US3829276A - Burner control - Google Patents

Burner control Download PDF

Info

Publication number
US3829276A
US3829276A US00362387A US36238773A US3829276A US 3829276 A US3829276 A US 3829276A US 00362387 A US00362387 A US 00362387A US 36238773 A US36238773 A US 36238773A US 3829276 A US3829276 A US 3829276A
Authority
US
United States
Prior art keywords
circuit
switch
burner
low voltage
electronic switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00362387A
Inventor
R Lenski
J Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sundstrand Corp
Original Assignee
Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sundstrand Corp filed Critical Sundstrand Corp
Priority to US00362387A priority Critical patent/US3829276A/en
Priority to CA200,197A priority patent/CA1011845A/en
Priority to FR7417516A priority patent/FR2230939B2/fr
Priority to DE2424711A priority patent/DE2424711A1/en
Priority to JP49056189A priority patent/JPS5019025A/ja
Priority to IT51146/74A priority patent/IT1011497B/en
Application granted granted Critical
Publication of US3829276A publication Critical patent/US3829276A/en
Priority to CA249,792A priority patent/CA1015838A/en
Priority to CA249,791A priority patent/CA1015837A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/20Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
    • F23N5/203Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/20Opto-coupler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/28Ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/10Fail safe for component failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/06Liquid fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements

