US3826094A - System and method for operating a steam turbine with independent overspeed protection especially adapted for a nuclear reactor powered steam turbine - Google Patents

System and method for operating a steam turbine with independent overspeed protection especially adapted for a nuclear reactor powered steam turbine Download PDF

Info

Publication number
US3826094A
US3826094A US00189226A US18922671A US3826094A US 3826094 A US3826094 A US 3826094A US 00189226 A US00189226 A US 00189226A US 18922671 A US18922671 A US 18922671A US 3826094 A US3826094 A US 3826094A
Authority
US
United States
Prior art keywords
steam
turbine
steam turbine
determining
rotational velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00189226A
Inventor
J Conrad
W Gangloff
M Luongo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US00189226A priority Critical patent/US3826094A/en
Priority to DE19722248019 priority patent/DE2248019A1/en
Priority to CA152,847A priority patent/CA1012604A/en
Priority to CH1478872A priority patent/CH556467A/en
Priority to JP72102392A priority patent/JPS5330122B2/ja
Application granted granted Critical
Publication of US3826094A publication Critical patent/US3826094A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/02Shutting-down responsive to overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/26Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam
    • F01K3/262Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam by means of heat exchangers
    • F01K3/265Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by steam by means of heat exchangers using live steam for superheating or reheating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/02Arrangements of auxiliary equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the missiles produced thereby could weigh from 50 pounds to several tons. These missiles emanating from the turbine could pierce the reactor, pipes containing radioactive fluids or steam, the control mechanism for the reactor, etc. The piercing of the reactor or vessels and piping containing radioactive fluids may possibly allow radiation to be dispersed.
  • the Atomic Energy Commission has recognized the potential hazards involved in turbine accidents and has therefore promulgated stringent regulations in the design and construction of any nuclear generating plant requiring that the possibility of any accident occurring will be virtually zero.
  • the regulations applicable to nuclear power plant construction are to be found in A.E.C. Regulations, Part 50, Appendix A.
  • the Atomic Energy Commission has promulgated the above-mentioned safety regulations for nuclear electric power generation plants because of the unique characteristics of nuclear reactors. Unlike fossil fuel reactors where the generation of steam can be terminated relatively quickly by cutting off the fuel supply to a steam generator, a nuclear reactor requires a complex and lengthy shutdown procedure. In order to stop the production of steam in a fossil plant, only the flow of boiler fuel such as gas, oil or coal need be stopped. The resulting shutdown and termination of the generation of steam can be completed in minutes. However, in the case of a nuclear reactor the shutdown procedure requires hours and tens of hours. Therefore, if a pipe or vessel carrying fluid is ruptured by a missile from the turbine, a hazardous condition caused by leaking material may continue for a long period of time until the reactor is shut down.
  • speed governor control systems of the prior art are operative in governing the speed of the turbine during operation. Therefore, these governor speed controls must be taken out of service in order to test their responsiveness to an overspeed condition.
  • a system which is independent of the conventional governor speed controls is required which can be checked without disrupting the operation of the conventional speed system.
  • the present invention overcomes the limitations and disadvantages of the prior art by providing a power generation system and method for generating electricity which has completely independent protection against turbine overspeed runaway and turbine missiles.
  • the independent overspeed protection system preferably includes means for dumping hydraulic fluid from the actuators of the various governor, interceptor, stop and throttle valves controlling the flow of steam to the turbine.
  • Each valve preferably has two independent systems for dumping the hydraulic fluid and accomplishing a very fast shutdown of the turbine. These two independent systems can therefore be tested individually while the electrical generating system is on-line.
  • the signals for operating each of the two independent dumping systems for each valve are derived from three independent turbine speed signals.
  • the three speed signals in three independent dual circuitry channels generate three independent electrical speed safe signals and three independent failure or signal discontinuity representing signals.
  • the three turbine speed safe signals are translated into a majority state signal indicating the mutual state of any of two out of the three speed signals.
  • the three failure signals are translated into a majority state signal of any of two out of three failure signals.
  • a majority state safe signal is determined by switching logic, such that, if any two speed signals have proper predetermined values, a safe or majority state signal is indicated for the speed channels.
  • the majority safe signal is directed to each of the two independent protection systems attached to each valve actuator. Therefore, if two of the three speed signals and two of the three failure signals have proper predetermined values, the dump values remain closed. If, however, two of the three speed signals or two of the three failure signals do not have the proper predetermined values, the dump valves open, shutting down the system.
  • any one of three speed safe and three failure channels can be tested independently while the power generating system and protection circuitry are on line and without disrupting the operation of the system or circuitry. Any one speed channel can therefore fail or be under test without shutting down the system. As an added reliability feature, if one speed channel is under test, and another channel fails, the electrical generating system will be shut down since a test signal acts like a malfunction signal.
  • FIG. 1 illustrates a nuclear electrical power generating system as defined by the present invention
  • FIG. 1A illustrates a more detailed application of the invention to a nuclear steam turbine system
  • FIG. 1B shows the independent turbine speed protection system
  • FIG. 2 is a block diagram of a suitable check circuit which is used in the preferred embodiment of schematic diagram shown in FIG. 2A;
  • FIG. 3 is a chart which summarizes the states of the speed channel and the failure channel relays for various operating conditions of a typical system
  • FIG. 4 provides a relay mechanization and logic for one solenoid channel
  • FIGS. 4A and 4B provide specific relay mechanization for the two independent dump channels, respec-- tively, to provide appropriate majority switching controls;
  • FIG. 5 shows a section through a steam valve actuator to show the manner in which the dump valves of the preferred embodiment are employed in a typical application.
  • FIG. 1 where a nuclear reactor system and turbine are shown.
  • the nuclear reactor system and turbine 100 include a reactor 102 and a steam generator 103, which provides steam for a turbine 104. Steam from the steam generator 103 passes through a stop valve 106 and a governor valve 108 before flowing into the turbine 104.
  • the steam turbine 104 includes a high pressure turbine (H.P.) l 10 and two low pressure sections (L.P.) 112 and 114 with an appropriate reheater 116 and reheater-stop valves 120 and interceptor valves 118 connected thereto.
  • the turbine system 104 drives a generator 112 which produces electricity.
  • a breaker 123 is connected between the generator 122 and a load, not shown.
  • a megawatt transducer 125 is connected to the generator 122.
  • the megawatt transducer 125 is connected to a controller which in this case includes a plant digital computer 131 having an output connected to throttle-stop valve actuators 130, control or governor valve actuators 132, reheater stop valve actuators 134 and interceptor valve actuators 136.
  • the reactor 102 in the present embodiment is of the pressurized water reactor type (P.W.R.).
  • Other reactor types such as a boiling water reactor, would fall within the scope of the invention.
  • a speed transducer is coupled to the turbine shaft to sense the speed of the steam turbine 104.
  • An output signal from the speed transducer 105 is fed into an input of the controller and plant digital computer 131.
  • the plant controller and computer 131 provides signals for each of the valve actuators 130, 132, 134 and 136 which control the positions of associated valves 106, 108, 118 and 120, and thereby control the speed and/or load of the turbine 104.
  • the speed of the turbine 104 is monitored by the speed transducer 105 and fed back to the controller and plant computer 131.
  • the throttlestop values 106 are variably positioned by the controller and plant computer 131 thereby allowing for speed control of the turbine system 104.
  • the throttle-stop valves 106 act as safety valves being either fully open.
  • the governor valves 108 modulate the flow of steam through the high pressure turbine 110.
  • the reheater stop valves are either fully open or fully closed.
  • the interceptor valves 118 are usually fully open or fully closed, however, under certain conditions of operation they modulate the steam flow such as during turbine shutdown.
  • a pressure transducer 107 and the megawatt transducer are used in the controller and plant computer 131 for computing positions of the throttlestop valves 106, the control or governor valves 108, the reheater stop valves 120 and the interceptor valves 118 needed to satisfy turbine load and/or speed demand.
  • the controller and plant computer 131 transmits signals indicative of the valve positions to the respective valve actuators 130, 132, 134 and 136
  • the controller and plant computer 131 in the preferred embodiment is an analog computer.
  • the analog computer designated as an Electrohydraulic System is described in Westinghouse Electric Corp. Bulletin No.
  • An electrohydraulic System presently being used on Westinghouse Electric Corporation turbine systems is an example of an analog controller and (plant computer) usable in the present embodiment.
  • Computer or automatic control provides for much more efficient and rapid control of the turbine 104 than manual or partially automatic control could provide.
  • the controller and plant computer 131 would be a digital computer programmed to perform the function of the Electrohydraulic System.
  • the turbine may start accelerating out of control bursting the rotor and producing missiles which could destroy the reactor 102, the turbine 104, piping, the building and injuring personnel and resulting in leakage of radioactive materials.
  • an independent protection system 128 includes a speed transducer assembly 124 which is independent of the speed transducer 105 and which is also connected to a shaft 126 of the turbine 104.
