolysis of silicon tetrachloride. It may also be prepared by the high temperature vapor phase thermal decomposition of silicon compounds such as silicon esters, or by the high temperature vapor phase hydrolysis of silicon compounds such as silicon esters or silanes with super heated steam. Amorphous silica prepared according to any of these methods is extremely fine with particles ranging in size from 0.015 to 0.020 microns, and is a preferred thickener for tractive grease formulations.
The arylurea and polyarylurea thickeners are readily prepared by reacting arylisocyanates and aryl amines according to conventional procedures. Examples of suitable aryl isocyanates which can be used in the preparation of these thickeners include the following:
1,4-diisocyanato benzene,
1,3-diisocyanato benzene,
1,3,5-triisocyanato benzene,
2,4-tolylene diisocyanate,
2,6-tolylene diisocyanate,
3,S-diisocyanato-t-butyl-benzene,
p,p'-diisocyanato biphenyl,
3,3-dimethylbiphenylene-4-4-diisocyanate,
3,3'-dibutyl-biphenylene-4,4'-diisocyanate,
naphthylene diisocyana-te, diphenylmethane- 4,4'-diisocyanate,
3,3'-dimethyldiphenyl-methane-4,4'-diisocyanate, 3,3-di-t-butyldiphenylmethane-5,5'diisocyanate, p-chlorophenyl isocyanate, p-toyly isocyanate, toluene diisocyanate, p-biphenylyl isocyanate (p-xenyl isocyanate, phenyl isocyanate, p-carboxyphenyl isocyanate, a-naphthyl isocyanate, p,p'-diisocyanato-biphenyl, l,4-diisocyanato-benzene, 2,5-dichlorophenyl isocyanate, o-biphenylyl is'ocyanate, (o-xenyl isocyanate), o-chlorophenyl isocyanate, p,p'-diisocyanatodiphenylmethane,
and mixtures thereof. Examples of aryl amines which can be reacted with the aryl isocyanates include p-biphenylamine, benzidine, p-anisidine, o-tolidine, p-arninophenol, p-amino-benzontrile, p-phenylenediamine, m-phenylenediamine, o-phenylenediamine, aniline, p-chloroaniline, pfiuoroaniline, diaminodurene, p-toluidine, o-toluidine, 1,2, 4-benzenetriamine, 2,5-dichloroaniline, p,p'-oxydianiline, p-aminobenzoic acid, p-amino-biphenyl, benzidine, dianisidene, o-tolidine, p-aminophenol, p-amino-benzonitrile, p-phenylene diamine, m-phenylene diamine, o-phenylene diamine, 2,5-dichloroaniline, aniline, p-toluidine, and mixtures thereof.
The tractive grease compositions of this invention are prepared by dispersing a selected thickener in a tractive fluid by suitable mechanical means such as rapid stirring or milling. The tractive fluid generally comprises a major proportion, i.e'. in excess of about 50% by weight, of the grease composition, while the thickener preferably comprises from about 5% to 25% by weight of the grease, although greater amounts of thickener up to about 50% by weight may be used to advantage in some formulations. I
The coeflicient of traction of the finished grease is determined on a rolling disc test machine which comprises two hardened steel rollers which may be loaded difference in velocities of the two roller surfaces, and is essentially independent of load and the mean velocity of the roller surfaces. In a practical variable speed transmission, the rates of sliding that are of significance in the transmission of power usually range from approximately 1 in./sec. up to in./sec. For comparative purposes, therefore, the best criterion of the tractive capacity of a grease is the value of the coeflicient of traction over this range of sliding.
The tractive coefiicients reported herein were obtained at an operating temperature of 100 F. and a Hertz stress of 200,000 p.s.i. The coeflicients of traction reported are the average coefiicients over a range of from 1 to 8 percent slip at sliding speeds of from 1 in./sec. to 50 in./sec. and a mean surface velocity of from 330 ft./min. to 4,640 ft./min.
The following examples illustrate some typical trastive grease compositions and properties. The examples are presented for purposes of illustration only and are not limiting of the invention.
I. TRACTIVE GREASE COMPOSITIONS Grease AA tractive fluid comprising a base stock of 2,4-dicyclohexyl-Z-methyl pentane (hereinafter designated as TF-l) thickened with 16 percent by weight polyurea.
Grease BTF1 thickened with 9 percent by weight of amorphous silica.
Grease C--A tractive fluid comprising a base stock of equal parts' 2,4-dicyclohexyl-Z-methyl pentane and dicylohexyl-1,2-cyclohexane dicarboxylate (hereinafter designated as TF-2) thickened with 17 percent by weight of polyurea.
Grease DTF2 thickened with 9 percent by weight amorphous silica.
Grease MO-1A 300320 SUS 100 F. viscosity mineral oil thickened with 18-20% by weight sodalime.
Grease MO2A 750-770 SUS 100 F. viscosity one against the other and driven at any required speed. 40 mineral 0i] thickened With a Na'ca p- II. TRACTIVE GREASE PHYSICAL PROPERTIES Grease Property A B C D MO-l Penetration hardness) ASTM D-217:
' Unworkd penetration 230 281 220 280 k d enetration: st? StI OkES 282 286 265 290 270 220 10,000 strokes 287 321 250 330 290 240 Dropping point F.; ASTM 566 +400 +400 +400 +400 +365 +390 Oxidation stability, ASTM D942 1 0 1 2 Rolled stability ASTM 13-183 *Excellent.
The grease is introduced between the rollers and the relationships between applied load, roller sur-face speeds, relative sliding speed between the two rollers, and torque transmitted from one roller to the other through the contact between them are a measure of the potential performance of the grease in a variable speed drive. Literature references on this rolling disc machine include M. A. Plint [Proceedings of the Inst. of Mech. Engrs, vol. 180, pp. 225, 313 (196566)]; The Lubrication of Rollers, I by A. W. Crook Phil. Trans. A250, 387 (1958)]; and The Lubrication of Rollers, IV, Measurements of Friction and Effective Viscosity by A. W. Crook [Phil. Trans. A225, 281 (1963)].
The two test rollers are 1% chromium ball bearings steel hardened to -62 to 65 Rockwell C. They have a diameter of 6 inches and are crowned to a radius of 3 inches to give a spherical contact zone, and are carried at the ends of shafts running in heavy duty ball and roller bearings. Roller surface temperature is indicated by thermocouple which bears lightly against the rim of the lower roller.