Definitions

  • ABSTRACT [22] Filed: May 21, 1973 A control system for an oil burner including a motor 11 App] o; 362,387 for pumping fuel to the burner, an igniter for lighting the fuel, and an electronic switch for controlling energization of the motor and the igniter, all in a line volt- U.S. Cl. age circuit together a low voltage circuit for con- Cl.
  • the present invention relates to controls for a heating system such as an oil burner of the type utilized in residential buildings, for example, wherein the burner is responsive to a call for heat by thermostat, which is intended to energize a fuel supply meansand an igniter for lighting the fuel.
  • control systems of the type described have often utilized electro-mechanical controls including moving parts which are subject to wear.
  • controls have become more complicated, numerous moving parts have led to relatively short life and expensive maintenance problems.
  • the controls have often been incorporated in line voltage circuits which may be dangerous and destructive of circuit components in event of malfunction.
  • U.S. Pat. No. 3,624,407 relates to a furnace control with electronic components in a low voltage circuit, including a reed switch controlling the burner responsive to separate energizing and holding coils.
  • U.S. Pat. No. 3,672,8ll relates to a burner control, in which all of the control components are included in a line voltage circuit, and the fuel supply is controlled by a lightsensitive relay responsive to both an activating lamp and a holding lamp.
  • U.S. Pat. No. 3,463,600 relates to a burner control with two flame sensors, and a malfunction indicator to signal when one of the sensors is not in working order.
  • the present invention relates to an improved burner control system in which a thermostat, flame sensor and safety switch are connected in a low voltage solid state circuit, completely isolated from the commercial 110- volt AC power supply. Only a burner motor, for supplying air and fuel, and an igniter, together with a control switch for the motor and igniter, are included in a line voltage circuit.
  • the thermostatic switch closes, calling for heat
  • the controls in the low voltage control circuit function sequentially to verify operation of a flame detector cell and a safety switch before energizing the fuel supply and igniter means. If a flame is not established in a short time, the safety switch-opens the control circuit to prevent energization of the fuel supply and igniter, and the system cannot be placed in operation again without manually resetting the safety switch.
  • the flame detection circuitry includes an indicator light which is normally energized during the time when the safety switch heater is energized to indicate that no flame has been established, or that insufficient light has been sensed by the flame detector, or that a break exists in the flame sensor circuitry. In the event that a flame is established, the indicator light is extinguished when the safety switch heater is deenergized.
  • an electronic switch in the form of a forward'breakover diode is used in circuit with a controlling relay and requires a predetermined. minimum voltage before operation, so that the control circuit is incapable of operation under conditions where the line voltage is inadequate to establish proper operation of the burner igniter and burner motor.
  • the drawing is a burner control circuit embodying the principles of the present invention, utilizing a photoelectric coupling between a low voltage control circuit and a line voltage burner circuit, together with an indicating light for showing malfunction in the flame detection circuitry.
  • a line voltage circuit includes a line 20 and line 21 connected across the primary winding of a transformer 22.
  • a burner motor 24 for supplying oil and air to a combustion chamber is connected to the line 20 by wire 25 and connected to the line 21 through a wire 27 and a triac switch T1.
  • An igniter 28 is connected in parallel with the motor 24 so that the motor and the igniter are simultaneously energized.
  • the triac switch T1 includes a main terminal MT2 connected to the wire 27, a main terminal MTl connected to the line 21 and a gate G connected to a control circuit for triggering the switch when there is a call for heat by the thermostat.
  • a resistor R2 is connected between the triac terminals G and MTl to eliminate false triggering of the triac due to excessive leakage currents at high temperature or due to electrically generated stray noise signals.
  • a resistor R1 and a capacitor C1 are connected across the triac terminals MT2 and MTl to limit the rate of rise of voltage across the triac a resistor R3.
  • the resistor combination of R3 and R2 provides proper gate bias voltage and current for the triac T1.
  • the base of the transistor T3 is connected to the emitter of a phototransistor T2 by a conductor 31, and the emitter of the transistor T3 is connected by a conductor 32 to a conductor 33.
  • the base of the transistor T2 is connected by a capacitor C and capacitor C6 to the conductor 33.
  • the capacitors insure stabilization of the high gain transistor pair T3 and T2.
  • the conductor 33 is connected by a conductor 36 and diode D1 to a tap on the primary winding of the transformer 22.
  • the collector of the transistor T2 is connected to a resistor R4.
  • the phototransistor T2 is arranged to respond to light from a light emitting diode D3 in a low voltage control circuit responsive to the thermostat. Light from the diode D3 striking the transistor T2 initiates a base current flow in the transistor T2, as a result of which the phototransistor conducts, amplifying the small light generated base current into considerably more emitter current.
  • the emitter current from the transistor T2 flows into the base of the driver transistor T3, causing it to saturate and conduct collector current to trigger the triac T1.
  • Diode D1 and a capacitor C2 in the conductor 33 function as a half-wave power supply for the gate trigger circuitry of transistors T2 and T3.
  • Resistor R4 acts as a current limit for transistors T3 and T2.
  • a resistor R5 and a transistor R14 are connected between the conductors 31 and 33.
  • the resistors provide a finite resistance shunt across the base-emitter junction of transistor T3 to drain off leakage currents at high temperature.
  • a low voltage control circuit is connected across the secondary of the transformer 22.
  • the low voltage circuit includes a thermostat incorporating a normally open thermostatic switch 40 which is adapted to close responsive to decreasing ambient temperature to call for heat.
  • the low voltage circuit also includes ,a light sensitive cadmium-type photoresistive flame detecting cell 42 located adjacent to a burner 43 so that the cell is responsive to the presence or absence of a flame at the burner.
  • the cell 42 has a relatively high resistance, on the order of 50K ohms, in darkness in the absence of a flame at the burner 43, and a relatively low resistance, from 300 ohms to 2,000 ohms, depending upon the distance of the cell from the flame, when the burner is lighted.
  • the burner control circuitry is incorporated in an appropriate housing represented at 45, with only the burner motor 24, the igniter 28, the thermostat 40 and the cad cell 42 outside the housing 45.
  • the housing 45 includes a terminal LG for connection to the power supply line 20, a terminal L for connection to the power supply line 21, and a terminal M for connection with the motor 24 and igniter 28.
  • the housing 45 includes terminals T for connection of the thermostat, and terminals F for connection of the flame detector cell 32.
  • the light emitting diode D3 and the phototransistor T2 may be appropriately characterized as a light relay generally designated 46, in which the diode D3 is a controlling relay element and the transistor T2 is a controlled relay element.
  • the light emitting diode D3 is connected to be energized responsive to closure of the thermostatic switch 40, provided that certain other conditions exist, as will appear in the description of the circuitry.
  • the low voltage circuit includes a safety switch with normally closed switch contacts 47 and a heater coil 48 arranged to cause opening of the contacts 47 after a predetermined period on the order of 15 to 45 seconds. After the switch contacts are opened, they are latched in open condition and must be manually reset by means of a button 49 accessible from the outside of the housing 45.
  • the physical construction of the safety switch may be on the order of that shown and described in the aforementioned U.S. Pat. No. 3,624,407, but the present circuit obviates the need for a temperature compensated switch which has generally been necessary.
  • the diode is connected across the secondary winding of the transformer 22 in a circuit including a conductor 50 leeading from the transformer secondary (adjacent ground) to the safety switch 47, a conductor 51 leading from the safety switch 47 to the diode D3, a conductor 52 leading from the diode, a conductor 54 leading from the conductor 52 to an electronic switch T4 and resistance R10, diode D2, a conductor 55 including resistance R8 leading from the diode D2 to thermostat 40, and a conductor 56 returning from the SCR T4 to the transformer secondary.
  • the electronic switch T4 is a forward breakover device, such as various silicon trigger devices.
  • the switch T4 is a silicon asymmetrical AC trigger which is commercially available as ST4.
  • other devices may be used, such as a silicon unilateral switch available as 2N4988.9, and a silicon bilateral switch available as 2N499l.
  • the thermostat 40 includes an anticipator heater element in the form of a very small resistance 58.
  • an anticipator heater element in the form of a very small resistance 58.
  • power is supplied from the transformer secondary winding 12) through the thermostat contacts and to the conductor 55 including resistors R8 and R7.
  • the resistors are thus connected across the transformer secondary winding via the safety switch contacts 47 and which are normally closed. Under such conditions, the resistors draw approximately 200 milliamps alternating current to operate the thermostat anticipator element 58 which is commonly provided to prevent overshooting of the thermostat.
  • capacitor C3 charges in stepwise fashion to a negative steady state voltage, controlled by the ratio of resistances R7 and R8, which is slightly below the breakover voltage of the asymmetrical switch T4. Assuming the switch T4 is nonconductive below a 7-volt differential across the switch, the capacitor C3 could establish a negative voltage on the order of 6.5 volts at the switch T4.
  • asymmetrical switch T4 is controlled by a silicon controlled rectifier T5 which is con nected to the conductor 56 leading from the transformer secondary.
  • the SCR T5 is normally nonconductive and is in circuit with heater 48 for the safety switch contacts 47.
  • the cathode voltage appears across a resistance R and a po tentiometer R13.
  • the wiper arm of the potentiometer R13 couples part of the rising cathode voltage across one terminal of the asymmetrical switch T4.
  • the other terminal of the switch T4 is held at negative supply voltage established by capacitor C3 during negative half-cycle excursions of the transformer.
  • a capacitor C4 is connected across the asymmetrical switch T4 an the resistance R10, and a Capacitor C7 is connected across the SCR T5 and the heater 48, to eliminate noise spikes and false triggering of the asymmetrical switch T4.
