US3833409A - Donor sheet for pulsed electrical printing - Google Patents
Donor sheet for pulsed electrical printing Download PDFInfo
- Publication number
- US3833409A US3833409A US00216194A US21619472A US3833409A US 3833409 A US3833409 A US 3833409A US 00216194 A US00216194 A US 00216194A US 21619472 A US21619472 A US 21619472A US 3833409 A US3833409 A US 3833409A
- Authority
- US
- United States
- Prior art keywords
- particles
- printing
- microns
- sheet
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 claims abstract description 50
- 239000011248 coating agent Substances 0.000 claims description 23
- 238000000576 coating method Methods 0.000 claims description 23
- 239000011347 resin Substances 0.000 claims description 18
- 229920005989 resin Polymers 0.000 claims description 18
- 239000000945 filler Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 239000011362 coarse particle Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 230000001788 irregular Effects 0.000 abstract description 11
- 230000000717 retained effect Effects 0.000 abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 230000001680 brushing effect Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/10—Duplicating or marking methods; Sheet materials for use therein by using carbon paper or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24008—Structurally defined web or sheet [e.g., overall dimension, etc.] including fastener for attaching to external surface
- Y10T428/24017—Hook or barb
Definitions
- a printing ribbon for non-impact electrical printing [52] 525 7 7 consists of an insulating base film, having a microcav- [51] Int Cl 844! 1/16 B44d 1/18 ernous surface formed by microscopic crags having Fie'ld 5 74 SB 74 so deep, rough and irregular pits or valleys between them with fine conductive printing particles loosely retained on and in the surface.
- This invention relates to printing ribbons suitable for use in the non-impact printing (NIP) system described by Haeberle et al in US. Pat. No. 3,550,153 dated Dec. 22, 1970.
- the patent of Haeberle et al describes method and apparatus for printing an image upon a recipient sheet by disposing closely adjacent to that sheet a donor sheet which carries mobile electrically conductive printing particles in or on a high resistance medium, and then applying through the thickness of the two sheets a shaped electrical field pulse of short duration corresponding in outline to the image to be printed.
- the pulse is effective to establish a current flow which causes the printing particles to become charged and then transferred from the donor sheet to the recipient sheet.
- the object of this invention is to provide a printing ribbon, or donor sheet, having a high density of readily removable and transferable printing material such that images of good tone and contrast may be produced.
- this invention provides a sheet material which is relatively clean to handle and not given to smudging or dusting, yet which carries loosely a relatively large quantity of finely divided printing particles that may be readily transferred by the electrical pulses employed in the printing step.
- the printing ribbon or donor sheet have a relatively high electrical resistivity, particularly in the lateral directions, so as to preserve the shaped character of the electrical field pulse applied for printing.
- a conductive sheet would destroy the integrity of the field shape in the region remote from the shaped electrode, such as between the sheet and a ground plate.
- the printing ribbon of this invention accordingly employs a sheet of relatively insulating material such as paper, polyethylene terphthalate, polypropylene or the like. To this is applied a base coat which develops a rough outer surface of microscopic crags which present deep, rough and irregular pits or valleys capable of retaining the printing particles.
- This rough surface provides not only a larger area than would a smooth surface, by a factor of about two to five times (based on squaring the linear measurements of the actual surface outline and of its projection, made from photomicrographs of cross sections of the sheet) but also cavities in the surface in which the particle may lie captive.
- the printing particles are loosely retained on the surface and inv the pits or valleys, essentially by frictional and surface forces.
- the base coat is conveniently formed form a mixture of an insulating filler material of particle size between about 5 and 175 microns and an insulating resin binder solution of high solvent content, e.g. over 50% by volume on the total mixture, and low resin content, e.g.
- the base coat is applied to a thickness suitable to accomodate the largest filler particles in the final coating and is then dried, whereupon the evaporation of solvent leaves the above described rough microscopically craggy structure.
- the printing particles preferably by forming a suspension of the particles, e. g. activated charcoal 0.25-15 microns in size in a nonsolvent for the base coating, to cover the base coatingcompletely.
- the surface is gently brushed to remove excess printing particles that lie above the general top surface level of the base coating and to distribute the particles in irregular piles scattered over the surface of the base coat.
- the printing particles not only fill the pits of the micro cavernous base coat but lie all over the surface in loose irregular piles.
- a printing sheet as thus formed is well suited for use in the process described by I-Iaeberle et al.