  • the independent speed transducer assembly 124 and the protection system 128 are independent of the controller and plant computer 131. If the controller and plant computer 131 or any system connected thereto should fail and an overspeed condition should result, missile generation will be prevented by the independent protection system 128.
  • An output of the independent speed transducer assembly 124 is connected to the independent overspeed protection system 128 which in turn controls the valve actuators 130, 132, 134 and 136.
  • the independent speed transducer 124 may be of the magnetic type such as described in US. Pat. No. 3,018,381 and 3,018,382 assigned to the assignee of the present invention.
  • the output signals of the three transducer parts 124-1, 124-2, 124-3 of the independent speed transducer assembly 124 (FIG. 1B) are applied to check circuits 138, 140 and 142, respectively.
  • the circuit details of the check circuits 138, 140 and 142 are shown in FIG. 2 and are described infra.
  • check circuits 138, 140 and 142 as well as their control logic, described infra can be implemented by a digital computer program.
  • the digital computer may be the same as the plant computer 131 thereby realizing considerable savings in hardware expenses; however, with a decrease in operating efficiency.
  • the check circuits 138, 140 and 142 compare the signal from the independent speed transducers 124-1, 124-2 and 124-3, to a signal representing a predetermined value of speed to determine whether the speed of the turbine 104 is being maintained at a predetermined level.
  • Each of the check circuits 138, 140 and 142 generates two signals, one indicating a failure of the turbine 104 to maintain the predetermined angular velocity and another signal to indicate that the angular velocity is within the limits of the predetermined value.
  • the two signals not only is the turbine 104 monitored for overspeed but any abrupt change in the speed signal is monitored which could indicate a failure of the independent overspeed protection system 128 or a catastrophic failure of the turbine 104.
  • the output terminals of the check circuits 138, 140 and 142 are connected to control logic circuitry 144, to be described infra in reference to FIG. 4.
  • switching circuits or relays 146 through and including 168 are connected between the check circuits 138, and 142 and the control logic circuitry 144.
  • the relays 146 and 148 are controlled by the check circuit 138; the relays 154 and 156 are controlled by the check circuit 140; and the relays 162 and 164 are controlled by the check circuit 142 to control paths in the control logic circuitry 144.
  • the relays 146, 148, 154, 156, 162 and 164 during the normal operation of the system with power on, are in the actuated or ON state.
  • the switching elements or relays 146, 148, 154, 156, 162 and 164 are called safe or overspeed signal channels.
  • the switching elements or relays 150, 152, 158, 160, 166 and 168 are connected to operate in an analogous fashion generating discontinuity or failure signals when a speed signal discontinuity has been determined.
  • the circuits connected to and including the relays 150, 152, 158, 160, 166 and 168 are called discontinuity or failure signal channels.
  • Each safe or overspeed channel, e. g., including relays 146 and 148, and each discontinuity or failure channel, e.g., including relays and 152 comprise the two parts of the dual channel connected to and controlled by the check circuit 138.
  • the relays 154, 156, 158 and 160 form the dual channel connected to and controlled by the check circuit 140; and the relays 162, 164, 166 and 168 form the dual channel connected to and controlled by the check circuit 142.
  • an overspeed condition is signaled by the transducer assembly 124 and the overspeed relays 146 and 148 connected to check circuit 138, overspeed relays 154 and 156 connected to check circuit 140 and the overspeed relays 162 and 164 connected to the check circuit 142 drop out or enter the OFF state.
  • the failure or discontinuity detection relays 150, 152, 158, 160 and 168 are normally in the OFF state when no discontinuity or system failure condition exists. If the electronic systems are not operating properly, the relays 150, etc. are energized, or placed in the ON state, thereby indicating a signal failure or discontinuity.
  • an overspeed condition is signaled and the overspeed or safe relays 146, 148, 154, 156, 162 and 164 change or reverse state, thereby generating a signal indicating an overspeed condition.
  • the overspeed signal actuates the dump valves described infra which prevent turbine overspeed and the generation of turbine missiles.
  • the check circuits 140 and 142 also have the same internal circuitry.
  • a signal from the independent speed transducer 124-1 is applied to a frequency-to-voltage converter 200.
  • the output signal of the frequency-to-voltage converter 200 is applied to an overspeed comparator 210 and to a signal discontinuity comparator 200 and a delay circuit 222.
  • An output of the delay circuit 222 is connected to an input of the signal discontinuity comparator 220.
  • An output of the signal discontinuity comparator 220 is connected to an input of an inverting gate 225.
  • the frequency-to-voltage converter 200 is typically a monostable multivibrator triggered by the zero crossover of the input signal thereto from the A.C. speed transducer 124-1.
  • the monostable multivibrator has a constant duration in the unstable state.
  • the output signal from the monostable multivibrator will therefore have a variation in duty cycle which will be proportional to the frequency of the input signal thereto.
  • the output signal from the monostable multivibrator is rectified and filtered thereby producing a DC. voltage output which is linearly proportional to the input frequency from transducer 124-1.
  • the signal discontinuity comparator 220, the delay circuit 222 and the inverting gate 225 and the power amplifier 227 are show in greater detail in FIG. 2A.
  • the output signal from the frequency to voltage converter 200 is connected to an input 249 of amplifier 250 through an appropriate impedance circuit 252.
  • the output signal from the frequency-to-voltage converter 200 is connected to the delay circuit 222 where it is fed through appropriate impedance 252 and delayed for summation at the input 249 of the amplifier 250 with the original signal from the converter 200.
  • the delay circuit 222 in the preferred embodiment has a delay of 1.4 seconds.
  • Thev time constant of 1.4 seconds is chosen so that any normal changes in the speed signals of the turbine system will be filtered out. Only signal discontinuities and signals representing catastrophic failure will be passes through the signal discontinuity comparator 220. If the output signal from the frequency-to-voltage converter 200 which is proportional to turbine speed varies slowly, the output signal of the amplifier 250 will remain at zero. However, if the signal from the frequency to voltage converter 200 varies rapidly, the output signal of the amplifier 250 either swings positive or negative.
  • the output signal from the amplifier 250 is amplified by an amplifier 256 and the amplifier 227. When a signal appears at the output of the amplifier 227, either relay 258 or relay 260 will be energized through diode directed paths.
  • the frequency signal provided by the speed detector device 124-1 can be converted to a digital representation and then compared by means of a digital computer or other digital means to a suitable digital setpoint.
  • the setpoint of the overspeed comparator 210 may be tested by applying a variable voltage derived from a potentiometer 212, thereby determining whether or not the check circuit 138 functions properly in the release of the relays 146 and 148.
  • Thepower control of the relays 146 and 148 is handled by a noninverting gate 215, which includes an emitter follower transistor stage 216.
  • the transistor stage 216 is cut off from conduction in the event of an overspeed detection by the comparator 210, resulting in the dropping out of the relays 146 and 148.
  • the operation of the check circuits 138, and 142 may be tested to insure their proper operation under actual system overspeed conditions without causing any disruption in generating system operation.
  • an overspeed signal or discontinuity signal together wth tthe test signal will act as if two of the dual channels indicated overspeed or discontinuity signals thereby shutting down the electric generation system and preventing generation of missiles.
  • the very high reliability of the protection system 128 is maintained even under test conditions.
  • relays are referred to herein as providing suitable means for the switching logic of the invention, other devices such as solid state switching elements, logic gates, flip-flops or programmed computers may be used without departing from the spirit or practice of the invention.
  • the signal discontinuity comparator 220 is biased so that if the difference between the directly applied signal from the frequency-to-voltage converter 200 and the signal from the delay circuit 222 exceeds a predetermined value an electrical discontinuity condition is signaled.
  • Test buttons 230 and 232 test the signal discontinuity comparator 220 by applying voltages to the signal discontinuity comparator 220. If either test button 230 or 232 is depressed, the comparator 220 is designed such that a signal is transmitted which turns on or picks up the relays and 152. However, because of the majority of two out of three logic, to be described in greater detail infra, the generating system is not shut down.
  • the majority logic is shown in detail as implemented in a majority circuit 145, and the checking circuit output relays 146, 148, 154, 156, 162 and 164 are shown with respective contacts in each relay being 147, 149, 155, 157, 163, and 165.
  • the relay contact for the relay 146 is the contact 147, etc.
  • the relay contacts in FIG. 4 are shown in their normally open deenergized position. In operation, the relays of FIG. 4 are energized and the contact closed. With all the relays energized, a voltage source at the input terminal will be connected to an input terminal 173 of conventional AND gate 172, contained in the control logic box 144 in FIG. 1.
  • a conventional AND gate requires all inputs to be energized in order for an output signal to be maintained.
  • the check circuit 138 deenergizes the relays 146 and 148, the relay contacts 147 and 149 will open.