  • the cad cell 42 When the thermostat 40 closes, and there is no flame yet established at the burner 43, the cad cell 42 remains in its dark or high-resistance state.
  • the high resistance of the cell 42 causes the gate-cathode junction of SCR T5 to be forward biased by a bias network including resistor R6, resistor R5 and diode D4. Enough gate current and voltage appear at SCR T5 to trigger T5 to conduct sufficient holding current through the safety switch heating element 48 so that the SCR remains conducting for the duration of the positive half-cycle transformer voltage swing.
  • the SCR T5 When the SCR T5 is triggered, it produces three results. l it supplies heating current to the safety switch heater element 48 which ultimately will cause opening of the safety switch contacts 47 if a flame is not established at the burner 43 within a period of time on the order of 15 to 45 seconds depending upon the proximity of the cell 42 to the burner 43. (2) The rising cathode voltage supplied to asymmetrical switch T4 through resistances R15 and R13 cause T4 to breakover" and conduct current through the light emitting diode D3 and resistor R10, thus calling for energization of the burner motor 24 and igniter 28.
  • the resistive heating element 48 in the safety switch upon receiving current from SCR T5, heats a bimetallic element in the safety switch which serves to open the safety switch contacts after a predetermined time period.
  • the switch is usually adjusted such that it will open the safety contacts 47 after 15 to 45 seconds of continuous heating by the element 48. If no flame is established in such time period, while the thermostat 40 remains closed, calling for heat, the contacts 47 open to remove power from the low voltage control, thereby shutting down the entire burner control system. Once the safety switch contacts open, they remain open, and it is necessary to manually reset the safety switch.
  • the asymmetrical switch T4 will remain in its conducting state, causing current to flow through the light emitting diode D3 and the current limiting resistor R10, until the commercial power is shut off, or the safety switch contacts 47 open, or the thermostat contacts 40 open. As long as T4 conducts, the light emitting diode D3 conducts, and emits light to the base region of the phototransistor T2 for energizing the burner motor 24 and the igniter 28.
  • the wiper arm of the potentiometer R13 is adjusted preferably so that the asymmetrical switch T4 will not breakover and conduct for line voltages less than approximately volts.
  • the resistor R15 serves to protect the asymmetrical switch T4 from receiving excessive current in case the wiper arm of the potentiometer R13 is randomly set, touching one of the extreme ends of the potentiometer.
  • the resistance in the flame detector cell 42 will be reduced to a low volume between 300 and 2,000 ohms, depending upon the proximity of the cell to the flame.
  • the low resistance in the flame detector cell reverse biases the gate-cathode junction of the SCR T5, thereby turning off the SCR T5.
  • the diagnostic indicator, light emitting diode D4 remains energized while the heater 48 is energized.
  • the flame detection circuitry is thus monitored during such time period. Energization of the diode D4 indicates that the safety switch heater 48 is energized and timing out the trial period. During such trial period, if the diode D3 is not energized, the absence of the light indicates that no flame has been established, or insufficient light is reaching the flame detector cell 42, or the flame detection circuitry is open. Thus, at the time of the trial period, a service man is able to immediately ascertain what is happening in the flame detection circuitry. When a flame is appropriately established at the burner 43 within the trial period, the light emitting diode D4 is deenergized when the safety switch heater 48 is deenergized.
  • the light emitting diode D3 and the phototransistor T2 are combined in a single commercially available integrated circuit such as Monsanto Companys photocoupler MCT26.
  • the switching devices T1 and T3-T5 may be of the type identified by various manufacturers as follows:
  • the diodes D1, D2 and D4 may be of the type identified by manufacturers as follows:
  • the resistances Rl-RlS have values approximately as follows:
  • the collector current from the transistor T3 biases the gate G of the triac Tl so that the latter is rendered conducting, to energize the burner motor 24 and the igniter 28.
  • the motor drives a pump for supplying fuel oil to the burner 43 and the igniter causes ignition of such fuel.
  • the existence of a flame reduces the resistance in the flame detector cell 42, rendering the SCR T5 nonconducting.
  • the indicator diode D4 is deenergized.
  • the heater coil 48 is deenergized, and the safety switch contacts 47 remain closed.
  • the arrangement provides for safe failure. If a malfunction condition exists such that the thermostat terminals T are shorted, and the flame sensor terminals F are open, the burner control may turn on, but it will not operate longer than the time required for the heater to open the safety switch contacts 47, because there will be no reduction of resistance to render the SCR T5 nonconducting. If the flame sensor terminals F are shorted, the burner control will never start, because the SCR T5 will be nonconducting. 1f the safety switch heater element 48 is open circuited, the SCR T5 will not receive sufficient holding current to conduct, as a result of which the asymmetrical switch T4 will remain off and the control will not start.
  • a burner control system comprising:
  • thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat
  • thermo- 'static switch a circuit for triggering said electronic switch in circuit with said low voltage source and said thermo- 'static switch
  • a light-sensitive flame detector in the triggering circuit'for the electronic switch normally providing a relatively high resistance to bias said switch to conduct in the absence of a burner flame when the thermostatic switch is closed, and provide a relatively low resistance in the presence of a burner flame to reversely bias the switch to a nonconductive state when the burner is lighted, and
  • an indicator energizable responsive to the triggering circuit for the electronic switch during energization of the safety switch heater.
  • a burner control system comprising:
  • thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat
  • a circuit for triggering said first electronic switch including a second normally nonconductive electronic switch in circuit with the low voltage source
  • a light-sensitive flame detector in the triggering circuit for the second electronic switch normally providing a relatively high resistance to bias said second electronic switch to conduct in the absence of a burner flame when the thermostatic switch is closed thereby to energize the safety switch heater and provide a relatively low resistance in the presence of a burner flame to reversely bias the second switch to a nonconductive state when the burner is lighted, thereby to deenergize the heater, and
  • a visible indicator energizeable responsive to the triggering circuit for the second electronic switch during energization of the safety switch heater.
  • the visible indicator comprises a light emitting 4.
  • the second electronic switch comprises an asymmetrical switch rendered conductive responsive only to a minimum breakover voltage.
  • a burner control system comprising:
  • thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat
  • a burner control system comprising:
  • thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat
  • a forward breakover switch in circuit with said controlling relay element and thermostatic switch for energizing said controlling relay element responsive only to a predetermined minimum breakover voltage
  • circuit for triggering said breakover switch including a second normally nonconductive electronic switch in circuit with the low voltage source
  • a light-sensitive flame detector in the triggering circuit for the second electronic switch normally providing a relatively high resistance to bias said second switch to conduct in the absence of a burner flame when the thermostatic switch is closed, and provide a relatively low resistance in the presence of a burner flame to reversely bias the second switch to a nonconductive state when the burner is lighted.
  • breakover switch comprises a silicon asymmetrical trigger.
  • a burner control system comprising:
  • a. means providing a line voltage circuit including selectively energizable burner means,
  • a first electronic switch in circuit with the burner means including a gate for triggering said switch
  • d. means providing a source of low voltage
  • thermostat in circuit with said low voltage source and said light emitting element for conditioning the circuit responsive to a call for heat
  • a forward breakover device in the circuit with said light emitting element and thermostat for energizing said light emitting element responsive to a predetermined breakover voltage
  • a light-sensitive flame detecting cell in circuit with the triggering circuit for the third electronic switch normally providing a relatively high resistance to trigger said third switch in the absence of a burner flame when the thermostat is closed, and provide a relatively low resistance in the presence of a burner flame to render the third switch nonconductive when the burner is lighted.
  • a burner control system comprising:
  • a. means providing a line voltage circuit including selectively energizable burner means,
  • a first electronic switch in circuit with the burner means including a gate for triggering said switch
  • d. means providing a source of low voltage including a normally closed safety switch
  • thermostat in circuit with said low voltage source and said light emitting element for conditioning the circuit responsive to a call for heat
  • a second electronic switch in circuit with said light emitting element and thermostat for energizing said light emitting element including a gate for triggering said second electronic switch
  • a light-sensitive flame detecting cell in circuit with the gate for the third electronic switch normally providing a relatively high resistance to trigger said third switch in the absence of a burner flame when the thermostat is closed, and provide a relatively low resistance in the presence of a burner flame to render the third switch nonconductive when the burner is lighted, and
  • a burner control system comprising:
  • burner means in the line voltage circuit adapted to be selectively energized
  • a circuit for triggering said switch including a controlled relay element
  • a thermostat in circuit with said controlling relay element for conditioning the circuit responsive to a call for heat
  • circuit for triggering said breakover device including a third electronic switch in circuit with the low voltage source
  • a light-sensitive flame detector in the gate circuit for the third electronic switch normally providing a relatively high resistance to trigger said third switch and the heater in the absence of a burner flame when the thermostat is closed, and provide a relatively low resistance in the presence of a burner flame to render the third switch and the heater nonconductive when the burner is lighted, and