Above a certain minimum speed the coefficient of traction is a function of the sliding velocity, e.g., the
This data illustrates the typical grease like properties which are obtained by thickening tractive fluid compositions according to conventional techniques for preparing petroleum based grease stocks.
III. TRACTIVE GREASE, COEFFICIENT OF TRACTION Coeflicient of traction sliding velocity, in./sec.
The preceding data demonstrate the exceptionally high tractive coefiicients which characterize the tractive greases of the present invention. In particular, the tractive greases have an average coefficient of traction of greater than about 0.10 as determined at a sliding velocity of 10 in./ sec. under the conditions of the test described above.
The tractive greases of this invention add a new dimension to tractive compositions and provide means for obtaining exceptionally high performance from tractive drives where power transmission is dependent upon the coeflicient of traction of the tractive fluid. The exceptionally high coefficients of traction provided by these greases have not heretofore been known, and are not now available from any other source. Thus, the discovery that such high coefficients of traction could be provided by the compositions of the instant invention represents a significant advance in the state of the art relating to power transmission, and allows greater power to be derived from smaller units than was heretofore possible. In addition, the use of tractive grease eliminates the need for fluid seals thereby simplifying design of the tractive units and reducing construction and maintenance costs.
The grease compositions of the instant invention can contain any of a variety of additives useful in compounding greases such as for example, antioxidants, corrosion inhibitors, V.I. improvers or other viscosity control agents, EP lubricating agents, and the like. Compositions including such additives are accordingly included within the scope of the present invention as defined in the claims attached hereto.
The embodiments in which an exclusive property or privilege is claimed are defined as follows.
1. A grease composition comprising (A) a grease thickening amount of a thickener, and
(B) a major amount of a tractive fluid consisting essentially of a compound containing from about 12 to 70 carbon atoms, said compound having in its structure a radical selected from the group consisting of cyclic radicals having at least one saturated carbon-containing ring of at least 6 atoms and acyclic radicals of at least 3 quaternary carbon atoms, and said tractive fluid having a coeflicient of traction of at least about 0.06.
2. A grease composition comprising (A) a greasethickening amount of a thickener, and
(B) a major amount of a tractive fluid consisting esing of clay, silica, alumina, graphite, mica, talc, and diatomaceous earth.
5. A composition of Claim 3 wherein the thickener is an organic material selected from the group consisting of metallic soaps, synthetic polyureas, and organosiloxanes.
6. A composition of Claim 1 wherein the tractive fluid is selected from the group consisting of dicyclohexyl, alkyldicyclohexyl, tercyclohexyl, alkyltercyclohexyl, quartercyclohexyl, quinquicyclohexyl, 2,3 dicyclohexyh 2,3-dimei-hylbutane, 2,4-dicyclohexyl-2-methyl pentane, and mixtures thereof. v
7. A composition of Claim 6 wherein the grease contains from about 5 to 25 percent of a thickener selected from the group consisting of silica and polyurea.
8. A composition of Claim-2 wherein the tractive fluid is selected from the group consisting of Decalin, alkyl- Decalin, cyclohexylDecalin, alkylcyclohexyDecalin, 1- cyclohexyl1,3,3,-trimethylhydrindane, and mixtures thereof.
9. A composition of Claim 8 wherein the grease con-' tains from about 5 to 25 percent by Weight-of -a thickener selected from the group consisting of silica and polyurea.
10. A composition of Claim 1 wherein the tractive fluid is 2,4-dicyclohexyl-Z-methyl pentane and the thickener is polyurea.
11. A composition of Claim 1 wherein the tractive fluid is 2,4-dicyclohexyl-2-methyl pentane and the thickener is silica.
References Cited UNITED STATES PATENTS 3,514,401 5/ 1970 Armstrong et al. 252-28 3,411,3'69 11/1968 Hammann et al. 74-200 3,440,894 4/ 1969 Hammann et al. 74-200 3,639,237 2/1972 Curtis 25228 3,431,204 3/1969 Grammarid 252-28 3,640,870 2/ 1972 Gemmill et' al. 252-59 3,730,896 5/1973 Scott et al. 252-59 3,785,974 1/1974 Scott 25259 3,712,864 1/ 1973 Loefller et al 25259 3,793,203 2/1974 Driscoll et al 25251.5 A
DANIEL E. WYMAN, Primary Examiner I. VAUGHN, Assistant Examiner U.S. Cl. X.R.
US00143237A 1971-05-13 1971-05-13 Grease compositions having high tractive coefficients Expired - Lifetime US3835050A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US00143237A US3835050A (en) 1971-05-13 1971-05-13 Grease compositions having high tractive coefficients
FR7216776A FR2137753B1 (en) 1971-05-13 1972-05-10
CA142,206A CA1000259A (en) 1971-05-13 1972-05-12 Grease compositions having high tractive coefficients
GB4065774A GB1394443A (en) 1971-05-13 1972-05-12 Grease compositions
DE19722223307 DE2223307A1 (en) 1971-05-13 1972-05-12 Greases with high drag coefficient
IT24258/72A IT955450B (en) 1971-05-13 1972-05-12 GREASING COMPOSITION WITH A HIGH TRACTION COEFFICIENT PARTICULARLY FOR USE IN TRACTION TRANSMISSIONS
JP47047147A JPS5812319B1 (en) 1971-05-13 1972-05-12
GB4065674A GB1394442A (en) 1971-05-13 1972-05-12 Grease compositions
GB2235772A GB1394441A (en) 1971-05-13 1972-05-12 Grease compositions
SE7206302A SE382822B (en) 1971-05-13 1972-05-12 TORQUE TRANSFER FAT CONSISTING OF A SYNTHETIC FLASH AS A BASE MATERIAL AND WITH THE ADDITION OF A THICKNESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00143237A US3835050A (en) 1971-05-13 1971-05-13 Grease compositions having high tractive coefficients