  • the voltage signal at the input terminal 173 of the AND gate 172 will still retain its former value because the relays contacts 157 and 165 remain closed.
  • the majority function is thereby performed since two of the three channels controlled by the check circuitry 138, 140 and 142 must indicate an overspeed condition. Therefore, the failure of only one channel will not trip the turbine system.
  • the check circuit 140 deenergizes the relays 154 and 156 connected thereto, the relay contacts 155 and 157 would also open. In this latter case, all three branches of the relay circuit 174 in FIG. 4 would be open, and the signal at an input of the AND gate 172 would be zero.
  • the other input to AND gate 172 is connected to relay switching logic of the checking circuit output relays 150, 152, 158, 160, 162 and 168 in an appropriate fashion in order to provide an input signal to the AND gate 172 as long as two out of the three check circuits 138, 140 and 142 provide the appropriate output signals.
  • the AND circuit 172 provides one of the inputs to one of the dump valves of each of the valve actuators 130L, 130R and 132, to be described in greater detail later herein. Therefore, one dump valve on each of the valve actuators 130, 132, 134 and 136 is tripped, draining hydraulic fluid from the valve actuators 130, 132, 134 and 136 and closing the valves to the turbine 104 thereby preventing a turbine runaway and the generation of missiles which could destroy the generation system 100.
  • a similar conventional AND circuit 176 is connected to a similar majority circuit 178 performing the same function for each of the other dump valves connected to each of the valve actuators 130, 132, 134 and 136.
  • the functions of the relays 146 through 168 may also be accompanied by solid state switching circuitry or by digital logic or a digital computer.
  • the function of the check circuits 138, 140 and 142 and the relays 146 through 168 may in alternative embodiments be included in the program of the plant digital computer, thus integrating the total system operation.
  • the majority logic circuitry 145 associated with the valves 130 and 132 is shown in an alternative embodiment.
  • the relay contacts 147, 151, 155, 163 and 166 are shown connected in a series parallel combination thereby performing the operation of the AND gates 172 and 176 of FIG. 4.
  • the relay logic combination actuates two relays 401 for purposes of redundancy. Contacts 401a of the relays 401 are connected in series in order to minimize the possibility of the welding shut of one relay contact from disabling the system.
  • a test relay 405 is provided which disconnects the coils of dump valve solenoids 50 mounted on the valve actuators 130, 132, 134 and 136 and connects the indicator lights 407 to ground.
  • Pushbuttons 402 are provided in order to test the continuity and operation of the circuitry connected to the dump valve solenoids 50.
  • the indicating lights 407 are connected to the relay 405 in order that a continuous path for test purposes is provided for the pushbutton circuits 402 connected across the relay contacts 401a of the relays 401.
  • FIG. 4B there is shown an identical circuit 145b for the other dump channel which actuates the second dump valve in each of the valve actuators 130, 132, 134 and 136.
  • FIG. 5 a schematic diagram of the dump valves 506 and 508, connected to a typical valve actuator such as one of the valve actuators 132, 134 and 136, is shown.
  • a valve actuator cylinder 500 with two ports 502 and 504 is also shown.
  • the ports 502 and 504 are connected by tubing 503 and 505 to the two dump valves 506 and 508.
  • the output side of the dump valves 506 and 508 are connected to a dump oil receiver 510.
  • Dump oil 514 is discharged through a vent 512.
  • valves 106, 108, 118 and 120 are all closed as quickly as possible by the independent protection system 128.
  • the steam generated by the reactor and steam generator 103 as shown in FIG. 1A is vented to the atmosphere such as by a vent connected to a secondary steamline.
  • an overspeed protection system 123 is provided which is independent of the turbine system for normal speed control comprising the speed transducer 105 and the controller and plant computer 131. Taking over the control of the turbine 104 during overspeed conditions which could lead to a runaway and the destruction of an entire generation station, the overspeed protection system 123 obviates the shortcomings of the prior art.
  • the turbine 104 is provided with three independent speed transducers 124, which generate three independent speed signals. These three signals are then translated through the use of appropriate logic circuitry into two signals which actuate the dump valves and allow the rapid closing of the steam control valves thereby foreclosing the possibility of disastrous overspeed runaway. Because of the majority logic for sensing the three independent speed signals, any one speed or failure channel can be tested independently without disrupting the turbine system. Thus, the present invention provides a high degree of assurance that when the dump valves are actuated, an actual verified overspeed or signal failure has occurred which warrants such drastic action; and further makes the performance tests possible during short periods of time to determine whether or not the individual check circuits are operating properly.
  • An electric power generation system comprising:
  • a steam turbine system having means for generating steam, at least one high pressure and at least one low pressure turbine, a generator rotated by said turbine,
  • said second sensing means including a plurality of channel means
  • said means for determining including second means for determining whether a predetermined number of channel means have representations of rotational velocity exceeding a predetermined rotational velocity limit.
  • said actuating means includes at least two independent means for rapidly closing said valving means.
  • said determining means including number determining means which determines whether a predetermined number of channel means have representations of turbine conditions not corresponding to said predetermined conditions, whereby determination of said representations not corresponding to said predetermined conditions in any two of said measuring channel means causes deactivating means to deactivate said actuating means thereby closing said valving means and stopping the flow of steam through said turbine system.
  • said number determining means including means for generating said representations correspond to the turbine velocity and said predetermined conditions correspond to a predetermined rotational velocity.
  • said deactivating means including at least two independent means for rapidly closing said valving means.
  • An overspeed protection system for a steam turbine comprising:
  • sensing means including sensing channel means
  • said means for determining includes second means for determining whether a predetermined number of channel means have representations of rotational velocity exceeding a predetermined rotational velocity limit.
  • a method of preventing overspeeds in a steam turbine system resulting from partial or total load losses comprising governor valves for regulating a flow of steam through said turbine, actuators for actuating said valves, a first transducer for transducing the rotational velocity of said steam turbine into an electrical signal, a second transducer for transducing the rotational velocity of said steam turbine into electrical signals, said second transducer providing independent speed signals, two dumping signal channels including two separate dump valves connected to at least one of said actuators independently actuated and connected for dumping hydraulic fluid contained therein, including the steps of:
  • An electric power generating system comprising:
  • a steam turbine system having means for generating steam, at least one high pressure and at least one low pressure turbine, a generator rotated by said turbine, an electric load connected to said generator, means for valving a flow of steam through said steam turbine including at least one throttle-stop valve, at least one governor valve and at least one interceptor valve,
  • means for determining a position for said valving means including means for computing a desired valve position
  • said computing means connected to and receiving signals from said first rotational velocity sensing means, said energy flow measuring means and said pressure measuring means whereby said computing means upon receipt of said signals determines a direction of motion, and a position for said throttlestop valve, said governor valve and said interceptor valve during the start-up phase, the synchronization and the power generation phases of operation of said electric power generating system,
  • said moving means moving said throttle-stop valve
  • said second sensing means including a plurality of signal path means
  • said means for determining including second means for determining whether a predetermined number of said signal path means have representations of rotational velocity exceeding a predetermined rotational velocity limit.
  • said deactivating means includes at least two independent means for rapidly closing said valving means.
  • said determining means including number determining means which determines whether a predetermined number of said signal path means have representations of turbine conditions, whereby determination of said representations not corresponding to said predetermined conditions in any two of said measuring signal path means causes deactivating means to deactivate said moving means thereby closing said valving means and stopping the flow of steam through said turbine system.
  • said number determining means including means for generating said representations correspond to the turbine velocity and said predetermined conditions correspond to a predetermined rotational velocity.
  • said deactivating means includes at least two independent means for rapidly closing said valving means.
  • An independent overspeed protection system for a steam turbine system having speed control including independent overspeed protection said independent overspeed protection system comprising:
  • sensing signal path means including sensing signal path means having a plurality of signal paths
  • said determining means include second means for determining, said second determining means determines whether a predetermined number of said signal paths have representations of signal exceeding a predetermined rotational velocity limit.
  • a method of preventing overspeeds in an electric power generating system a steam turbine system having means for generating steam, at least one high pressure and at least one low pressure steam turbine, a generator rotated by said turbine, an electric load connected to said generator, means for valving a flow of steam through said steam turbine including at least one throttle-stop valve, at least one governor valve, and at least one interceptor valve, means for moving said valving means, first means for sensing the magnitude of the rotational velocity of said steam turbine system, means for measuring the magnitude of the flow of energy from said generator to said electric load, means for measuring the pressure of said steam in said steam turbine system, independent second means for sensing the magnitude of the rotational velocity of said steam turbine system, two dumping signal channels including two separate dump valves connected to at least one of said actuators moving means independently actuated and connected for dumping hydraulic fluid contained therein, including the steps of:
  • said determining means includes third means for determining, said third means determining whether a predetermined number of said signal paths have an interruption of any of said signals.