Abstract

A control system for an oil burner including a motor for pumping fuel to the burner, an igniter for lighting the fuel, and an electronic switch for controlling energization of the motor and the igniter, all in a line voltage circuit, together with a low voltage circuit for controlling operation of the motor and igniter switch including a relay controlling the gate of the switch, a second electronic switch and a thermostat in circuit with the relay for energizing the relay, a third electronic switch for triggering the second switch, a gate circuit for triggering the third switch including a light-sensitive flame detector cell and a light for indicating operability of the flame detection circuitry.

Description

United States Patent 1191 v 1111 3,829,276 Lenski et al. Aug. 13, 1974 BURNER CONTROL Primary Examiner-Edward G. Favors Attorney, Agent, or FirmHofgren, Wegner, Allen,
[75] Inventors: Robert J. Lenskl; James H. Mey r, stenman & Mccord both of Rockford, Ill.
[73] Assignee: Sundstrand Corporation, Rockford,
Ill. [57] ABSTRACT [22] Filed: May 21, 1973 A control system for an oil burner including a motor 11 App] o; 362,387 for pumping fuel to the burner, an igniter for lighting the fuel, and an electronic switch for controlling energization of the motor and the igniter, all in a line volt- U.S. Cl. age circuit together a low voltage circuit for con- Cl. trolling peration of the motor and igniter in- [58] Field of Search 431/14, 16,79 eluding a relay controlling the gate f the Switch, a second electronic switch and a thermostat in circuit References .Clted with the relay for energizing the relay, a third elec- UNITED STATES PATENTS tronic switch for triggering the second switch, a gate 3,273,626 9/1966 Brown 431 /79 x Circuit for triggering the third Switch including a light- 431 79 sensitive flame detector cell and a light for indicating 3,276,507 10/1966 Eldridge et al. I
431/16 operabihty of the flame detectlo'n circu1try.
3,603,707 9/1971 Stantz 3,770,365 11/1973 Lenski 431/79 13 Claims, 1 Drawing Figure "@5 1 h T 2/ 4; F l/6'v 2 1 4c.
27 v 76' Z5 c7 1 M7! 25 i l BURNER CONTROL BACKGROUND OF THE INVENTION The present invention relates to controls for a heating system such as an oil burner of the type utilized in residential buildings, for example, wherein the burner is responsive to a call for heat by thermostat, which is intended to energize a fuel supply meansand an igniter for lighting the fuel.
In systems of thetype described, there is usually a relatively delicate balance between fuel supply and air supply within which clean, efficient combustion can be expected. If there is a fuel supply without prompt ignition, or if combustion is initiated and then discontinued inadvertently or unexpectedly, it is important that the fuel supply be discontinued promptly in order to avoid conditions which could be harmful to the equipment or dangerous to property or personnel. Accordingly, it is important in burner control systems to provide safe failure in the event the flame does not start when desired, or goes out after starting.
In the past, control systems of the type described have often utilized electro-mechanical controls including moving parts which are subject to wear. As controls have become more complicated, numerous moving parts have led to relatively short life and expensive maintenance problems. Also, the controls have often been incorporated in line voltage circuits which may be dangerous and destructive of circuit components in event of malfunction.
Recently, there have been some controls utilizing electronic components in low voltage circuits in an effort to improve safety and reliability. For example, U.S. Pat. No. 3,624,407 relates to a furnace control with electronic components in a low voltage circuit, including a reed switch controlling the burner responsive to separate energizing and holding coils. U.S. Pat. No. 3,672,8ll relates to a burner control, in which all of the control components are included in a line voltage circuit, and the fuel supply is controlled by a lightsensitive relay responsive to both an activating lamp and a holding lamp. U.S. Pat. No. 3,463,600 relates to a burner control with two flame sensors, and a malfunction indicator to signal when one of the sensors is not in working order.
The prior application Robert .I. Lenski, Ser. No. 291,142 filed Sept. 25, 1 972, and assigned to the assignee of this application, relates to an improved burner control system with control components in a low voltage circuit with fail-safe capacity and including an electronic switch for triggering a burner control relay and remaining energized so long as the thermostat calls for heat, without the need for separate energizing means and holding means for the relay.
It is desirable to provide an improved burner control system with control components in a low voltage circuit with means preventing operation in event of inadequate line voltage, and with means for indicating inoperation of the flame detection circuitry.
SUMMARY OF THE PRESENT INVENTION The present invention relates to an improved burner control system in which a thermostat, flame sensor and safety switch are connected in a low voltage solid state circuit, completely isolated from the commercial 110- volt AC power supply. Only a burner motor, for supplying air and fuel, and an igniter, together with a control switch for the motor and igniter, are included in a line voltage circuit. When the thermostatic switch closes, calling for heat, the controls in the low voltage control circuit function sequentially to verify operation of a flame detector cell and a safety switch before energizing the fuel supply and igniter means. If a flame is not established in a short time, the safety switch-opens the control circuit to prevent energization of the fuel supply and igniter, and the system cannot be placed in operation again without manually resetting the safety switch.
In a preferred embodiment, the flame detection circuitry includes an indicator light which is normally energized during the time when the safety switch heater is energized to indicate that no flame has been established, or that insufficient light has been sensed by the flame detector, or that a break exists in the flame sensor circuitry. In the event that a flame is established, the indicator light is extinguished when the safety switch heater is deenergized.
Preferably, an electronic switch in the form of a forward'breakover diode is used in circuit with a controlling relay and requires a predetermined. minimum voltage before operation, so that the control circuit is incapable of operation under conditions where the line voltage is inadequate to establish proper operation of the burner igniter and burner motor.
BRIEF DESCRIPTION OF THE DRAWING The drawing is a burner control circuit embodying the principles of the present invention, utilizing a photoelectric coupling between a low voltage control circuit and a line voltage burner circuit, together with an indicating light for showing malfunction in the flame detection circuitry.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENT Referring now to the drawing, a line voltage circuit includes a line 20 and line 21 connected across the primary winding of a transformer 22. A burner motor 24 for supplying oil and air to a combustion chamber is connected to the line 20 by wire 25 and connected to the line 21 through a wire 27 and a triac switch T1. An igniter 28 is connected in parallel with the motor 24 so that the motor and the igniter are simultaneously energized.
The triac switch T1 includes a main terminal MT2 connected to the wire 27, a main terminal MTl connected to the line 21 and a gate G connected to a control circuit for triggering the switch when there is a call for heat by the thermostat. A resistor R2 is connected between the triac terminals G and MTl to eliminate false triggering of the triac due to excessive leakage currents at high temperature or due to electrically generated stray noise signals. A resistor R1 and a capacitor C1 are connected across the triac terminals MT2 and MTl to limit the rate of rise of voltage across the triac a resistor R3. The resistor combination of R3 and R2 provides proper gate bias voltage and current for the triac T1. The base of the transistor T3 is connected to the emitter of a phototransistor T2 by a conductor 31, and the emitter of the transistor T3 is connected by a conductor 32 to a conductor 33.
The base of the transistor T2 is connected by a capacitor C and capacitor C6 to the conductor 33. The capacitors insure stabilization of the high gain transistor pair T3 and T2. The conductor 33 is connected by a conductor 36 and diode D1 to a tap on the primary winding of the transformer 22. The collector of the transistor T2 is connected to a resistor R4. The phototransistor T2 is arranged to respond to light from a light emitting diode D3 in a low voltage control circuit responsive to the thermostat. Light from the diode D3 striking the transistor T2 initiates a base current flow in the transistor T2, as a result of which the phototransistor conducts, amplifying the small light generated base current into considerably more emitter current. The emitter current from the transistor T2 flows into the base of the driver transistor T3, causing it to saturate and conduct collector current to trigger the triac T1.
Diode D1 and a capacitor C2 in the conductor 33 function as a half-wave power supply for the gate trigger circuitry of transistors T2 and T3. Resistor R4 acts as a current limit for transistors T3 and T2.
A resistor R5 and a transistor R14 are connected between the conductors 31 and 33. The resistors provide a finite resistance shunt across the base-emitter junction of transistor T3 to drain off leakage currents at high temperature.
A low voltage control circuit is connected across the secondary of the transformer 22. The low voltage circuit includes a thermostat incorporating a normally open thermostatic switch 40 which is adapted to close responsive to decreasing ambient temperature to call for heat. The low voltage circuit also includes ,a light sensitive cadmium-type photoresistive flame detecting cell 42 located adjacent to a burner 43 so that the cell is responsive to the presence or absence of a flame at the burner. The cell 42 has a relatively high resistance, on the order of 50K ohms, in darkness in the absence of a flame at the burner 43, and a relatively low resistance, from 300 ohms to 2,000 ohms, depending upon the distance of the cell from the flame, when the burner is lighted.
Preferably, the burner control circuitry is incorporated in an appropriate housing represented at 45, with only the burner motor 24, the igniter 28, the thermostat 40 and the cad cell 42 outside the housing 45. In order to properly connect the control circuitry to the external components of the system, the housing 45 includes a terminal LG for connection to the power supply line 20, a terminal L for connection to the power supply line 21, and a terminal M for connection with the motor 24 and igniter 28. Additionally, the housing 45 includes terminals T for connection of the thermostat, and terminals F for connection of the flame detector cell 32.
The light emitting diode D3 and the phototransistor T2 may be appropriately characterized as a light relay generally designated 46, in which the diode D3 is a controlling relay element and the transistor T2 is a controlled relay element.
