US3834794A - Liquid crystal electric field sensing measurement and display device - Google Patents
Liquid crystal electric field sensing measurement and display device Download PDFInfo
- Publication number
- US3834794A US3834794A US00374460A US37446073A US3834794A US 3834794 A US3834794 A US 3834794A US 00374460 A US00374460 A US 00374460A US 37446073 A US37446073 A US 37446073A US 3834794 A US3834794 A US 3834794A
- Authority
- US
- United States
- Prior art keywords
- liquid crystal
- elongate
- electric field
- electrically conductive
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R13/00—Arrangements for displaying electric variables or waveforms
- G01R13/40—Arrangements for displaying electric variables or waveforms using modulation of a light beam otherwise than by mechanical displacement, e.g. by Kerr effect
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/12—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
- G02F2201/124—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
Definitions
- FIG.6 is a diagrammatic representation of FIG.6.
- the invention relates to electrically controllable panel display devices employing positive dielectric anisotropy liquid crystalline materials as electric field active media and more particularly relates to such display devices in which the size, shape, or location of twodimensional display patterns may be changed continuously in analog fashion.
- Nematic liquid crystal materials have been found in the past to offer utility in electric current controlled turbulence effect displays of the flat panel type. Such displays have generally been realized in types which vary the size, shape, or location of the display pattern in a discontinuous or digital fashion, though the R. A. Soref U.S. Pat. No. 3,675,988 for Liquid Crystal Electro-Optical Measurement and Display Devices," issued July I 1, 1972 and assigned to the Sperry Rand Corporation, illustrates a continuously variable analog display device which may be used as a turbulence display and over which the present invention is an improvement.
- the invention is an electric-field controlled, electrooptical analog measurement or display device of the panel type which includes a very thin layer of positive dielectric anisotropy nematic liquid crystalline material directly responsive to electric fields imposed within the nematic material itself and therefore overcoming defects present in the prior art.
- the invention may employ the basic concepts of the R. A. Soref U.S. Pat. application Ser. No. 264,679 for a Liquid Crystal Display," filed June 20, 1972 and assigned to the Sperry Rand Corporation.
- the nematic material is placed within a thin cell having transparent front and rear cell wall elements with precisely parallel flat sides.
- the electric control field threading the nematic layer is provided by an array of electrodes placed only on one inner surface of one of the cell-defining wall elements. Birefringence or rotary electro-optieal effects of the nematic liquid crystal are controlled by selected voltages applied to the interleaved or interdigital electrode sets which constitute a pair of coplanar cooperating electrode systems, the pair being formed on the inner surface of the one cell side.
- One set of digital electrode elements may be operated at a selected potential from a first source, while individuals of the second set are operated at progressively varying potentials through the use of a high impedance distributor conductor across which a second potential source is connected. If the first voltage is held constant while the second is varied, a dark, narrow but fixed-width image simulating, for example, a voltmeter needle may be moved across the display. Other display effects analogous to the analog displays of the aforementioned Soref U.S. Pat. No. 3,675,988 may readily be achieved.
- an analog display is realized employing voltage sensitive liquid crystal materials and birefringence or rotary electro-optical effects in a thin display cell. Alignment of the electrode sets may be accomplished automatically in one easy photographic step, manufacture and assembly of the device being significantly simplified. Because electric control field effects are directly employed, operating power is reduced and the life expectancy of the display cell is increased. Unifonnity of construction and long useful life are assured by forming mesas on one or the other of the cell walls or plates, which mesas precisely define the thickness of the nematic layer. The mesa construction permanently defines the width of the active nematic layer, confining it uniformly to a selected width as small as 0.5 microns. Wide angle viewing is attained, as well as relative freedom from parallax effects and from stray specular reflections.
- FIG. 1 is an elevation cross section view of one form of the invention.
- FIG. 2 is a cross section of the FIG. 1 structure taken along the line 2-2.