Abstract

In a steam turbine an overspeed protection system and method is provided which operates completely independently of the conventional steam valve controller or governor. Existing hydraulically actuated valves such as stop valves, governor valves, interceptor valves, etc., are deactivated by draining hydraulic control fluid from the aforementioned through the action of specially provided dump valves. A pair of dump valves is provided for each of the steam flow valves. Three turbine speed sensing transducers operating independently provide signals which are translated through three corresponding check circuits into related overspeed check signals. The three resulting check signals relating to overspeed are translated through majority switching logic into two dump valve trip signals. Each set of such trip signals operates one of the pair of dump valves on each steam control valve.

Description

ite
Conrad, Jr. et al.
[ SYSTEM AND METHOD FOR OPERATING A STEAM TURBINE WITH INDEPENDENT OVERSPEED PROTECTION ESPECIALLY ADAPTED FOR A NUCLEAR REACTOR POWERED STEAM TURBINE [75] Inventors: Joseph D. Conrad, Jr., Glen Mills;
Wilmer C. Gangloff, Jr., Murrysville; Michael C. Luongo, Brookhaven, all of Pa.
[73] Assignee: Westinghouse Electric Corporation,
Pittsburgh, Pa.
[22] Filed: Oct. 14, 1971 [2l] Appl. No.: 189,226
[52] U.S. Cl 60/686,60/644 290/4 [51] Int. Cl. F0lk 7/16 [58] Field of Search 60/73, 105
[56] References Cited UNlTED STATES PATENTS 3,060,692 10/1962 Caldwell et al. 60/l05 3,097,488 7/1963 Eggenberger et al 60/l05 3,102,394 9/l963 Hartfield et al 60/l05 3,42l,0l4 l/l969 Moorganov 60/]05 3,614,457 l0/l97l Eggcnbergcr 60/]05 STEAM GENERATOR PROTECTION THROTTLE STOP VALVE ONTROL OR GOVERNOR VALVE NUCLEAR REACTOR ta CONTROL OR GOVERNOR VALVE ACTUA PENDENT CONTROL OR GOVERNOR THROTTLE- STOP VALVE ACTUATOR VALVE ACTUATOR GOVERNOR VALVE TURBINE SECTION PRESSURE RA NSDUCER SPEED TRANSDUCER C PLANT C [111 3,826,094 [451 Jul 30,1974
3,630,839 12/1971 Podolsky 60/73 3,643,437 2/1972 Birnhaum 60/73 Primary ExaminerEdgar W. Geoghegan Assistant ExaminerH. Burks, Sr. Attorney, Agent, or Firm-E. F. Possessky Three turbine speed sensing transducers operating independently provide signals which are translated through three corresponding check circuits into related overspeed check signals. The three resulting check signals relating to overspeed are translated through majority switching logic into two dump valve trip signals. Each set of such trip signals operates one of the pair of dump valves on each steam control valve.
27 Claims, 10 Drawing Figures VALVE ACTUATOR RE- HEATER MOISTURE SEPARATOR INTERC VALVE ACTUATOR GENERATOR CONDENSERS HIGH PRESSURE FLUID SUPPLY MEGAWATT TRANSD IHEIJIIMOIIIT I SHEET 1 g I32 CONTROL OR A RELAY 5O GOVERNOR 3i VALVE VALVE POSITION ACTUATOR RELAY FIG. 18
CONTROL I I08 I '41 THROTTLE CONTROI. OR STOP 6 VALVE OVERNOR ACTUATOR VALVE I02 I ACTUATOR REACTOR a STEAM I06 HOG GENERATOR I I Y I CONTROL OR @OR/ EATE 5O MT/T VALVE J ACTUATOR ACTUATOR r I I32 I I T I I08 VALVE POSITION CONTROL OR i CONTROL I32 GOVERNOR RELAY VALVE ACTUATOR RELAY] IN EPENOEN SPEED RANSDUCERS CHECK I42 CONTROI. LOGIC SVL-DVA SVL-O V B Tfi-OVA CV4-DVA THROTTLE-STOP GOVERNOR VALVES VALVES REACTOR & STEAM GENERATORS [I04 [I22 TURBINE ""4 HP LP LP GENERATOR I00 I I28- INDEPENDENT FIG! OVER SPEED PROTECTION SYSTEM SHEEY 36? 5 OVERSPEED sETPolNT FRE$SENCY OVERSPEED NON-\NVERTING C: VOLTAGE F COMPARATOR GATE Fl G2 |24 CONVERTER 21s 200 TEST SETPOINT I 222 I46 I48 r225 SIGNAL 1 DISCONTINUITY E b A COMPARATOR I TEST+ E O |50 |52 TEsT T sTATE OFRELAYS s F ALL SYSTEMS GO ON OFF PROTECTION POWER FAILURE OFF OFF OVERSPEED OFF OFF SiGNAL DISCONTINUITY ON ON F|G j5 FREQUENCY TO VOLTAGE CONVERTER 2OO o W T POWER 264 SUPPLY 2e2 FlG. 2A WW mgmgg 30m sw ms VALVE ACTUATORS I3OL I32 Mm QEEF S DUMP OIL RECEIVER SYSTEM AND METHOD FOR OPERATING A STEAM TURBINE WITH INDEPENDENT OVERSPEED PROTECTION ESPECIALLY ADAPTED FOR A NUCLEAR REACTOR POWERED STEAM TURBINE CROSS-REFERENCE TO RELATED APPLICATIONS 1. Overspeed Protection System For Steam Turbine Power Plant, Ser. No. 866,965, filed Oct. 16, 1969 now US. Pat. No. 3,643,437 by M. E. Birnbaum et a1, and assigned to the present assignee.
2. Ser. No. 189,320 entitled General System and Method for Operating a Steam Turbine with lndependent Ove'rspeed Protection Especially Adapted for Nuclear Reactor Powered Steam Turbine by J. D. Conrad, Jr. et a1.
3. Ser. No. 189,332 Electronic System and Method for Operating a Steam Turbine with Independent Overspeed Protection Especially Adapted for a Nuclear Reactor Powered Steam Turbine by M. C. Luongo.
4. Ser. No. 189,322 entitled ,System and Method for Operating a Steam Turbine Dual Hydraulic Independent Overspeed Protection Especially Adapted for a Nuclear Reactor Powered Steam Turbine by M. Csanady, Jr. et al.
BACKGROUND OF THE INVENTION In the prior art there exist many systems for preventing a turbine from developing an excessive speed. Protection against this eventuality is extremely important especially where nuclear power is used to generate steam for a turbine. If the turbine should enter a runaway state, centrifugal forces can become so great that rotor discs rupture, causing the throwing of pieces of the rotor around a generating station. These flying pieces are referred to as missiles.
If the rotor of a typical turbine in a nuclear generating plant presently in operation would rupture, the missiles produced thereby could weigh from 50 pounds to several tons. These missiles emanating from the turbine could pierce the reactor, pipes containing radioactive fluids or steam, the control mechanism for the reactor, etc. The piercing of the reactor or vessels and piping containing radioactive fluids may possibly allow radiation to be dispersed.
The Atomic Energy Commission has recognized the potential hazards involved in turbine accidents and has therefore promulgated stringent regulations in the design and construction of any nuclear generating plant requiring that the possibility of any accident occurring will be virtually zero. The regulations applicable to nuclear power plant construction are to be found in A.E.C. Regulations, Part 50, Appendix A.
The Atomic Energy Commission has promulgated the above-mentioned safety regulations for nuclear electric power generation plants because of the unique characteristics of nuclear reactors. Unlike fossil fuel reactors where the generation of steam can be terminated relatively quickly by cutting off the fuel supply to a steam generator, a nuclear reactor requires a complex and lengthy shutdown procedure. In order to stop the production of steam in a fossil plant, only the flow of boiler fuel such as gas, oil or coal need be stopped. The resulting shutdown and termination of the generation of steam can be completed in minutes. However, in the case of a nuclear reactor the shutdown procedure requires hours and tens of hours. Therefore, if a pipe or vessel carrying fluid is ruptured by a missile from the turbine, a hazardous condition caused by leaking material may continue for a long period of time until the reactor is shut down.
One solution to this problem of turbine missiles in a nuclear steam generating system was described in Westinghouse Engineer July 1966, pages 110 through 1 13 by Walter Sinton. Walter Sintons solution to the problem is to provide covers for the reactor and steam turbines. The cover for the steam turbines confines any missiles therein. Unfortunately, in a commer cial nuclear steam turbine system, the required size of a cover or shield strong enough to protect the plant from turbine missiles would have to be 6 to 10 ft. thick if made of concrete or 6 to 12 inches thick if made of steel. Such a shield would be extremely expensive, costing many millions of dollars, and require a completely redesigned foundation and building to house the turbine generating system. A shield of this size would also make maintenance, repairs and replacement of any parts in the turbine generator or reactor extremely difficult, time consuming and expensive.