- FIG. 1 is a visualization, based on photomicrographs, of a cross section in elevation of the sheet of this invention at a magnification of about 1,000x;
- FIG. 2 is a visualized enlargement of the circular area of FIG. 1 to a magnification of about 10,000x;
- FIG. 3 is a photomicrograph taken by a scanning electron microscope at 1,000x magnification and 45 inclination, of the top surface of the base coat prior to the incorporation of printing particles.
- the printing ribbon consists of a thin film 10 having on one surface a rough coating 12 which provides an outer surface of microscopically deep, rough and irregular contours presenting microscopic pits or valleys in which the printing particles 14 are retained. Typically these pits or valleys are about 10-50 microns in depth and across.
- the nature of the coating is illustrated in some detail to show filler particles 15 in the resinous binder 16, the particles serving to define crags which impart the rough and irregular shaped to the surface.
- the nature of the outer particulate surface in the final product is shown in the right hand part of FIG. 1 After Brushing, and a visualized enlargement thereof is shown in FIG. 2.
- the printing particles are of the order of 12 microns or smaller and lie loosely on the coating, filling the pits or valleys and also scattered over the entire surface in irregular piles of more or less loose particles which remain in place apparently by surface'forces.
- the presence of the scattered piles developed after brushing is believed to be important in the printing operation in that peaks or pinnacles are presented where particles would be most readily charged up upon application of electrical field pulse, and then dislodged and caused to move in the field.
- the field forces tend to concentrate at the peaks or pinnacles and the effect of the field is greatest in these concentrated regions.
- Methyl Ethyl Ketone 25 grams 60 grams opment of the above described microcavemous surface.
- the sand particles develop crags with peaks correspondingto the diameter of the larger particles, and the crevices between these crags may have a coating thickness only the thickness of residual resin, or of the thickness of smaller particles. In this example the peak thickness of the coating will be up to 50 microns.
- a carbon coating prepared by dispersing activated charcoal (Nuchar CN, West Virginia Pulp and Paper Co.) in methanol or ethanol in the weight ratio of 15 carbon: 85 solvent.
- the dispersion is first ball milled to reduce the particles to 12 microns or less.
- the carbon dispersion is then coated onto the previously coated film in theamount of 10 ouncesper 3,000 square feet and dried.
- the dried coated film is illustrated in FIG. 1 on the left hand side Before Brushing.
- the final step in the processing is to brush the coating. This may be accomplished with a rotary brush of 1 inch long bristles of approximately 50 denier orless. Brushing is carried out to remove the top surface of the particles and to cause a distribution in the nature of scattered piles as illustrated at the right hand side of FIG. 1 After Brushing and in FIG. 2. Brushing should be carried out to achieve the effect illustrated but should not be carried out to the point of exposing the underlying rough surface. An overall coating depth to a minimum of about 10 microns is normal for this example.
- the sheet thus formed may be used directly in nonimpact electrical printing in the manner described by Haeberle et al. Pulses of the order of 1-2 microseconds and 800 volts will print distinct characters.
- the base film and filled resin coating should be of relatively high resistivity such that the configuration of the electrical field pulse applied for printing is not disrupted or equalized by the interposition of an electrically conductive layer.
- the'base film can be any of a number of synthetic organic resins as may the'surface coating, and the filler particles should be generally less than 50 microns in mean diameter, and preferably rough and irregular in shape. These particles are generally responsible for the rough and irregular nature of the surface and'should be selected so as to provide the microcavemous effect .described.
- the printing particles should be relatively highly conductive in order to acquire the necessary electrical charge for printing, should be loosely applied, but not in intimate electrical contact, so that the high transverse resistivity of the sheet as a whole is preserved.
- Suitable materials, in addition to charcoal, that may be employed include:
- the printing sheet of this invention features a rough and irregular base surface of high lateral resistivity on and in which lie conductive particles of print material.
- the base surface serves to retain the print materialwithin its surface irregularities, that is to say in the pits and crevices; and, being highly resistant laterally, it does not cause equalization of a shaped pulse.
- the particles on the other hand, readily acquire a charge sufficient to move them from the base surface under the field of the printing pulse, and in accordance with the shape of that field.
- the base surface, underlying and retaining the print particles may be any insulating resin with the filler particles geometrically arranged to present the rough microscopically craggy surface described, having an overall high lateral D.C. resistivity, with particles of low resistivity brushed over and in the crevices.
- the print particles listed above include not only highly conductive materials such as carbon,.but also several semi-conductor materials such as CdS.