- FIGS. 3 and 4 are graphs useful in explaining the operation of the invention.
- FIG. 5 is an enlarged cross section view of a portion of FIG. 1 for illustrating electric field configurations employed in the invention.
- FIG. 6 is similar to FIG. 2 showing in cross section a plan view of an alternative form of FIGS. 1 and 2.
- FIGS. 1 and 2 The novel electrical display or meter is illustrated in FIGS. 1 and 2 in the form of an electric field controlled flat panel display device utilizing a pair of parallel-sided flat glass or optically transparent dielectric plates 10 and 11, plate 11 being specially shaped in order to accommodate a very thin layer of electric field sensitive liquid crystal material 12 particularly within an interior region of the device, as will be explained.
- Plate 11 may be spaced from plate 10 by a plurality of mesa spacers such as spacers 14, l5, l6, and 17 formed integrally with the inner surface of plate 11.
- Mesa spacers 14, 15, 16, and 17 are placed conveniently on the inner surface of plate 11 so as not to interfere with the location of the active interdigital electrode system 20 coated on only one or the other of the interior surfaces of the respective plates or 11.
- the electrode system 20 yet to be described must be extremely thin, for example about 400 Angstrom units thick, as it is optically transparent.
- the thickness of the region between plates 10 and 11 enclosing liquid crystal layer 12 is so small as to provide important results, as will be further described, not available in the prior art turbulence type of liquid crystal display.
- Electrode system 20 comprises parallel-disposed conductive and optically transparent electrode elements, such as electrode element 61, coupled to an elongate distributor conductor 25 having an exterior terminal 26. Electrode system 20 also includes parallelarranged conductive and optically transparent electrode elements such as elements 60 and 62 coupled to an elongate distributor conductor 31 having an external electrical terminal 27.
- the terminal 26, the elongate distributor conductor 25, and the array of electrode elements such as electrode element 61 are substantially equipotential surfaces and all come substantially instantaneously to the potential applied at terminal 26.
- these electrode elements are also low resistance transparent electrodes.
- the character of the elongate distributor conductor 31 is, however, distinct from that of elongate distributor conductor 25 in that it demonstrates relatively high impedance or resistivity characteristics.
- Section 54 of distributor 31 may have the same conductivity as elongate distributor conductor 25, but it is provided with other series connected sections 55, 56, 57, 58, and 59 which may be of substantially equal lengths, for example, which have progressively lower conductivities.
- Such different resistance sections may be readily achieved in well known ways by the control of the thickness of the indium or tin oxide layer forming elongate distributor conductor 31, by control of its width, or by other well known techniques, such controls being exercised as the arrays are formed.
- the different resistances may also'be achieved in a conventional way by etching or otherwise progressively removing more and more of the tin or indium oxide layer during manufacture.
- the potentials at each of the junctions between the adjacent sections 54, 55, 56, 57, 58, and 59 progressively increase or decrease nonlinearly (FIG. 2), as desired.
- the transparent lowresistivity electrode elements 60, 62, 64, 65, 66, and 67, if coupled respectively to the junctions between sections 54, 55, 56, 57, and 59 may each find themselves at progressively different potential levels.
- An external end of elongate distributor conductor 31 is supplied with a terminal 27.
- elongate distributor conductor 31 is connected by preferably low resistance conductors 32 and 33 to a terminal 28 conveniently located near terminal 27 so that terminals 20, 27, and 28 may be located all at one end of the display.
- a linear increase in potential can be obtained with non-tapered sections between digits, as illustrated in FIG. 6.
- Dielectric plates 10 and 11 may be constructed from any suitable glass or generally from a transparent insulating material compatible with the optical and hermetic sealing requirements of the display cell system.