Another solution which has been proposed for the protection of a nuclear plant against rotor missiles is to increase the thickness of the reactor walls and the case of the generator itself. This solution is unsatisfactory for the reasons enumeratedabove including high cost and extreme maintenance problems.
Another prior art approach is the building of high re liability against turbine overspeed into the existing turbine speed governor system itself. Inherent in the prior art speed governor solution to the problem of operating nuclear plants with turbine missile protection is that the overspeed protection system still remains part of the basic speed control mechanism. If a valve were to stick in the open position in a conventional overspeed system, the governor speed control system could not prevent turbine overspeed under no load or lightly loaded conditions. The compliance of this type of protection with ABC Regulations is, at this time, marginal.
Additionally the speed governor control systems of the prior art are operative in governing the speed of the turbine during operation. Therefore, these governor speed controls must be taken out of service in order to test their responsiveness to an overspeed condition. A system which is independent of the conventional governor speed controls is required which can be checked without disrupting the operation of the conventional speed system.
Therefore, a less expensive, highly reliable system which does comply with the Atomic Energy Commission Regulations is needed.
SUMMARY OF THE INVENTION The present invention overcomes the limitations and disadvantages of the prior art by providing a power generation system and method for generating electricity which has completely independent protection against turbine overspeed runaway and turbine missiles.
Accordingly, it is a basic concept of the present invention to provide an electric power plant having a steam turbine and a completely independent turbine overspeed protection system. The independent overspeed protection system preferably includes means for dumping hydraulic fluid from the actuators of the various governor, interceptor, stop and throttle valves controlling the flow of steam to the turbine. Each valve preferably has two independent systems for dumping the hydraulic fluid and accomplishing a very fast shutdown of the turbine. These two independent systems can therefore be tested individually while the electrical generating system is on-line. In the preferred embodiment the signals for operating each of the two independent dumping systems for each valve are derived from three independent turbine speed signals. The three speed signals in three independent dual circuitry channels generate three independent electrical speed safe signals and three independent failure or signal discontinuity representing signals.
The three turbine speed safe signals are translated into a majority state signal indicating the mutual state of any of two out of the three speed signals. The three failure signals are translated into a majority state signal of any of two out of three failure signals.
A majority state safe signal is determined by switching logic, such that, if any two speed signals have proper predetermined values, a safe or majority state signal is indicated for the speed channels. The majority safe signal is directed to each of the two independent protection systems attached to each valve actuator. Therefore, if two of the three speed signals and two of the three failure signals have proper predetermined values, the dump values remain closed. If, however, two of the three speed signals or two of the three failure signals do not have the proper predetermined values, the dump valves open, shutting down the system.
The circuitry and operation of any one of three speed safe and three failure channels can be tested independently while the power generating system and protection circuitry are on line and without disrupting the operation of the system or circuitry. Any one speed channel can therefore fail or be under test without shutting down the system. As an added reliability feature, if one speed channel is under test, and another channel fails, the electrical generating system will be shut down since a test signal acts like a malfunction signal.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a nuclear electrical power generating system as defined by the present invention;
FIG. 1A illustrates a more detailed application of the invention to a nuclear steam turbine system;
FIG. 1B shows the independent turbine speed protection system;
FIG. 2 is a block diagram of a suitable check circuit which is used in the preferred embodiment of schematic diagram shown in FIG. 2A;
FIG. 3 is a chart which summarizes the states of the speed channel and the failure channel relays for various operating conditions of a typical system;
FIG. 4 provides a relay mechanization and logic for one solenoid channel;
FIGS. 4A and 4B provide specific relay mechanization for the two independent dump channels, respec-- tively, to provide appropriate majority switching controls; and
FIG. 5 shows a section through a steam valve actuator to show the manner in which the dump valves of the preferred embodiment are employed in a typical application.
DESCRIPTION OF THE PREFERRED EMBODIMENT Reference is now made to FIG. 1 where a nuclear reactor system and turbine are shown. The nuclear reactor system and turbine 100 include a reactor 102 and a steam generator 103, which provides steam for a turbine 104. Steam from the steam generator 103 passes through a stop valve 106 and a governor valve 108 before flowing into the turbine 104.
Referring now to FIG. 1A, the steam turbine 104 includes a high pressure turbine (H.P.) l 10 and two low pressure sections (L.P.) 112 and 114 with an appropriate reheater 116 and reheater-stop valves 120 and interceptor valves 118 connected thereto. The turbine system 104 drives a generator 112 which produces electricity. A breaker 123 is connected between the generator 122 and a load, not shown. A megawatt transducer 125 is connected to the generator 122. The megawatt transducer 125 is connected to a controller which in this case includes a plant digital computer 131 having an output connected to throttle-stop valve actuators 130, control or governor valve actuators 132, reheater stop valve actuators 134 and interceptor valve actuators 136.
The reactor 102 in the present embodiment, is of the pressurized water reactor type (P.W.R.). Other reactor types, such as a boiling water reactor, would fall within the scope of the invention.
A speed transducer is coupled to the turbine shaft to sense the speed of the steam turbine 104. An output signal from the speed transducer 105 is fed into an input of the controller and plant digital computer 131. The plant controller and computer 131 provides signals for each of the valve actuators 130, 132, 134 and 136 which control the positions of associated valves 106, 108, 118 and 120, and thereby control the speed and/or load of the turbine 104. The speed of the turbine 104 is monitored by the speed transducer 105 and fed back to the controller and plant computer 131.
During startup of the turbine system 104 the throttlestop values 106 are variably positioned by the controller and plant computer 131 thereby allowing for speed control of the turbine system 104. The throttle-stop valves 106 act as safety valves being either fully open.
or closed during synchronous operation. The governor valves 108 modulate the flow of steam through the high pressure turbine 110. The reheater stop valves are either fully open or fully closed. The interceptor valves 118 are usually fully open or fully closed, however, under certain conditions of operation they modulate the steam flow such as during turbine shutdown.
In normal operation signals from the speed transducer 105, a pressure transducer 107 and the megawatt transducer are used in the controller and plant computer 131 for computing positions of the throttlestop valves 106, the control or governor valves 108, the reheater stop valves 120 and the interceptor valves 118 needed to satisfy turbine load and/or speed demand. The controller and plant computer 131 transmits signals indicative of the valve positions to the respective valve actuators 130, 132, 134 and 136 The controller and plant computer 131 in the preferred embodiment is an analog computer. The analog computer designated as an Electrohydraulic System is described in Westinghouse Electric Corp. Bulletin No.
139,132, file No. 1005M. An electrohydraulic System presently being used on Westinghouse Electric Corporation turbine systems is an example of an analog controller and (plant computer) usable in the present embodiment. Computer or automatic control provides for much more efficient and rapid control of the turbine 104 than manual or partially automatic control could provide. In an alternative embodiment the controller and plant computer 131 would be a digital computer programmed to perform the function of the Electrohydraulic System.
In the event of a computer or other system failure the turbine may start accelerating out of control bursting the rotor and producing missiles which could destroy the reactor 102, the turbine 104, piping, the building and injuring personnel and resulting in leakage of radioactive materials. r
In order to prevent missiles from destroying the generating system an independent protection system 128 includes a speed transducer assembly 124 which is independent of the speed transducer 105 and which is also connected to a shaft 126 of the turbine 104. The independent speed transducer assembly 124 and the protection system 128 are independent of the controller and plant computer 131. If the controller and plant computer 131 or any system connected thereto should fail and an overspeed condition should result, missile generation will be prevented by the independent protection system 128. l
An output of the independent speed transducer assembly 124 is connected to the independent overspeed protection system 128 which in turn controls the valve actuators 130, 132, 134 and 136. The independent speed transducer 124 may be of the magnetic type such as described in US. Pat. No. 3,018,381 and 3,018,382 assigned to the assignee of the present invention. In the protection system, the output signals of the three transducer parts 124-1, 124-2, 124-3 of the independent speed transducer assembly 124 (FIG. 1B) are applied to check circuits 138, 140 and 142, respectively. The circuit details of the check circuits 138, 140 and 142 are shown in FIG. 2 and are described infra. As an alternative embodiment, the check circuits 138, 140 and 142 as well as their control logic, described infra, can be implemented by a digital computer program. The digital computer may be the same as the plant computer 131 thereby realizing considerable savings in hardware expenses; however, with a decrease in operating efficiency.
The check circuits 138, 140 and 142 compare the signal from the independent speed transducers 124-1, 124-2 and 124-3, to a signal representing a predetermined value of speed to determine whether the speed of the turbine 104 is being maintained at a predetermined level. Each of the check circuits 138, 140 and 142 generates two signals, one indicating a failure of the turbine 104 to maintain the predetermined angular velocity and another signal to indicate that the angular velocity is within the limits of the predetermined value. By use of the two signals not only is the turbine 104 monitored for overspeed but any abrupt change in the speed signal is monitored which could indicate a failure of the independent overspeed protection system 128 or a catastrophic failure of the turbine 104. The output terminals of the check circuits 138, 140 and 142 are connected to control logic circuitry 144, to be described infra in reference to FIG. 4. In the present embodiment switching circuits or relays 146 through and including 168 are connected between the check circuits 138, and 142 and the control logic circuitry 144.