In the low voltage control circuit, the light emitting diode D3 is connected to be energized responsive to closure of the thermostatic switch 40, provided that certain other conditions exist, as will appear in the description of the circuitry.
The low voltage circuit includes a safety switch with normally closed switch contacts 47 and a heater coil 48 arranged to cause opening of the contacts 47 after a predetermined period on the order of 15 to 45 seconds. After the switch contacts are opened, they are latched in open condition and must be manually reset by means of a button 49 accessible from the outside of the housing 45. The physical construction of the safety switch may be on the order of that shown and described in the aforementioned U.S. Pat. No. 3,624,407, but the present circuit obviates the need for a temperature compensated switch which has generally been necessary.
In order to provide for energization of the light emitting diode D3 when there is a call for heat, the diode is connected across the secondary winding of the transformer 22 in a circuit including a conductor 50 leeading from the transformer secondary (adjacent ground) to the safety switch 47, a conductor 51 leading from the safety switch 47 to the diode D3, a conductor 52 leading from the diode, a conductor 54 leading from the conductor 52 to an electronic switch T4 and resistance R10, diode D2, a conductor 55 including resistance R8 leading from the diode D2 to thermostat 40, and a conductor 56 returning from the SCR T4 to the transformer secondary.
The electronic switch T4 is a forward breakover device, such as various silicon trigger devices. In a preferred circuit, the switch T4 is a silicon asymmetrical AC trigger which is commercially available as ST4. However, other devices may be used, such as a silicon unilateral switch available as 2N4988.9, and a silicon bilateral switch available as 2N499l.
As is conventional, the thermostat 40 includes an anticipator heater element in the form of a very small resistance 58. When the thermostat 40 closes responsive to a call for heat, power is supplied from the transformer secondary winding 12) through the thermostat contacts and to the conductor 55 including resistors R8 and R7. The resistors are thus connected across the transformer secondary winding via the safety switch contacts 47 and which are normally closed. Under such conditions, the resistors draw approximately 200 milliamps alternating current to operate the thermostat anticipator element 58 which is commonly provided to prevent overshooting of the thermostat.
Resistors R7 and R8, together with diode D2, provide a predetermined bias voltage and charge path for a negative power supply capacitor C3 in a conductor 59. On successive negative half-cycle swings of the transformer secondary winding, capacitor C3 charges in stepwise fashion to a negative steady state voltage, controlled by the ratio of resistances R7 and R8, which is slightly below the breakover voltage of the asymmetrical switch T4. Assuming the switch T4 is nonconductive below a 7-volt differential across the switch, the capacitor C3 could establish a negative voltage on the order of 6.5 volts at the switch T4.
.:-Triggering of the. asymmetrical switch T4 is controlled by a silicon controlled rectifier T5 which is con nected to the conductor 56 leading from the transformer secondary. The SCR T5 is normally nonconductive and is in circuit with heater 48 for the safety switch contacts 47. When the SCR T5 is triggered, the cathode voltage appears across a resistance R and a po tentiometer R13. The wiper arm of the potentiometer R13 couples part of the rising cathode voltage across one terminal of the asymmetrical switch T4. The other terminal of the switch T4 is held at negative supply voltage established by capacitor C3 during negative half-cycle excursions of the transformer. When the combination of these two voltages exceeds the breakover voltage of switch T4, it switches from the normally off mode to its on or conducting state. Thus, at least one cycle of both positive and negative transformer voltage is necessary to cause T4 to conduct, eliminating the transient effects of thermostat contact closures. A capacitor C4 is connected across the asymmetrical switch T4 an the resistance R10, and a Capacitor C7 is connected across the SCR T5 and the heater 48, to eliminate noise spikes and false triggering of the asymmetrical switch T4.
When the thermostat 40 closes, and there is no flame yet established at the burner 43, the cad cell 42 remains in its dark or high-resistance state. On positive halfcycle swings of the transformer secondary winding, the high resistance of the cell 42 causes the gate-cathode junction of SCR T5 to be forward biased by a bias network including resistor R6, resistor R5 and diode D4. Enough gate current and voltage appear at SCR T5 to trigger T5 to conduct sufficient holding current through the safety switch heating element 48 so that the SCR remains conducting for the duration of the positive half-cycle transformer voltage swing.
When the SCR T5 is triggered, it produces three results. l it supplies heating current to the safety switch heater element 48 which ultimately will cause opening of the safety switch contacts 47 if a flame is not established at the burner 43 within a period of time on the order of 15 to 45 seconds depending upon the proximity of the cell 42 to the burner 43. (2) The rising cathode voltage supplied to asymmetrical switch T4 through resistances R15 and R13 cause T4 to breakover" and conduct current through the light emitting diode D3 and resistor R10, thus calling for energization of the burner motor 24 and igniter 28. (3) The rising cathode voltage causes the cathode-gate junction of T5 to go into reverse breakdown dumping a limited amount of current into the resistor R9 and the light emitting diode D4, causing the diode D4 to emit visible light indicating that a flame condition has not yet been established and that the control is operating in the trial period, with the safety switch heater 48 energized.
The resistive heating element 48 in the safety switch, upon receiving current from SCR T5, heats a bimetallic element in the safety switch which serves to open the safety switch contacts after a predetermined time period. The switch is usually adjusted such that it will open the safety contacts 47 after 15 to 45 seconds of continuous heating by the element 48. If no flame is established in such time period, while the thermostat 40 remains closed, calling for heat, the contacts 47 open to remove power from the low voltage control, thereby shutting down the entire burner control system. Once the safety switch contacts open, they remain open, and it is necessary to manually reset the safety switch.
Once triggered into the conducting state, the asymmetrical switch T4 will remain in its conducting state, causing current to flow through the light emitting diode D3 and the current limiting resistor R10, until the commercial power is shut off, or the safety switch contacts 47 open, or the thermostat contacts 40 open. As long as T4 conducts, the light emitting diode D3 conducts, and emits light to the base region of the phototransistor T2 for energizing the burner motor 24 and the igniter 28. The wiper arm of the potentiometer R13 is adjusted preferably so that the asymmetrical switch T4 will not breakover and conduct for line voltages less than approximately volts. Thus, it is not possible to energize the low voltage control when the line voltage is less than that which is suitable for operating the burner motor 24 and the igniter 28. Prior to adjustment of the potentiometer R13, the resistor R15 serves to protect the asymmetrical switch T4 from receiving excessive current in case the wiper arm of the potentiometer R13 is randomly set, touching one of the extreme ends of the potentiometer.
if a flame is established at the burner 43 during the 15 to 45 second trial period before the safety switch contacts 47 open, as will normally occur if the control system functions properly, the resistance in the flame detector cell 42 will be reduced to a low volume between 300 and 2,000 ohms, depending upon the proximity of the cell to the flame. The low resistance in the flame detector cell reverse biases the gate-cathode junction of the SCR T5, thereby turning off the SCR T5. When the switch T5 is not conducting, no power is consumed by the heater element 48 in the safety switch, so that it cools and the contacts 47 remain in the normally closed position. As a result, the burner will continue to operate as long as the thermostat calls for heat and the flame detector cell reads flame condition.
The diagnostic indicator, light emitting diode D4 remains energized while the heater 48 is energized. The flame detection circuitry is thus monitored during such time period. Energization of the diode D4 indicates that the safety switch heater 48 is energized and timing out the trial period. During such trial period, if the diode D3 is not energized, the absence of the light indicates that no flame has been established, or insufficient light is reaching the flame detector cell 42, or the flame detection circuitry is open. Thus, at the time of the trial period, a service man is able to immediately ascertain what is happening in the flame detection circuitry. When a flame is appropriately established at the burner 43 within the trial period, the light emitting diode D4 is deenergized when the safety switch heater 48 is deenergized.
Preferably, the light emitting diode D3 and the phototransistor T2 are combined in a single commercially available integrated circuit such as Monsanto Companys photocoupler MCT26.
The switching devices T1 and T3-T5 may be of the type identified by various manufacturers as follows:
Tl 64149 SPECIAL T4 ST-4 T5 C103Y, TIC-44 The diodes D1, D2 and D4 may be of the type identified by manufacturers as follows:
Dl lN4002 D4 R15-50 l The capacitors C1-C7 have values generally as folows:
C1 0.1 MP, 400V C2 220 MP, 25V
C3 220 MP, 16V
C4 0.1 MP, 25V
C5 27OPF to 390 PP, 25V
C6 270PF to 390 PF, 25V
C7 0.1MF, 50V
The resistances Rl-RlS have values approximately as follows:
R1 100 ohm /2W R2 820 ohm BW R4 1.8K ohm /2W R6 18K ohm /2W R7 22 ohm 3W. 5 percent R8 40 ohm 3W. 5 percent R9 390 ohm AW R10 150 ohm /2W R11 820 ohm /2W R12 820 ohm /2W R13 -100K ohm POT R14 33K ohm /2W R 4.7K ohm /2W To summarize the operation, when there is no call for heat, the thermostatic switch contacts 40 are normally open, and the components of the system are at rest. When the thermostatic switch is closed, a circuit is completed to the gate for the SCR T5. If the flame detector cell 42 is functioning properly, and there is no flame, the high resistance at the cell causes the SCR T5 to conduct. When the SCR T5 conducts, a circuit is completed through the safety switch heater 48 to start the trial period. At the same time, the indicator diode D4 is energized. Conduction in the SCR T5 results in triggering the asymmetrical switch T4, completing a circuit to energize the light emitting diode D3 to transmit light to the phototransistor T2. The emitted current from the phototransistor T2 causes the transistor T3 to conduct. The collector current from the transistor T3 biases the gate G of the triac Tl so that the latter is rendered conducting, to energize the burner motor 24 and the igniter 28. The motor drives a pump for supplying fuel oil to the burner 43 and the igniter causes ignition of such fuel. The existence of a flame reduces the resistance in the flame detector cell 42, rendering the SCR T5 nonconducting. The indicator diode D4 is deenergized. The heater coil 48 is deenergized, and the safety switch contacts 47 remain closed.