Publications (1)

Publication Number Publication Date
US3835050A true US3835050A (en) 1974-09-10

Family

ID=22503191

Family Applications (1)

Application Number Title Priority Date Filing Date
US00143237A Expired - Lifetime US3835050A (en) 1971-05-13 1971-05-13 Grease compositions having high tractive coefficients

Country Status (8)

Country Link
US (1) US3835050A (en)
JP (1) JPS5812319B1 (en)
CA (1) CA1000259A (en)
DE (1) DE2223307A1 (en)
FR (1) FR2137753B1 (en)
GB (3) GB1394443A (en)
IT (1) IT955450B (en)
SE (1) SE382822B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294713A (en) * 1980-03-31 1981-10-13 Olin Corporation Grease compositions containing selected shielded polysilicate compounds
US4435296A (en) 1981-05-22 1984-03-06 The British Petroleum Company Limited Lubricating grease
US4501115A (en) * 1982-04-12 1985-02-26 Mitsubishi Denki Kabushiki Kaisha Traction type elevator system
US4704216A (en) * 1985-09-03 1987-11-03 Idemitsu Kosan Company Limited Lubricant composition for transmission of power
US4704215A (en) * 1985-09-03 1987-11-03 Idemitsu Kosan Company Limited Lubricant composition for transmission of power
US4758364A (en) * 1984-06-25 1988-07-19 Nippon Oil Co., Ltd. Automatic transmission oil compositions
US4786427A (en) * 1986-11-06 1988-11-22 Shell Oil Company Ester compound lubricants
US20040181102A1 (en) * 2001-08-08 2004-09-16 Yukio Yoshida Fluids for traction drive
CN102892948A (en) * 2010-05-20 2013-01-23 通力股份公司 Metal rope, elevator provided with metal rope, and use of lubricant for lubricating the metal rope
US9457991B2 (en) 2009-05-20 2016-10-04 Kone Corporation Metal rope, elevator provided with metal rope, and use of lubricant for lubricating the metal rope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440894A (en) * 1966-10-13 1969-04-29 Monsanto Co Tractants and method of use
US3411369A (en) * 1966-10-13 1968-11-19 Monsanto Co Tractive fluids and method of use