- the material may be selected to have an optical index of refraction similar to that of the electric field sensitive or nematic material 12 so as to avoid undesired reflections at optical interfaces. So that the active material may be preserved in its pure form and protected from contaminants and also remain uniform in thickness, a quadrilateral dielectric wall 37 is fonned as a continuous enclosure wall at the four edges of plates 10 and 11. Construction of the device may be generally according to techniques described by R. A. Soref and R. A. Carey in the U.S. patent application Ser. No.
- Electrode elements 60 and 62 may be instantaneously negative. for instance, while electrode element 61 may be instantaneously positive. In such a case, instantaneous electric fields are set up between the several alternate electrode elements. As in FIG. 2, it will be seen that particular arrays of electrodes such as that employing array electrode element 61 and that employing elements 60 and 62 are shown; it will be understood that the figures are drawn in such proportions particularly for illustrating the basic principles of the invention with clarity. In actual practice, an array of many thin and closely spaced electrode elements such as electrode element 61 will be used, with closely spaced interdigitally located electrode elements such as electrode elements 60 and 62. Electrode elements 60 and 62 may be instantaneously negative. for instance, while electrode element 61 may be instantaneously positive. In such a case, instantaneous electric fields are set up between the several alternate electrode elements. As in FIG.
- an electric field of one sense may be found in the region between the oppositely poled electrode elements 60 and 61, while an electric field of a reversed sense is found between electrode elements 61 and 62.
- the electric fields lie primarily parallel to plates 10 and 11. although the fields also fringe somewhat in other directrons.
- the one set of interdigital electrode elements such as element 61 attached to elongate distributor conductor 25 all reach the potential applied at terminal 26 when a voltage source 34, which may be variable, is connected between terminals 26 and 27.
- a second voltage source 35 which may be variable, is connected across the elongate resistive distributor conductor 31
- electrode elements 60, 62, 64, 65, 66, and 67 arrive at successively different potentials with respect to all of the elements of the array including electrode element 61.
- potential differences are provided between those same electrode elements by the successive high impedance paths 54 through 59.
- the potential V between adjacent electrode elements varies as a function of the distance x along the elongate distributor conductors and 31.
- a variable reference voltage V is supplied across terminals 27 and 28 and thus across the sections 55, 56. 57, S8, and 59 of resistive distributor conductor 31.
- an unknown voltage V may be supplied by a source 34 to terminals 26 and 27.
- the superposition of voltages V, and V is such that, as in FIG. 4, a display is produced between distances x, and x, in the form of a narrow dark image.
- the narrow, dark image or window retains its fixed width, and is moved perpendicular to its thin dimension proportionally along the interdigital electrodes.
- the distance between x, and x may be made quite small, so that the width of the display window is quite small, resembling the needle of a conventional electrical meter.
- the location of its centroid is proportional to the unknown voltage and that voltage value may be read off in the conventional manner using a scale engraved on the outer surface of plate 10, for example.
- the elongate distributor conductor 31 may contain short sections 71 and 72 at its ends that are of relatively high conductivity, with its primary and most extensive section 70 having high impedance or resistivity.
- the ends 71, 72 are brought out to expose terminals 27, 28 which are connected across power source 35, as before.
- V and V may be either unidirectional or alternating voltages.
- the preferred operation of the apparatus is according to a mode employing strictly electric-field sensitive electrode configurations and nematic liquid crystal mixtures having relatively high dielectric anisotropy.
- Being a field-effect display it is important for optimum performance that the nematic liquid crystal molecules have a definite orientation in the absence of an applied electric field.
- One such orientation is the homeotropic ordering discussed with regard to the birefringence sensitive arrangements of the R. A. Soref US. patent application Ser. No. 264,679 for Liquid Crystal Display Apparatus, filed June 20, 1972 and assigned to the Sperry Rand Corporation.
- Other highly suitable arrangements include a spontaneously twisted arrangement of molecules that gives rise to useful rotary electro-optical effects and permits use of very thin cells, as disclosed in the R. A.