If, for some reason, the normally expected cycle of operation described above is not completed, no flame is established at the burner 43, the high resistance in the unlighted flame detector cell 42 will maintain the SCR T5 conducting until the heater element 48 opens the safety switch contacts 47, thereby shutting the system down until it receives manual attention.
The arrangement provides for safe failure. If a malfunction condition exists such that the thermostat terminals T are shorted, and the flame sensor terminals F are open, the burner control may turn on, but it will not operate longer than the time required for the heater to open the safety switch contacts 47, because there will be no reduction of resistance to render the SCR T5 nonconducting. If the flame sensor terminals F are shorted, the burner control will never start, because the SCR T5 will be nonconducting. 1f the safety switch heater element 48 is open circuited, the SCR T5 will not receive sufficient holding current to conduct, as a result of which the asymmetrical switch T4 will remain off and the control will not start.
We claim:
1. A burner control system comprising:
a. means providing a source of low voltage including a normally closed safety switch,
b. a controlling relay element in circuit with the low voltage source,
c. a thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat,
(1. a heater for the safety switch,
e. a normally nonconductive electronic switch in circuit with the low voltage source and with the safety switch heater,
f. a circuit for triggering said electronic switch in circuit with said low voltage source and said thermo- 'static switch,
g. a light-sensitive flame detector in the triggering circuit'for the electronic switch normally providing a relatively high resistance to bias said switch to conduct in the absence of a burner flame when the thermostatic switch is closed, and provide a relatively low resistance in the presence of a burner flame to reversely bias the switch to a nonconductive state when the burner is lighted, and
h. an indicator energizable responsive to the triggering circuit for the electronic switch during energization of the safety switch heater.
2. A burner control system comprising:
a. means providing a source of low voltage including a normally closed safety switch,
b. a controlling relay element in circuit with the low voltage source,
c. a thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat,
d. a first normally nonconductive electronic switch in circuit with said controlling relay element and thermostatic switch for energizing said controlling relay element,
e. a circuit for triggering said first electronic switch including a second normally nonconductive electronic switch in circuit with the low voltage source,
f. a heater for said safety switch in circuit with said second electronic switch,
g. a circuit for triggering said second electronic switch in circuit with said low voltage source and said thermostatic switch,
h. a light-sensitive flame detector in the triggering circuit for the second electronic switch normally providing a relatively high resistance to bias said second electronic switch to conduct in the absence of a burner flame when the thermostatic switch is closed thereby to energize the safety switch heater and provide a relatively low resistance in the presence of a burner flame to reversely bias the second switch to a nonconductive state when the burner is lighted, thereby to deenergize the heater, and
i. a visible indicator energizeable responsive to the triggering circuit for the second electronic switch during energization of the safety switch heater.
3. A burner control system as defined in claim 2,
cviv hejrein the visible indicator comprises a light emitting 4. A burner control system as defined in claim 2, wherein the second electronic switch comprises an asymmetrical switch rendered conductive responsive only to a minimum breakover voltage.
5. A burner control system as defined in claim 2, wherein the asymmetrical switch comprises a silicon asymmetrical trigger.
6. A burner control system comprising:
a. means providing a source of low voltage including a normally closed safety switch,
b. a controlling relay element in circuit with the low voltage source,
c. a thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat,
d. an asymmetrical switch in circuit with said controlling relay element and thermostatic switch for energizing said controlling relay element responsive to a predetermined breakover voltage,
e. an operator for said safety switch,
f. a circuit for energizing said operator upon closure of said thermostatic switch, and
g. a flame detector in the operator circuit for deenergizing the operator on the establishment of a burner flame.
7. A burner control system comprising:
a. means providing a source of low voltage including a normally closed safety switch,
b. a controlling relay element in circuit with the low voltage source,
c. a thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat,
d. a forward breakover switch in circuit with said controlling relay element and thermostatic switch for energizing said controlling relay element responsive only to a predetermined minimum breakover voltage,
e. a circuit for triggering said breakover switch including a second normally nonconductive electronic switch in circuit with the low voltage source,
f. a heater for said safety switch in circuit with said second electronic switch,
g. a circuit for triggering said second electronic switch in circuit with said low voltage source and said thermostatic switch, and
h. a light-sensitive flame detector in the triggering circuit for the second electronic switch normally providing a relatively high resistance to bias said second switch to conduct in the absence of a burner flame when the thermostatic switch is closed, and provide a relatively low resistance in the presence of a burner flame to reversely bias the second switch to a nonconductive state when the burner is lighted.
8. A burner control system as defined in claim 7, wherein the breakover switch comprises a silicon asymmetrical trigger.
9. A burner control system as defined in claim 7, including an indicator energizable responsive to the triggering circuit for the second electronic switch during energization of the safety switch heater.
10. A burner control system comprising:
a. means providing a line voltage circuit including selectively energizable burner means,
b. a first electronic switch in circuit with the burner means including a gate for triggering said switch,
c. a light-sensitive element in circuit with the gate for rendering the gate conductive,
d. means providing a source of low voltage,
e. a light emitting element for transmitting light to said light-sensitive element,
f. a thermostat in circuit with said low voltage source and said light emitting element for conditioning the circuit responsive to a call for heat,
g. a forward breakover device in the circuit with said light emitting element and thermostat for energizing said light emitting element responsive to a predetermined breakover voltage,
h. a third normally nonconductive electronic switch in circuit with the low voltage source for rendering the forward breakover device conductive,
i. a circuit for triggering said third electronic switch in circuit with said low voltage source and said thermostat, and
j. a light-sensitive flame detecting cell in circuit with the triggering circuit for the third electronic switch normally providing a relatively high resistance to trigger said third switch in the absence of a burner flame when the thermostat is closed, and provide a relatively low resistance in the presence of a burner flame to render the third switch nonconductive when the burner is lighted.
11. A burner control system as defined in claim 10, wherein the forward breakover diode comprises a silicon asymmetrical trigger.
12. A burner control system comprising:
a. means providing a line voltage circuit including selectively energizable burner means,
b. a first electronic switch in circuit with the burner means including a gate for triggering said switch,
c.'a light-sensitive element in circuit with the gate for rendering the gate conductive,
d. means providing a source of low voltage including a normally closed safety switch,
e. a light emitting element for transmitting light to said light-sensitive element,
f. a thermostat in circuit with said low voltage source and said light emitting element for conditioning the circuit responsive to a call for heat,
g. a second electronic switch in circuit with said light emitting element and thermostat for energizing said light emitting element including a gate for triggering said second electronic switch,
h. a third normally nonconductive electronic switch in circuit with the low voltage source for rendering the last recited gate conductive,
. a heater for the safety switch in circuit with the third electronic switch,
j. a gate for triggering said third electronic switch in circuit with said low voltage source and said thermostat,
k. a light-sensitive flame detecting cell in circuit with the gate for the third electronic switch normally providing a relatively high resistance to trigger said third switch in the absence of a burner flame when the thermostat is closed, and provide a relatively low resistance in the presence of a burner flame to render the third switch nonconductive when the burner is lighted, and
l. a visible indicator energizable responsive to the gate circuit for the second electronic switch during conductivity of the third switch.
13. A burner control system comprising:
a. means providing a line voltage circuit,
b. burner means in the line voltage circuit adapted to be selectively energized,
c. a first electronic switch in circuit with the burner means,
d. a circuit for triggering said switch including a controlled relay element,
e. means providing a source of low voltage including a normally closed safety switch,
f. a controlling relay element in circuit with the low voltage source for controlling said controlled relay element,
g. a thermostat in circuit with said controlling relay element for conditioning the circuit responsive to a call for heat,
h. a forward breakover device in circuit with said' controlling relay element and thermostat for energizing said controlling relay element,
i. a circuit for triggering said breakover device including a third electronic switch in circuit with the low voltage source,
j. a heater for said safety switch in circuit with said third electronic switch,
k. a gate circuit for triggering said third electronic switch in circuit with said low voltage source and said thermostat,
l. a light-sensitive flame detector in the gate circuit for the third electronic switch normally providing a relatively high resistance to trigger said third switch and the heater in the absence of a burner flame when the thermostat is closed, and provide a relatively low resistance in the presence of a burner flame to render the third switch and the heater nonconductive when the burner is lighted, and
m. a light emitting diode energizable during energization of the third switch.