The relays 146 and 148 are controlled by the check circuit 138; the relays 154 and 156 are controlled by the check circuit 140; and the relays 162 and 164 are controlled by the check circuit 142 to control paths in the control logic circuitry 144. The relays 146, 148, 154, 156, 162 and 164 during the normal operation of the system with power on, are in the actuated or ON state. In the event of the detection of an overspeed condition by any one or more of the check circuits 138, 140 and 142, the switching elements or relays 146, 148, 154, 156, 162 and 164 are called safe or overspeed signal channels.
The switching elements or relays 150, 152, 158, 160, 166 and 168 are connected to operate in an analogous fashion generating discontinuity or failure signals when a speed signal discontinuity has been determined. The circuits connected to and including the relays 150, 152, 158, 160, 166 and 168 are called discontinuity or failure signal channels. Each safe or overspeed channel, e. g., including relays 146 and 148, and each discontinuity or failure channel, e.g., including relays and 152, comprise the two parts of the dual channel connected to and controlled by the check circuit 138. The relays 154, 156, 158 and 160 form the dual channel connected to and controlled by the check circuit 140; and the relays 162, 164, 166 and 168 form the dual channel connected to and controlled by the check circuit 142.
In the event that the speed of the turbine 104 equals or exceeds a predetermined value, in this case 111% of the synchronous speed, an overspeed condition is signaled by the transducer assembly 124 and the overspeed relays 146 and 148 connected to check circuit 138, overspeed relays 154 and 156 connected to check circuit 140 and the overspeed relays 162 and 164 connected to the check circuit 142 drop out or enter the OFF state. The failure or discontinuity detection relays 150, 152, 158, 160 and 168 are normally in the OFF state when no discontinuity or system failure condition exists. If the electronic systems are not operating properly, the relays 150, etc. are energized, or placed in the ON state, thereby indicating a signal failure or discontinuity. If the speed of the turbine 104 equals or exceeds 1 l 1 percent of synchronous speed an overspeed condition is signaled and the overspeed or safe relays 146, 148, 154, 156, 162 and 164 change or reverse state, thereby generating a signal indicating an overspeed condition. The overspeed signal actuates the dump valves described infra which prevent turbine overspeed and the generation of turbine missiles.
Referring now to FIG. 2, the internal circuitry of the check circuit 138 is shown. The check circuits 140 and 142 also have the same internal circuitry. A signal from the independent speed transducer 124-1 is applied to a frequency-to-voltage converter 200. The output signal of the frequency-to-voltage converter 200 is applied to an overspeed comparator 210 and to a signal discontinuity comparator 200 and a delay circuit 222. An output of the delay circuit 222 is connected to an input of the signal discontinuity comparator 220. An output of the signal discontinuity comparator 220 is connected to an input of an inverting gate 225.
The frequency-to-voltage converter 200 is typically a monostable multivibrator triggered by the zero crossover of the input signal thereto from the A.C. speed transducer 124-1. The monostable multivibrator has a constant duration in the unstable state. The output signal from the monostable multivibrator will therefore have a variation in duty cycle which will be proportional to the frequency of the input signal thereto. The output signal from the monostable multivibrator is rectified and filtered thereby producing a DC. voltage output which is linearly proportional to the input frequency from transducer 124-1.
The signal discontinuity comparator 220, the delay circuit 222 and the inverting gate 225 and the power amplifier 227 are show in greater detail in FIG. 2A. The output signal from the frequency to voltage converter 200 is connected to an input 249 of amplifier 250 through an appropriate impedance circuit 252. The output signal from the frequency-to-voltage converter 200 is connected to the delay circuit 222 where it is fed through appropriate impedance 252 and delayed for summation at the input 249 of the amplifier 250 with the original signal from the converter 200. The delay circuit 222 in the preferred embodiment has a delay of 1.4 seconds.
Thev time constant of 1.4 seconds is chosen so that any normal changes in the speed signals of the turbine system will be filtered out. Only signal discontinuities and signals representing catastrophic failure will be passes through the signal discontinuity comparator 220. If the output signal from the frequency-to-voltage converter 200 which is proportional to turbine speed varies slowly, the output signal of the amplifier 250 will remain at zero. However, if the signal from the frequency to voltage converter 200 varies rapidly, the output signal of the amplifier 250 either swings positive or negative. The output signal from the amplifier 250 is amplified by an amplifier 256 and the amplifier 227. When a signal appears at the output of the amplifier 227, either relay 258 or relay 260 will be energized through diode directed paths. When either relay 258 or 260 is energized one of respective contacts 259 or 261 connects a positive power supply 262 to the input of the amplifier 256 thereby generating an output from the amplifier 227 to lock and hold the circuit in the last state. In order to reset the circuit for renewed operation a reset button 264 is provided which breaks the circuit of contact 259 and 261 thereby reducing the output signal of the amplifier 227 to zero.
In other embodiments of the invention, various modifications can be made in the arrangement described herein. For example, the frequency signal provided by the speed detector device 124-1 can be converted to a digital representation and then compared by means of a digital computer or other digital means to a suitable digital setpoint.
Referring again to FIG. 2, in the preferred embodiment, the setpoint of the overspeed comparator 210 may be tested by applying a variable voltage derived from a potentiometer 212, thereby determining whether or not the check circuit 138 functions properly in the release of the relays 146 and 148. Thepower control of the relays 146 and 148 is handled by a noninverting gate 215, which includes an emitter follower transistor stage 216. The transistor stage 216 is cut off from conduction in the event of an overspeed detection by the comparator 210, resulting in the dropping out of the relays 146 and 148. Thus, with a majority logic, which will be discussed in detail infra, the operation of the check circuits 138, and 142 may be tested to insure their proper operation under actual system overspeed conditions without causing any disruption in generating system operation. With one of the check circuits 138, 140 and 142 under test, an overspeed signal or discontinuity signal together wth tthe test signal will act as if two of the dual channels indicated overspeed or discontinuity signals thereby shutting down the electric generation system and preventing generation of missiles. The very high reliability of the protection system 128 is maintained even under test conditions.
Although relays are referred to herein as providing suitable means for the switching logic of the invention, other devices such as solid state switching elements, logic gates, flip-flops or programmed computers may be used without departing from the spirit or practice of the invention.
The signal discontinuity comparator 220 is biased so that if the difference between the directly applied signal from the frequency-to-voltage converter 200 and the signal from the delay circuit 222 exceeds a predetermined value an electrical discontinuity condition is signaled. Test buttons 230 and 232 test the signal discontinuity comparator 220 by applying voltages to the signal discontinuity comparator 220. If either test button 230 or 232 is depressed, the comparator 220 is designed such that a signal is transmitted which turns on or picks up the relays and 152. However, because of the majority of two out of three logic, to be described in greater detail infra, the generating system is not shut down.
Referring to FIG. 4, the majority logic is shown in detail as implemented in a majority circuit 145, and the checking circuit output relays 146, 148, 154, 156, 162 and 164 are shown with respective contacts in each relay being 147, 149, 155, 157, 163, and 165. In other words, the relay contact for the relay 146 is the contact 147, etc. The relay contacts in FIG. 4 are shown in their normally open deenergized position. In operation, the relays of FIG. 4 are energized and the contact closed. With all the relays energized, a voltage source at the input terminal will be connected to an input terminal 173 of conventional AND gate 172, contained in the control logic box 144 in FIG. 1. A conventional AND gate requires all inputs to be energized in order for an output signal to be maintained. Referring again to FIG. 1B, and assuming that the check circuit 138 deenergizes the relays 146 and 148, the relay contacts 147 and 149 will open. However, the voltage signal at the input terminal 173 of the AND gate 172 will still retain its former value because the relays contacts 157 and 165 remain closed. The majority function is thereby performed since two of the three channels controlled by the check circuitry 138, 140 and 142 must indicate an overspeed condition. Therefore, the failure of only one channel will not trip the turbine system. However, if in addition, the check circuit 140 deenergizes the relays 154 and 156 connected thereto, the relay contacts 155 and 157 would also open. In this latter case, all three branches of the relay circuit 174 in FIG. 4 would be open, and the signal at an input of the AND gate 172 would be zero.
The other input to AND gate 172 is connected to relay switching logic of the checking circuit output relays 150, 152, 158, 160, 162 and 168 in an appropriate fashion in order to provide an input signal to the AND gate 172 as long as two out of the three check circuits 138, 140 and 142 provide the appropriate output signals.