- the thin nematic layer in which the desired electrically controllable effects are to be viewed may be selected from well known liquid crystal materials, including mixtures of known nematic liquid crystals having storng positive dielectric anisotropy, operating at relatively low drive voltages at room temperature, and composed, for example, of equal molar proportions of the known nitrile Schiff bases.
- Preferred materials have a relatively large positive dielectric anisotropy, such as e 25 and i 8.
- FIG. 1 Since birefringence or similar electric field sensing effects are employed in the invention, rather than the prior art turbulence effect, the invention is completed as shown in FIG. 1 by the use of an optical circular polarizer 45 spaced from or attached to the exterior surface of the plate 10. Further, a mirror 42 is attached to the exterior surface of plate 11, since the display is normally used in the reflective mode.
- the arrangement of circular polarizer and mirror in FIG. 1 pertains specifically to an induced birefringence kind of display in which the initial molecular ordering is perpendicular to plates 10 and 11. If the initial ordering were twisted, it would be necessary to use two linear polarizers as described in the above mentioned patent application Ser. No. 363,921. Since the light rays 41 seen in FIG.
- the electro-optical device may approach the electro-optical device from a variety of angles, a corresponding multiplicity of imaging or parallax effects may be viewed by the eye at 40. Since the light rays 41 pass through the region of the liquid crystal material 12 twice, these images appear to emanate from locations where the rays strike mirror 42, rather than strictly from the plane of intersection with the liquid crystal layer. Parallax is minimized by locating the reflecting plane of mirror 42 as close as possible to the liquid crystal layer. For this purpose, the plate 11 is thinned as much as possible consistent with maintaining proper mechanical strength and a diffusing mirror 42 is formed directly on the thinned wall. Mirror 42 is thus designed for providing diffuse reflection and consequently for permitting wide angle viewing of the display with substantially no multiple imaging.
- a flat panel, electric field controlled device for the measurement or display of electrical parameters such as voltage, the voltage sensing effect being provided by a nematic liquid crystal medium having high positive dielectric anisotropy and placed in a thin flat-sided optically transparent cell having suitable electrodes.
- Optical transmission of the nematic liquid crystal medium is controlled by voltages applied to interdigital arrays of parallel electrode elements affixed on the inner surface of only one of the transparent parallel cell walls. Continuous relative changes in the respective potentials applied to the electrode arrays provide continuous analog movement of the borders between birefringent and nonbirefringent areas formed in the liquid crystal medium.
- one set ofdigital electrode elements may be operated at a selected potential from a first source, while individuals of the second set are operated at progressively varying potentials through the use of a high impedance distributor conductor across which a second potential source is connected. lf the first voltage is held constant while the second is varied.
- a dark, narrow but fixed-width image simulating, for example, a voltmeter needle may be moved across the display.
- a dark bar can be made to elongate across the display in response to an analog voltage. Whether a moving bar or needle is obtained depends in part upon the relative phases of the two voltage sources.
- the device may be designed with two electrode arrays both like the array associated with the high impedance distribution conductor 31 of FIG. 2; thus. four input terminals may be made available for applying voltage gradients across both of the opposed arrays.
- a particular feature of the invention lies in the fact that the high impedance distribution system beneficially prevents imposition of excessive voltage gradients within the liquid crystal medium, destructive gradients which would induce dielectric breakdown and arcing through the liquid crystal medium.
- the impedance of the distribution system is chosen high enough to reduce power consumption for the drive source to an acceptably low value.
- Electric field sensing display apparatus comprismg:
- first and second coplanar optically-transparent array means having respective first and second interleaved pluralities of electrically conductive elongate electrode means for defining electric field patterns therebetween, first optically transparent plate means having first surface means for supporting said electrically conductive elongate electrode means in spaced substantially parallel alternate cooperative relation,
- first elongate distributor means affixed to said inner surface means and coupled at one end of each of said first plurality of electrically conductive elongate electrode means at spaced intervals along said first elongate distributor means.