- a criterion of the surface of the print ribbon or donor sheet of this invention is that the print particle carrying surface have alateral D.C. resistivity of at least 10 ohms per square.
- a donor sheet useful in pulsed electrical printing comprising a base sheet having a microcavemous surface with pits-or valleys of about 10-50 microns across and 10-50 microns deep, and print particles having a conductivity at least that of a semi-conductor loosely lying on the surface in said pits or valleys, said particles being about 0.25-l5 microns across and present in quantity sufficient to effect printing by transfer of particles to an adjacent sheet upon imposition of an electrical pulse of about 800 volts for two microseconds, said sheet having a lateral surface D.C. resistivity of at least I0 ohms per square.
- a donor sheet as defined by claim 1 wherein the base sheet surface comprises particles of filler 5-175 microns across, embedded in a synthetic organic insulatin resin, said resin being between 5 and 40% by weigit of the total resin plus filler.
Landscapes
- Printing Plates And Materials Therefor (AREA)
- Duplication Or Marking (AREA)
- Impression-Transfer Materials And Handling Thereof (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE793698D BE793698A (fr) | 1972-01-07 | Feuille emettrice pour dispositifs d'impression electrostatique | |
US00216194A US3833409A (en) | 1972-01-07 | 1972-01-07 | Donor sheet for pulsed electrical printing |
IT34051/72A IT973254B (it) | 1972-01-07 | 1972-12-29 | Foglio donatore particolarmente utile nella stampa elettrica pulsata |
NL7300179A NL7300179A (forum.php) | 1972-01-07 | 1973-01-05 | |
FR7300376A FR2167753B1 (forum.php) | 1972-01-07 | 1973-01-05 | |
CA160,651A CA996423A (en) | 1972-01-07 | 1973-01-05 | Donor sheet for pulsed electrical printing |
GB82073A GB1391730A (en) | 1972-01-07 | 1973-01-05 | Donor sheet for pulsed electrical printing |
DE2300783A DE2300783A1 (de) | 1972-01-07 | 1973-01-08 | Druckpartikel abgebendes blatt oder band fuer elektroimpulsdruck |
JP48004754A JPS512008B2 (forum.php) | 1972-01-07 | 1973-01-08 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00216194A US3833409A (en) | 1972-01-07 | 1972-01-07 | Donor sheet for pulsed electrical printing |
Publications (1)
Publication Number | Publication Date |
---|---|
US3833409A true US3833409A (en) | 1974-09-03 |
Family
ID=22806110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00216194A Expired - Lifetime US3833409A (en) | 1972-01-07 | 1972-01-07 | Donor sheet for pulsed electrical printing |
Country Status (9)
Country | Link |
---|---|
US (1) | US3833409A (forum.php) |
JP (1) | JPS512008B2 (forum.php) |
BE (1) | BE793698A (forum.php) |
CA (1) | CA996423A (forum.php) |
DE (1) | DE2300783A1 (forum.php) |
FR (1) | FR2167753B1 (forum.php) |
GB (1) | GB1391730A (forum.php) |
IT (1) | IT973254B (forum.php) |
NL (1) | NL7300179A (forum.php) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4243726A (en) * | 1978-06-28 | 1981-01-06 | Epp Corp. | Structured donor sheet for high-resolution non-impact printer |
US4376943A (en) * | 1981-06-18 | 1983-03-15 | International Business Machines Corporation | Record carrier for an electro-erosion printer and method for making same |
US4818544A (en) * | 1986-05-27 | 1989-04-04 | Mars G. B. Limited | Beverage packages |
US4857398A (en) * | 1982-09-07 | 1989-08-15 | Dennison Manufacturing Company | Electrosensitive recording |
WO1998052746A1 (en) * | 1997-05-20 | 1998-11-26 | Permacharge Corporation | Electreet film composition adapted for printing on inkjet printers |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2514003A1 (de) * | 1975-03-29 | 1976-10-07 | Triumph Werke Nuernberg Ag | Uebertragungsmittel, vorzugsweise in blatt- oder bandform, zur verwendung bei einem verfahren zum direkten elektrostatischen aufzeichnen |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3550153A (en) * | 1967-12-27 | 1970-12-22 | Carter S Ink Co | High speed non-impact printing |