The AND circuit 172 provides one of the inputs to one of the dump valves of each of the valve actuators 130L, 130R and 132, to be described in greater detail later herein. Therefore, one dump valve on each of the valve actuators 130, 132, 134 and 136 is tripped, draining hydraulic fluid from the valve actuators 130, 132, 134 and 136 and closing the valves to the turbine 104 thereby preventing a turbine runaway and the generation of missiles which could destroy the generation system 100.
A similar conventional AND circuit 176 is connected to a similar majority circuit 178 performing the same function for each of the other dump valves connected to each of the valve actuators 130, 132, 134 and 136.
The functions of the relays 146 through 168 may also be accompanied by solid state switching circuitry or by digital logic or a digital computer. The function of the check circuits 138, 140 and 142 and the relays 146 through 168 may in alternative embodiments be included in the program of the plant digital computer, thus integrating the total system operation.
Referring now to FIG. 4A, the majority logic circuitry 145 associated with the valves 130 and 132 is shown in an alternative embodiment. The relay contacts 147, 151, 155, 163 and 166 are shown connected in a series parallel combination thereby performing the operation of the AND gates 172 and 176 of FIG. 4. The relay logic combination actuates two relays 401 for purposes of redundancy. Contacts 401a of the relays 401 are connected in series in order to minimize the possibility of the welding shut of one relay contact from disabling the system.
A test relay 405 is provided which disconnects the coils of dump valve solenoids 50 mounted on the valve actuators 130, 132, 134 and 136 and connects the indicator lights 407 to ground. Pushbuttons 402 are provided in order to test the continuity and operation of the circuitry connected to the dump valve solenoids 50. The indicating lights 407 are connected to the relay 405 in order that a continuous path for test purposes is provided for the pushbutton circuits 402 connected across the relay contacts 401a of the relays 401. In FIG. 4B there is shown an identical circuit 145b for the other dump channel which actuates the second dump valve in each of the valve actuators 130, 132, 134 and 136.
Referring now to FIG. 5, a schematic diagram of the dump valves 506 and 508, connected to a typical valve actuator such as one of the valve actuators 132, 134 and 136, is shown. A valve actuator cylinder 500 with two ports 502 and 504 is also shown. The ports 502 and 504 are connected by tubing 503 and 505 to the two dump valves 506 and 508. The output side of the dump valves 506 and 508 are connected to a dump oil receiver 510. Dump oil 514 is discharged through a vent 512. When an overspeed condition in the turbine 104 occurs, the solenoids 50 and 51 are actuated thereby opening the dump valves 506 and 508 and the oil 514 is dumped at a very rapid rate from under the piston 516 into the dump oil receiver 510. A spring 518 returns the piston and the valve connected thereto to a closed position very rapidly to close the associated steam valve. Dump valves similar to the dump valves 506 and 508 dump the oil from all the actuators 130, 132, 134 and 136 and thereby closing the valves 106, 108, 118 and 120. With dump operation, the steam flow in the turbine 140 is cut off very quickly thereby preventing an overspeed condition from rupturing the turbine rotor and throwing missiles which could cause extensive damage to the entire generating and reactor system. Specific details as to a preferred form of turbine steam valves as well as apparatus suitable for hydraulic control are found in U.S. Pat. Nos. 3,152,601 and 3,169,451 assigned to the assignee of the present invention.
In order to prevent a runaway overspeed condition valves 106, 108, 118 and 120 are all closed as quickly as possible by the independent protection system 128. The steam generated by the reactor and steam generator 103 as shown in FIG. 1A is vented to the atmosphere such as by a vent connected to a secondary steamline.
In summary, to prevent overspeed runaway of the turbine 104 with the possible resultant rupture of the rotor and the throwing of missiles which could seriously damage the reactor 102 and injure personnel, an overspeed protection system 123 is provided which is independent of the turbine system for normal speed control comprising the speed transducer 105 and the controller and plant computer 131. Taking over the control of the turbine 104 during overspeed conditions which could lead to a runaway and the destruction of an entire generation station, the overspeed protection system 123 obviates the shortcomings of the prior art.
The turbine 104 is provided with three independent speed transducers 124, which generate three independent speed signals. These three signals are then translated through the use of appropriate logic circuitry into two signals which actuate the dump valves and allow the rapid closing of the steam control valves thereby foreclosing the possibility of disastrous overspeed runaway. Because of the majority logic for sensing the three independent speed signals, any one speed or failure channel can be tested independently without disrupting the turbine system. Thus, the present invention provides a high degree of assurance that when the dump valves are actuated, an actual verified overspeed or signal failure has occurred which warrants such drastic action; and further makes the performance tests possible during short periods of time to determine whether or not the individual check circuits are operating properly.
Even though a governor valve 108 may be stuck open, the stop valves 106, interceptor valves 120, and the control valves 118 will close and prevent an accident.
We claim as our invention:
1. An electric power generation system comprising:
a steam turbine system having means for generating steam, at least one high pressure and at least one low pressure turbine, a generator rotated by said turbine,
means for valving a flow of steam through said steam llll first means for sensing the magnitude of the rotational velocity of said steam turbine system, said first sensing means feeding signals to said controlling means,
second means for sensing the magnitude of the rotational velocity of said steam turbine system,
said second sensing means including a plurality of channel means,
means for determining whether a predetermined number of said channel means have representations of turbine system conditions corresponding 'to predetermined conditions, and
means for deactivating one or more of said actuating means upon the determination by said determining means whether a predetermined number of said channel means have representations of conditions corresponding to predetermined conditions whereby said deactivating means deactivates said actuating means and said actuating means closes said valving means thereby stopping the flow of steam through said turbine system.
2. The system of claim 1 wherein said means for determining including second means for determining whether a predetermined number of channel means have representations of rotational velocity exceeding a predetermined rotational velocity limit.
3. The system of claim 2, wherein said actuating means includes at least two independent means for rapidly closing said valving means.
4. The system of claim 3, wherein said determining means including number determining means which determines whether a predetermined number of channel means have representations of turbine conditions not corresponding to said predetermined conditions, whereby determination of said representations not corresponding to said predetermined conditions in any two of said measuring channel means causes deactivating means to deactivate said actuating means thereby closing said valving means and stopping the flow of steam through said turbine system.
5. The system of claim 4, wherein said number determining means including means for generating said representations correspond to the turbine velocity and said predetermined conditions correspond to a predetermined rotational velocity.
6. The system of claim 5, wherein said deactivating means including at least two independent means for rapidly closing said valving means.
7. An overspeed protection system for a steam turbine comprising:
means for valving a flow of steam through said steam turbine,
means for actuating said valving means,
means for sensing the rotational velocity at said steam turbine system,
said sensing means including sensing channel means,
means for determining whether a predetermined number of said channel means have representations of turbine system conditions corresponding to predetermined conditions, and
means for activating one or more of said actuating means upon the determination by said determining means whether a predetermined number of said channel means have representations of conditions corresponding to predetermined conditions whereby said deactivating means deactivates said actuating means and said actuating means closes said valving means thereby stopping the flow of steam through said turbine system.
8. The system of claim 7 wherein said means for determining includes second means for determining whether a predetermined number of channel means have representations of rotational velocity exceeding a predetermined rotational velocity limit.
9. A method of preventing overspeeds in a steam turbine system resulting from partial or total load losses, said steam turbine system comprising governor valves for regulating a flow of steam through said turbine, actuators for actuating said valves, a first transducer for transducing the rotational velocity of said steam turbine into an electrical signal, a second transducer for transducing the rotational velocity of said steam turbine into electrical signals, said second transducer providing independent speed signals, two dumping signal channels including two separate dump valves connected to at least one of said actuators independently actuated and connected for dumping hydraulic fluid contained therein, including the steps of:
transducing the speed of said turbine into independent electrical signals; checking said signals against predetermined conditions; determining whether said signals check against said predetermined conditions of the immediately preceding step. 10. The method of claim 9 including the additional step of:
activating each of said dump valves upon determining whether said signals do not correspond to said predetermined conditions. 11. The method as defined in claim 10 including the additional step of:
dumping the hydraulic fluid from each of said hydraulic actuators. 12. The method as defined in claim 11 including the additional step of:
actuating each of said separate dump valves on each of said actuators. 13. An electric power generating system comprising:
a steam turbine system having means for generating steam, at least one high pressure and at least one low pressure turbine, a generator rotated by said turbine, an electric load connected to said generator, means for valving a flow of steam through said steam turbine including at least one throttle-stop valve, at least one governor valve and at least one interceptor valve,
means for moving said valving means from one position to another,
first means for sensing the magnitude of the rotational velocity of said turbine system,
means for measuring the magnitude of a flow of electric energy from said generator to said electric load,
means for measuring a pressure of said steam in said steam turbine system,
means for determining a position for said valving means including means for computing a desired valve position,
said computing means connected to and receiving signals from said first rotational velocity sensing means, said energy flow measuring means and said pressure measuring means whereby said computing means upon receipt of said signals determines a direction of motion, and a position for said throttlestop valve, said governor valve and said interceptor valve during the start-up phase, the synchronization and the power generation phases of operation of said electric power generating system,
said moving means moving said throttle-stop valve,
said governor valve, and said interceptor valve in a direction and to a position determined by said computing means,
second means for sensing the magnitude of the rotational velocity of said steam turbine system,
said second sensing means including a plurality of signal path means,
means for determining whether a predetermined number of said signal path means have representations of turbine system conditions corresponding to predetermined conditions,
means for deactivating one or more of said moving means upon determination by said determining means whether a predetermined number of said signal path means have representations of conditions corresponding to predetermined conditions whereby said deactivating means deactivates said moving means and said moving means closes said valving means thereby stopping the flow of steam through said steam turbine system.