Claims (13)

1. A burner control system comprising: a. means providing a source of low voltage including a normally closed safety switch, b. a controlling relay element in circuit with the low voltage source, c. a thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat, d. a heater for the safety switch, e. a normally nonconductive electronic switch in circuit with the low voltage source and with the safety switch heater, f. a circuit for triggering said electronic switch in circuit with said low voltage source and said thermostatic switch, g. a light-sensitive flame detector in the triggering circuit for the electronic switch normally providing a relatively high resistance to bias said switch to conduct in the absence of a burner flame when the thermostatic switch is closed, and provide a relatively low resistance in the presence of a burner flame to reversely bias the switch to a nonconductive state when the burner is lighted, and h. an indicator energizable responsive to the triggering circuit for the electronic switch during energization of the safety switch heater.
2. A burner control system comprising: a. means providing a source of low voltage including a normally closed safety switch, b. a controlling relay element in circuit with the low voltage source, c. a thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat, d. a first normally nonconductive electronic switch in circuit with said controlling relay element and thermostatic switch for energizing said controlling relay element, e. a circuit for triggering said first electronic switch including a second normally nonconductive electronic switch in circuit with the low voltage source, f. a heater for said safety switch in circuit with said second electronic switch, g. a circuit for triggering said second electronic switch in circuit with said low voltage source and said thermostatic switch, h. a light-sensitive flame detector in the triggering circuit for the second electronic switch normally providing a relatively high resistance to bias said second electronic switch to conduct in the absence of a burner flame when the thermostatic switch is closed thereby to energize the safety switch heater and provide a relatively low resistance in the presence of a burner flame to reversely bias the second switch to a nonconductive state when the burner is lighted, thereby to deenergize the heAter, and i. a visible indicator energizeable responsive to the triggering circuit for the second electronic switch during energization of the safety switch heater.
3. A burner control system as defined in claim 2, wherein the visible indicator comprises a light emitting diode.
4. A burner control system as defined in claim 2, wherein the second electronic switch comprises an asymmetrical switch rendered conductive responsive only to a minimum breakover voltage.
5. A burner control system as defined in claim 2, wherein the asymmetrical switch comprises a silicon asymmetrical trigger.
6. A burner control system comprising: a. means providing a source of low voltage including a normally closed safety switch, b. a controlling relay element in circuit with the low voltage source, c. a thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat, d. an asymmetrical switch in circuit with said controlling relay element and thermostatic switch for energizing said controlling relay element responsive to a predetermined breakover voltage, e. an operator for said safety switch, f. a circuit for energizing said operator upon closure of said thermostatic switch, and g. a flame detector in the operator circuit for deenergizing the operator on the establishment of a burner flame.
7. A burner control system comprising: a. means providing a source of low voltage including a normally closed safety switch, b. a controlling relay element in circuit with the low voltage source, c. a thermostatic switch in circuit with said controlling relay element adapted to close for conditioning the circuit responsive to a call for heat, d. a forward breakover switch in circuit with said controlling relay element and thermostatic switch for energizing said controlling relay element responsive only to a predetermined minimum breakover voltage, e. a circuit for triggering said breakover switch including a second normally nonconductive electronic switch in circuit with the low voltage source, f. a heater for said safety switch in circuit with said second electronic switch, g. a circuit for triggering said second electronic switch in circuit with said low voltage source and said thermostatic switch, and h. a light-sensitive flame detector in the triggering circuit for the second electronic switch normally providing a relatively high resistance to bias said second switch to conduct in the absence of a burner flame when the thermostatic switch is closed, and provide a relatively low resistance in the presence of a burner flame to reversely bias the second switch to a nonconductive state when the burner is lighted.
8. A burner control system as defined in claim 7, wherein the breakover switch comprises a silicon asymmetrical trigger.
9. A burner control system as defined in claim 7, including an indicator energizable responsive to the triggering circuit for the second electronic switch during energization of the safety switch heater.
10. A burner control system comprising: a. means providing a line voltage circuit including selectively energizable burner means, b. a first electronic switch in circuit with the burner means including a gate for triggering said switch, c. a light-sensitive element in circuit with the gate for rendering the gate conductive, d. means providing a source of low voltage, e. a light emitting element for transmitting light to said light-sensitive element, f. a thermostat in circuit with said low voltage source and said light emitting element for conditioning the circuit responsive to a call for heat, g. a forward breakover device in the circuit with said light emitting element and thermostat for energizing said light emitting element responsive to a predetermined breakover voltage, h. a third normally nonconductive electronic switch in circuit with the low voltage source for rendering the forward breakover device conductive, i. a circuit for triggering said third electronic switch in circuit with said low voltage source and said thermostat, and j. a light-sensitive flame detecting cell in circuit with the triggering circuit for the third electronic switch normally providing a relatively high resistance to trigger said third switch in the absence of a burner flame when the thermostat is closed, and provide a relatively low resistance in the presence of a burner flame to render the third switch nonconductive when the burner is lighted.
11. A burner control system as defined in claim 10, wherein the forward breakover diode comprises a silicon asymmetrical trigger.
12. A burner control system comprising: a. means providing a line voltage circuit including selectively energizable burner means, b. a first electronic switch in circuit with the burner means including a gate for triggering said switch, c. a light-sensitive element in circuit with the gate for rendering the gate conductive, d. means providing a source of low voltage including a normally closed safety switch, e. a light emitting element for transmitting light to said light-sensitive element, f. a thermostat in circuit with said low voltage source and said light emitting element for conditioning the circuit responsive to a call for heat, g. a second electronic switch in circuit with said light emitting element and thermostat for energizing said light emitting element including a gate for triggering said second electronic switch, h. a third normally nonconductive electronic switch in circuit with the low voltage source for rendering the last recited gate conductive, i. a heater for the safety switch in circuit with the third electronic switch, j. a gate for triggering said third electronic switch in circuit with said low voltage source and said thermostat, k. a light-sensitive flame detecting cell in circuit with the gate for the third electronic switch normally providing a relatively high resistance to trigger said third switch in the absence of a burner flame when the thermostat is closed, and provide a relatively low resistance in the presence of a burner flame to render the third switch nonconductive when the burner is lighted, and l. a visible indicator energizable responsive to the gate circuit for the second electronic switch during conductivity of the third switch.
13. A burner control system comprising: a. means providing a line voltage circuit, b. burner means in the line voltage circuit adapted to be selectively energized, c. a first electronic switch in circuit with the burner means, d. a circuit for triggering said switch including a controlled relay element, e. means providing a source of low voltage including a normally closed safety switch, f. a controlling relay element in circuit with the low voltage source for controlling said controlled relay element, g. a thermostat in circuit with said controlling relay element for conditioning the circuit responsive to a call for heat, h. a forward breakover device in circuit with said controlling relay element and thermostat for energizing said controlling relay element, i. a circuit for triggering said breakover device including a third electronic switch in circuit with the low voltage source, j. a heater for said safety switch in circuit with said third electronic switch, k. a gate circuit for triggering said third electronic switch in circuit with said low voltage source and said thermostat, l. a light-sensitive flame detector in the gate circuit for the third electronic switch normally providing a relatively high resistance to trigger said third switch and the heater in the absence of a burner flame when the thermostat is closed, and provide a relatively low resistance in the presence of a burner flame to render the third switch and the heater nonconductive when the burner iS lighted, and m. a light emitting diode energizable during energization of the third switch.
US00362387A 1973-05-21 1973-05-21 Burner control Expired - Lifetime US3829276A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00362387A US3829276A (en) 1973-05-21 1973-05-21 Burner control
CA200,197A CA1011845A (en) 1973-05-21 1974-05-17 Burner control
FR7417516A FR2230939B2 (en) 1973-05-21 1974-05-20
JP49056189A JPS5019025A (en) 1973-05-21 1974-05-21
DE2424711A DE2424711A1 (en) 1973-05-21 1974-05-21 OIL BURNER CONTROL ARRANGEMENT
IT51146/74A IT1011497B (en) 1973-05-21 1974-05-21 BURNER COMMAND FOR NAFTA
CA249,792A CA1015838A (en) 1973-05-21 1976-04-08 Burner control
CA249,791A CA1015837A (en) 1973-05-21 1976-04-08 Burner control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00362387A US3829276A (en) 1973-05-21 1973-05-21 Burner control