- second elongate distributor means affixed to said inner surface means and coupled at one end of each of said second plurality of electrically conductive elongate electrode means at spaced intervals along said second elongate distributor means.
- At least one of said first and second elongate distributor means having a substantially high impedance characteristic with respect to said first and second interleaved pluralities of electrically conductive elongate electrode means,
- second optically transparent plate means in substantially parallel spaced relation with said first optically transparent plate means and having second surface means
- terminal means exterior of said enclosure means adapted to be coupled to a voltage source for producing a voltage gradient along said elongate distributor means having a high impedance characteristic
- electric field sensitive means disposed within said enclosure means for controlling the degree of optical transmission of said electric field sensing display apparatus in accordance with the value of said voltage gradient.
- said electric field sensitive means comprises a liquid crystal material demonstrating positive dielectric anisotropy.
- At least one of said first and second elongate distributor means has a high electrical conductivity characteristic substantially equal to the electrical conductivity characteristic of said first and second interleaved pluralities of electrically conductive elongate electrode means.
- Apparatus as described in claim 1 including terminal means exterior of said enclosure means adapted to be coupled to a second voltage source for placing the entirety of said elongate distributor means having a high electrical conductivity at substantially the voltage of said second voltage source.
- Apparatus as described in claim 5 further includmg:
- optical polarizer means pennitting illumination of and viewing of said liquid crystal electric field sensitive means therethrough
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Geometry (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00374460A US3834794A (en) | 1973-06-28 | 1973-06-28 | Liquid crystal electric field sensing measurement and display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00374460A US3834794A (en) | 1973-06-28 | 1973-06-28 | Liquid crystal electric field sensing measurement and display device |
Publications (1)
Publication Number | Publication Date |
---|---|
US3834794A true US3834794A (en) | 1974-09-10 |
Family
ID=23476928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00374460A Expired - Lifetime US3834794A (en) | 1973-06-28 | 1973-06-28 | Liquid crystal electric field sensing measurement and display device |
Country Status (1)
Country | Link |
---|---|
US (1) | US3834794A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3979743A (en) * | 1974-02-20 | 1976-09-07 | The Rank Organisation Limited | Displays |
US4035060A (en) * | 1973-09-21 | 1977-07-12 | Dainippon Printing Co., Ltd | Electro-optic device |
EP0044637A1 (en) * | 1980-07-03 | 1982-01-27 | Control Interface Company Limited | Field scanning optical displays, generation of fields therefor and scanning thereof |
US4493531A (en) * | 1980-07-03 | 1985-01-15 | Control Interface Company Limited | Field sensitive optical displays, generation of fields therefor and scanning thereof |
US4589733A (en) * | 1984-06-29 | 1986-05-20 | Energy Conversion Devices, Inc. | Displays and subassemblies having improved pixel electrodes |
US4641922A (en) * | 1983-08-26 | 1987-02-10 | C-D Marketing, Ltd. | Liquid crystal panel shade |
US4641923A (en) * | 1980-07-03 | 1987-02-10 | Control Interface Company Limited | Field sensitive optical displays with electrodes with high and low impedance portions |
US4690509A (en) * | 1984-10-02 | 1987-09-01 | Control Interface Company Limited | Waveforms on a liquid crystal display |
US4693561A (en) * | 1985-12-23 | 1987-09-15 | The United States Of America As Represented By The Secretary Of The Army | Amorphous silicon spatial light modulator |