US3617328A (en) * | 1967-09-25 | 1971-11-02 | Columbia Ribbon & Carbon | Transfer elements and method of making same |
-
0
- BE BE793698D patent/BE793698A/xx unknown
-
1972
- 1972-01-07 US US00216194A patent/US3833409A/en not_active Expired - Lifetime
- 1972-12-29 IT IT34051/72A patent/IT973254B/it active
-
1973
- 1973-01-05 GB GB82073A patent/GB1391730A/en not_active Expired
- 1973-01-05 NL NL7300179A patent/NL7300179A/xx not_active Application Discontinuation
- 1973-01-05 FR FR7300376A patent/FR2167753B1/fr not_active Expired
- 1973-01-05 CA CA160,651A patent/CA996423A/en not_active Expired
- 1973-01-08 JP JP48004754A patent/JPS512008B2/ja not_active Expired
- 1973-01-08 DE DE2300783A patent/DE2300783A1/de not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3617328A (en) * | 1967-09-25 | 1971-11-02 | Columbia Ribbon & Carbon | Transfer elements and method of making same |
US3550153A (en) * | 1967-12-27 | 1970-12-22 | Carter S Ink Co | High speed non-impact printing |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4243726A (en) * | 1978-06-28 | 1981-01-06 | Epp Corp. | Structured donor sheet for high-resolution non-impact printer |
US4376943A (en) * | 1981-06-18 | 1983-03-15 | International Business Machines Corporation | Record carrier for an electro-erosion printer and method for making same |
US4857398A (en) * | 1982-09-07 | 1989-08-15 | Dennison Manufacturing Company | Electrosensitive recording |
US4818544A (en) * | 1986-05-27 | 1989-04-04 | Mars G. B. Limited | Beverage packages |
WO1998052746A1 (en) * | 1997-05-20 | 1998-11-26 | Permacharge Corporation | Electreet film composition adapted for printing on inkjet printers |
US5989685A (en) * | 1997-05-20 | 1999-11-23 | Permacharge Corporation | Electreet film composition adapted for printing on inkjet printers |
Also Published As
Publication number | Publication date |
---|---|
NL7300179A (forum.php) | 1973-07-10 |
GB1391730A (en) | 1975-04-23 |
JPS512008B2 (forum.php) | 1976-01-22 |
IT973254B (it) | 1974-06-10 |
DE2300783A1 (de) | 1973-08-02 |
CA996423A (en) | 1976-09-07 |
FR2167753B1 (forum.php) | 1977-07-22 |
FR2167753A1 (forum.php) | 1973-08-24 |
BE793698A (fr) | 1973-05-02 |
JPS4879018A (forum.php) | 1973-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0091780A1 (en) | Development apparatus of latent electrostatic images | |
US3550153A (en) | High speed non-impact printing | |
US3833409A (en) | Donor sheet for pulsed electrical printing | |
US3081699A (en) | Thermal reproduction | |
GB2099602A (en) | Ink ribbon for use in electrothermal nonimpact recording | |
US3493427A (en) | Recording body for electrostatic recording | |
DE2324620A1 (de) | Verfahren und vorrichtung zum entfernen von unerwuenscht elektrostatisch angezogenem magnetischem farbpulver von einer magnetaufzeichnungsflaeche eines magnetschriftdrukkers | |
US3441437A (en) | Recording medium and process of developing latent electrostatic image on a recording medium | |
US3299809A (en) | Electrostatic printing process for use with printing plate having plural levels | |
DE2519997A1 (de) | Nach dem elektrografischen verfahren arbeitender nichtmechanischer drucker | |
US3354464A (en) | Method of electrostatic printing of multiple copies | |
US3244546A (en) | Electrostatic image reproduction | |
IL38465A (en) | Duplicating stencils | |
US4064982A (en) | Printing ribbon | |
US4243726A (en) | Structured donor sheet for high-resolution non-impact printer | |
JPH0323901B2 (forum.php) | ||
US3913110A (en) | High speed non-impact printing | |
US3931417A (en) | Method of manifold copying | |
DE2856271C2 (de) | Verfahren zum antistatischen Ausrüsten von scheibenförmigen Ton- und/oder Videosignalaufzeichnungsträgern sowie Hülle zur Durchführung des Verfahrens | |
JPS6123405Y2 (forum.php) | ||
JPS55110254A (en) | Electrostatic recording material | |
DE2626594A1 (de) | Druckform und verfahren zu ihrer herstellung | |
US2052293A (en) | Process of typographic reliefing | |
JPH0612457B2 (ja) | 静電記録体 | |
JPS5638052A (en) | Electrostatic recording material |