Publications (1)

Publication Number Publication Date
US3829276A true US3829276A (en) 1974-08-13

Family

ID=23425923

Family Applications (1)

Application Number Title Priority Date Filing Date
US00362387A Expired - Lifetime US3829276A (en) 1973-05-21 1973-05-21 Burner control

Country Status (6)

Country Link
US (1) US3829276A (en)
JP (1) JPS5019025A (en)
CA (1) CA1011845A (en)
DE (1) DE2424711A1 (en)
FR (1) FR2230939B2 (en)
IT (1) IT1011497B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938940A (en) * 1975-01-09 1976-02-17 Robertshaw Controls Company Primary control and ignition system for oil burners
US3938939A (en) * 1975-02-12 1976-02-17 Sundstrand Corporation Burner control system with secondary safety switch
US3973898A (en) * 1973-12-19 1976-08-10 Seymour Seider Automatic combustion control with improved electrical circuit
US4024412A (en) * 1975-02-07 1977-05-17 The Scott & Fetzer Company (France Division) Burner control system with primary safety switch
US4038019A (en) * 1975-09-10 1977-07-26 Johnson Controls, Inc. Fail-safe energizing circuit for a functional device
US4098503A (en) * 1976-10-15 1978-07-04 Antone Howard J One-hand bat
US4113419A (en) * 1976-04-12 1978-09-12 Electronics Corporation Of America Burner control apparatus
EP0320082A1 (en) * 1987-12-08 1989-06-14 Desa International, Inc. Method and apparatus for a flame sensing digital primary safety control for fuel burning devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123988B2 (en) * 2012-11-29 2015-09-01 Viasat, Inc. Device and method for reducing interference with adjacent satellites using a mechanically gimbaled asymmetrical-aperture antenna
US10277308B1 (en) 2016-09-22 2019-04-30 Viasat, Inc. Methods and systems of adaptive antenna pointing for mitigating interference with a nearby satellite

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973898A (en) * 1973-12-19 1976-08-10 Seymour Seider Automatic combustion control with improved electrical circuit
US3938940A (en) * 1975-01-09 1976-02-17 Robertshaw Controls Company Primary control and ignition system for oil burners
US4024412A (en) * 1975-02-07 1977-05-17 The Scott & Fetzer Company (France Division) Burner control system with primary safety switch
US3938939A (en) * 1975-02-12 1976-02-17 Sundstrand Corporation Burner control system with secondary safety switch
US4038019A (en) * 1975-09-10 1977-07-26 Johnson Controls, Inc. Fail-safe energizing circuit for a functional device
US4113419A (en) * 1976-04-12 1978-09-12 Electronics Corporation Of America Burner control apparatus
US4098503A (en) * 1976-10-15 1978-07-04 Antone Howard J One-hand bat
EP0320082A1 (en) * 1987-12-08 1989-06-14 Desa International, Inc. Method and apparatus for a flame sensing digital primary safety control for fuel burning devices

Also Published As

Publication number Publication date
FR2230939B2 (en) 1978-05-12
FR2230939A2 (en) 1974-12-20
CA1011845A (en) 1977-06-07
IT1011497B (en) 1977-01-20
DE2424711A1 (en) 1974-12-19
JPS5019025A (en) 1975-02-28

Similar Documents

Publication Publication Date Title
US4091266A (en) Electrical circuit for controlling a temperature of a heating element
US3829276A (en) Burner control
US7083408B1 (en) Apparatus and method for shutting down a fuel fired appliance
GB2036946A (en) Fuel ignition and supply systems
US4235587A (en) Flame responsive control circuit
US3270799A (en) Burner control apparatus
US3482922A (en) Solid-state control system
NL8103796A (en) BURNER STEERING.
US4024412A (en) Burner control system with primary safety switch
EP0010767B1 (en) Burner control system
US3872320A (en) Furnace control circuit
US3770365A (en) Burner control
US3484177A (en) Igniter and control means
US3947219A (en) Burner control with interrupted ignition
US3671815A (en) Flame detection apparatus
US5277575A (en) System and method for controlling the operation of a primary burner
US4007713A (en) Test circuit
US3938939A (en) Burner control system with secondary safety switch
US4452582A (en) Independent, self-contained electronic spark ignition recycler
US3594107A (en) Electric ignition system using a ptc ignitor as a sensing means
GB2170932A (en) Status indicators for fuel burning appliances
US3198236A (en) Flame detecting devices
US3504993A (en) Combustion control circuit
US3532451A (en) Electric ignition system
US3126940A (en) Burner control apparatus