US4906072A (en) * | 1986-10-09 | 1990-03-06 | Canon Kabushiki Kaisha | Display apparatus and driving method for providing an uniform potential to the electrodes |
US4907861A (en) * | 1985-04-23 | 1990-03-13 | Asahi Glass Company Ltd. | Thin film transistor, method of repairing the film transistor and display apparatus having the thin film transistor |
US5033824A (en) * | 1990-08-02 | 1991-07-23 | Display Matrix Corporation | Convertible analog-digital mode display device |
WO1991010936A1 (en) * | 1990-01-09 | 1991-07-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electro-optical liquid crystal switch element |
US5122888A (en) * | 1987-07-10 | 1992-06-16 | Canon Kabushiki Kaisha | Focusing plate having phase grating formed by using liquid crystal |
US5136409A (en) * | 1987-09-29 | 1992-08-04 | Canon Kabushiki Kaisha | Liquid crystal device having at least two zones having different diffusion characteristics |
US5576867A (en) * | 1990-01-09 | 1996-11-19 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Liquid crystal switching elements having a parallel electric field and βo which is not 0° or 90° |
EP0833187A1 (en) * | 1996-09-27 | 1998-04-01 | Toray Industries, Inc. | Liquid crystal display apparatus |
US6897918B1 (en) | 2000-09-15 | 2005-05-24 | Toray Industries, Inc. | Color filter with protrusion |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3674342A (en) * | 1970-12-29 | 1972-07-04 | Rca Corp | Liquid crystal display device including side-by-side electrodes on a common substrate |
US3727527A (en) * | 1971-06-11 | 1973-04-17 | Agfa Gevaert Ag | Photographic apparatus with liquid crystal voltage indicator |
-
1973
- 1973-06-28 US US00374460A patent/US3834794A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3674342A (en) * | 1970-12-29 | 1972-07-04 | Rca Corp | Liquid crystal display device including side-by-side electrodes on a common substrate |
US3727527A (en) * | 1971-06-11 | 1973-04-17 | Agfa Gevaert Ag | Photographic apparatus with liquid crystal voltage indicator |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4035060A (en) * | 1973-09-21 | 1977-07-12 | Dainippon Printing Co., Ltd | Electro-optic device |
US3979743A (en) * | 1974-02-20 | 1976-09-07 | The Rank Organisation Limited | Displays |
EP0044637A1 (en) * | 1980-07-03 | 1982-01-27 | Control Interface Company Limited | Field scanning optical displays, generation of fields therefor and scanning thereof |
US4493531A (en) * | 1980-07-03 | 1985-01-15 | Control Interface Company Limited | Field sensitive optical displays, generation of fields therefor and scanning thereof |
EP0181043A1 (en) * | 1980-07-03 | 1986-05-14 | Control Interface Corporation | Field sensitive display device |
US4641923A (en) * | 1980-07-03 | 1987-02-10 | Control Interface Company Limited | Field sensitive optical displays with electrodes with high and low impedance portions |
US4641922A (en) * | 1983-08-26 | 1987-02-10 | C-D Marketing, Ltd. | Liquid crystal panel shade |
US4589733A (en) * | 1984-06-29 | 1986-05-20 | Energy Conversion Devices, Inc. | Displays and subassemblies having improved pixel electrodes |
US4690509A (en) * | 1984-10-02 | 1987-09-01 | Control Interface Company Limited | Waveforms on a liquid crystal display |
US4907861A (en) * | 1985-04-23 | 1990-03-13 | Asahi Glass Company Ltd. | Thin film transistor, method of repairing the film transistor and display apparatus having the thin film transistor |
US4693561A (en) * | 1985-12-23 | 1987-09-15 | The United States Of America As Represented By The Secretary Of The Army | Amorphous silicon spatial light modulator |
US4906072A (en) * | 1986-10-09 | 1990-03-06 | Canon Kabushiki Kaisha | Display apparatus and driving method for providing an uniform potential to the electrodes |
US5122888A (en) * | 1987-07-10 | 1992-06-16 | Canon Kabushiki Kaisha | Focusing plate having phase grating formed by using liquid crystal |