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294713A (en) * 1980-03-31 1981-10-13 Olin Corporation Grease compositions containing selected shielded polysilicate compounds
US4435296A (en) 1981-05-22 1984-03-06 The British Petroleum Company Limited Lubricating grease
US4501115A (en) * 1982-04-12 1985-02-26 Mitsubishi Denki Kabushiki Kaisha Traction type elevator system
US4758364A (en) * 1984-06-25 1988-07-19 Nippon Oil Co., Ltd. Automatic transmission oil compositions
US4704216A (en) * 1985-09-03 1987-11-03 Idemitsu Kosan Company Limited Lubricant composition for transmission of power
US4704215A (en) * 1985-09-03 1987-11-03 Idemitsu Kosan Company Limited Lubricant composition for transmission of power
US4786427A (en) * 1986-11-06 1988-11-22 Shell Oil Company Ester compound lubricants
US20040181102A1 (en) * 2001-08-08 2004-09-16 Yukio Yoshida Fluids for traction drive
US7402715B2 (en) * 2001-08-08 2008-07-22 Idemitsu Kosan Co., Ltd. Fluids for traction drive
US9457991B2 (en) 2009-05-20 2016-10-04 Kone Corporation Metal rope, elevator provided with metal rope, and use of lubricant for lubricating the metal rope
CN102892948A (en) * 2010-05-20 2013-01-23 通力股份公司 Metal rope, elevator provided with metal rope, and use of lubricant for lubricating the metal rope
US9909255B2 (en) * 2010-05-20 2018-03-06 Kone Corporation Metal rope and lubricant

Also Published As

Publication number Publication date
CA1000259A (en) 1976-11-23
GB1394441A (en) 1975-05-14
GB1394442A (en) 1975-05-14
DE2223307A1 (en) 1972-11-23
IT955450B (en) 1973-09-29
FR2137753A1 (en) 1972-12-29
SE382822B (en) 1976-02-16
FR2137753B1 (en) 1974-12-20
GB1394443A (en) 1975-05-14
JPS5812319B1 (en) 1983-03-07

Similar Documents

Publication Publication Date Title
KR100411640B1 (en) Lubrication Grease
DE69004191T2 (en) Grease composition for a smooth high-speed bearing.
US4830767A (en) Front-wheel drive grease
WO2012093731A1 (en) Imide compound, method for producing same, thickening agent for grease, and grease composition
US3835050A (en) Grease compositions having high tractive coefficients
AU2003299220B2 (en) Urea grease composition
CN104011190A (en) Grease composition
JP2016050234A (en) Grease composition
EP2687584A1 (en) Grease composition
US2710840A (en) Aryl urea-thickened greases
JP7434953B2 (en) Grease compositions and rolling bearings
JPH0660316B2 (en) Diurea grease composition
US11725158B2 (en) Grease composition for constant velocity joints
US4065395A (en) Aryl diurea-thickened greases
WO1999014292A1 (en) Lubricating compositions
CN116463162A (en) Lubricating grease, raw material composition thereof, preparation method and application
JPH1121579A (en) Lubricant for maintenance-free joint shaft
JPH05230486A (en) Silicone grease composition
EP4025673A1 (en) A grease composition comprising zinc sulfide and copper sulfide in combination with molybdenum disulfide and/or tungsten disulfide for the use in constant velocity joints
JP3150787B2 (en) Grease composition for rotating machine bearings
Venkataramani et al. High temperature greases based on polyurea gellants: A review
RU2711022C1 (en) Multipurpose plastic grease for heavy loaded friction assemblies
JP2023093885A (en) Urea grease composition
US2998384A (en) Lubricating oil thickened to a grease with a mixture of tripentaerythritol and an organophilic siliceous material
JP2021130769A (en) Grease composition and rolling bearing