US5136409A (en) * | 1987-09-29 | 1992-08-04 | Canon Kabushiki Kaisha | Liquid crystal device having at least two zones having different diffusion characteristics |
WO1991010936A1 (en) * | 1990-01-09 | 1991-07-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Electro-optical liquid crystal switch element |
US5576867A (en) * | 1990-01-09 | 1996-11-19 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Liquid crystal switching elements having a parallel electric field and βo which is not 0° or 90° |
US5841499A (en) * | 1990-01-09 | 1998-11-24 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Reflection mode liquid crystal display devices having a parallel electric field and α0 which is ≦ 30° |
US7656490B1 (en) | 1990-01-09 | 2010-02-02 | Merck Patent Gesellschaft | LC display device with parallel field component |
US5033824A (en) * | 1990-08-02 | 1991-07-23 | Display Matrix Corporation | Convertible analog-digital mode display device |
EP0833187A1 (en) * | 1996-09-27 | 1998-04-01 | Toray Industries, Inc. | Liquid crystal display apparatus |
US6525791B1 (en) | 1996-09-27 | 2003-02-25 | Toray Industries, Inc. | Color liquid crystal display apparatus for producing a display having a high contrast and a wide visual field angle |
US6897918B1 (en) | 2000-09-15 | 2005-05-24 | Toray Industries, Inc. | Color filter with protrusion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3834794A (en) | Liquid crystal electric field sensing measurement and display device | |
US3807831A (en) | Liquid crystal display apparatus | |
US3675988A (en) | Liquid crystal electro-optical measurement and display devices | |
US4529271A (en) | Matrix addressed bistable liquid crystal display | |
US3731986A (en) | Display devices utilizing liquid crystal light modulation | |
US3960438A (en) | Reflective displays | |
US20060290651A1 (en) | Electrooptic/micromechanical display with discretely controllable bistable transflector | |
US3674342A (en) | Liquid crystal display device including side-by-side electrodes on a common substrate | |
US4449125A (en) | Matrix display device | |
US4385805A (en) | Liquid crystal lens display system | |
US3944330A (en) | Electro-optic device | |
US3902790A (en) | Liquid crystal display pattern | |
US4342030A (en) | Analogue displays for electronic timepieces or meters | |
US6310675B1 (en) | Liquid crystal display | |
KR20010033235A (en) | Multipole liquid crystal display with alignment layer | |
US4193669A (en) | Liquid crystal device for direct display of analog information | |
GB1390925A (en) | Optical display device | |
EP0142326A1 (en) | Liquid crystal display | |
JPH07318959A (en) | Liquid crystal display device | |
GB1507922A (en) | Imaging system | |
US6147666A (en) | Multipole liquid crystal display | |
US4585311A (en) | Liquid crystal device having interdigitated electrodes | |
JPS56111836A (en) | Liquid-crystal display element | |
US4365868A (en) | Liquid crystal device for direct display of analog information | |
JPH0414328B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EMERSON ELECTRIC CO., A MO CORP. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BECKMAN INSTRUMENTS, INC.;REEL/FRAME:004319/0695 Effective date: 19840301 Owner name: BECKMAN INDUSTRIAL CORPORATION A CORP OF DE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:EMERSON ELECTRIC CO., A CORP OF MO;REEL/FRAME:004328/0659 Effective date: 19840425 |
|
AS | Assignment |
Owner name: WALTER E HELLER WESTERN INCORPORATED Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DIXON DEVELOPMENT, INC. A CORP. OF CA.;REEL/FRAME:004337/0572 Effective date: 19840928 Owner name: DIXON DEVELOPMENT, INC., A CA CORP. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BECKMAN INDUSTRIAL CORPORATION;REEL/FRAME:004337/0564 Effective date: 19840928 |
|
AS | Assignment |
Owner name: BABCOCK DISPLAY PRODUCTS,INC. Free format text: CHANGE OF NAME;ASSIGNOR:DIXION DEVELOPMENT,INC.;REEL/FRAME:004372/0199 Effective date: 19841002 |