14. The system of claim 13 wherein said means for determining including second means for determining whether a predetermined number of said signal path means have representations of rotational velocity exceeding a predetermined rotational velocity limit.
15. The system of claim 14, wherein said deactivating means includes at least two independent means for rapidly closing said valving means.
16. The system of claim 15, wherein said determining means including number determining means which determines whether a predetermined number of said signal path means have representations of turbine conditions, whereby determination of said representations not corresponding to said predetermined conditions in any two of said measuring signal path means causes deactivating means to deactivate said moving means thereby closing said valving means and stopping the flow of steam through said turbine system.
17. The system of claim 16, wherein said number determining means including means for generating said representations correspond to the turbine velocity and said predetermined conditions correspond to a predetermined rotational velocity.
18. The system of claim 17, wherein said deactivating means includes at least two independent means for rapidly closing said valving means.
19. An independent overspeed protection system for a steam turbine system having speed control including independent overspeed protection, said independent overspeed protection system comprising:
means for valving a flow of steam through said steam turbine,
means for sensing the rotational .velocity of said steam turbine,
means for actuating said valving means,
means connecting said sensing means and said actuating means,
means for independently sensing the rotational velocity at said steam turbine system,
means including sensing signal path means having a plurality of signal paths,
means connecting said independent sensing means and said signal path means,
means for determining whether a predetermined number of said signal paths of said signal path means have representations of turbine system conditions corresponding to predetermined conditions,
means connecting said signal path means and said determining means, and
means for deactivating said actuating means upon the determination by said determining means whether a predetermined number of said signal paths have representations of conditions corresponding to predetermined conditions whereby said deactivating means deactivates said actuating means and said actuating means closes said valving means thereby stopping the flow of steam through said turbine system.
20. The system of claim 19 wherein said determining means include second means for determining, said second determining means determines whether a predetermined number of said signal paths have representations of signal exceeding a predetermined rotational velocity limit.
21. A method of preventing overspeeds in an electric power generating system, a steam turbine system having means for generating steam, at least one high pressure and at least one low pressure steam turbine, a generator rotated by said turbine, an electric load connected to said generator, means for valving a flow of steam through said steam turbine including at least one throttle-stop valve, at least one governor valve, and at least one interceptor valve, means for moving said valving means, first means for sensing the magnitude of the rotational velocity of said steam turbine system, means for measuring the magnitude of the flow of energy from said generator to said electric load, means for measuring the pressure of said steam in said steam turbine system, independent second means for sensing the magnitude of the rotational velocity of said steam turbine system, two dumping signal channels including two separate dump valves connected to at least one of said actuators moving means independently actuated and connected for dumping hydraulic fluid contained therein, including the steps of:
a generating steam in a suitable steam generator;
b controlling the flow of said steam through said steam turbine generating system;
c rotating said steam turbine in said steam turbine generating system;
(1 measuring the rotational velocity of said steam turbine generating system;
e measuring the flow of electric energy from said steam turbine generating system to said electric load;
f measuring the pressure of said steam in said steam turbine generating system;
g determining the rate of flow of said steam through said steam turbine during the startup of said steam turbine generating system;
h computing the position of said valve in said steam turbine generating system utilizing a value of desired rate of flow of said steam, said steam pressure and said measured magnitude of electric load and said rotational velocity;
i computing a desired rate of flow of said steam in said generating system;
j controlling the rate of flow in said generated steam through said steam turbine generating system utilizing the values computed in the previous steps;
k independently measuring the rotational velocity of said generating system;
1 determining by the use of the independent measurement of rotational velocity whether a predetermined condition associated with said velocity of said steam turbine system has been exceeded;
in activating each of said dump valves upon determination whether said predetermined condition has been exceeded.
22. The method as defined in claim 21 including the additional step of:
dumping the hydraulic fluid from each of said hydraulic actuators.
23. The method as defined in claim 22 including the additional step of: leading the hydraulic fluid into a container.
24. The method as claimed in claim 23 including the additional step of:
calculating the position of the throttle-stop valve in said steam turbine generating system utilizing a desired rate of flow of said steam and the steam pressure during the startup of said turbine. 25. The method of claim 24 including the additional step of:
computing the direction of travel and a displacement for said throttle-stop valve, said governor valve and said interceptor valve. 26. The method of claim 25 including the additional step of:
moving said throttle-stop valve, said governor valve and said interceptor valve in the direction and to the displacement computed previously. 27. The system of claim 20 wherein said determining means includes third means for determining, said third means determining whether a predetermined number of said signal paths have an interruption of any of said signals.

Claims (27)

1. An electric power generation system comprising: a steam turbine system having means for generating steam, at least one high pressure and at least one low pressure turbine, a generator rotated by said turbine, means for valving a flow of steam through said steam turbine system, means for actuating said valving means, means for controlling said actuating means whereby position of said valving means is controlled, first means for sensing the magnitude of the rotational velocity of said steam turbine system, said first sensing means feeding signals to said controlling means, second means for sensing the magnitude of the rotational velocity of said steam turbine system, said second sensing means including a plurality of channel means, means for determining whether a predetermined number of said channel means have representations of turbine syStem conditions corresponding to predetermined conditions, and means for deactivating one or more of said actuating means upon the determination by said determining means whether a predetermined number of said channel means have representations of conditions corresponding to predetermined conditions whereby said deactivating means deactivates said actuating means and said actuating means closes said valving means thereby stopping the flow of steam through said turbine system.
2. The system of claim 1 wherein said means for determining including second means for determining whether a predetermined number of channel means have representations of rotational velocity exceeding a predetermined rotational velocity limit.
3. The system of claim 2, wherein said actuating means includes at least two independent means for rapidly closing said valving means.
4. The system of claim 3, wherein said determining means including number determining means which determines whether a predetermined number of channel means have representations of turbine conditions not corresponding to said predetermined conditions, whereby determination of said representations not corresponding to said predetermined conditions in any two of said measuring channel means causes deactivating means to deactivate said actuating means thereby closing said valving means and stopping the flow of steam through said turbine system.
5. The system of claim 4, wherein said number determining means including means for generating said representations correspond to the turbine velocity and said predetermined conditions correspond to a predetermined rotational velocity.
6. The system of claim 5, wherein said deactivating means including at least two independent means for rapidly closing said valving means.
7. An overspeed protection system for a steam turbine comprising: means for valving a flow of steam through said steam turbine, means for actuating said valving means, means for sensing the rotational velocity at said steam turbine system, said sensing means including sensing channel means, means for determining whether a predetermined number of said channel means have representations of turbine system conditions corresponding to predetermined conditions, and means for activating one or more of said actuating means upon the determination by said determining means whether a predetermined number of said channel means have representations of conditions corresponding to predetermined conditions whereby said deactivating means deactivates said actuating means and said actuating means closes said valving means thereby stopping the flow of steam through said turbine system.
8. The system of claim 7 wherein said means for determining includes second means for determining whether a predetermined number of channel means have representations of rotational velocity exceeding a predetermined rotational velocity limit.
9. A method of preventing overspeeds in a steam turbine system resulting from partial or total load losses, said steam turbine system comprising governor valves for regulating a flow of steam through said turbine, actuators for actuating said valves, a first transducer for transducing the rotational velocity of said steam turbine into an electrical signal, a second transducer for transducing the rotational velocity of said steam turbine into electrical signals, said second transducer providing independent speed signals, two dumping signal channels including two separate dump valves connected to at least one of said actuators independently actuated and connected for dumping hydraulic fluid contained therein, including the steps of: transducing the speed of said turbine into independent electrical signals; checking said signals against predetermined conditions; determining whether said signals check against said predetermined conditions of the immediately preceding step.
10. The method of claim 9 including the additional step of: activatIng each of said dump valves upon determining whether said signals do not correspond to said predetermined conditions.
11. The method as defined in claim 10 including the additional step of: dumping the hydraulic fluid from each of said hydraulic actuators.
12. The method as defined in claim 11 including the additional step of: actuating each of said separate dump valves on each of said actuators.
13. An electric power generating system comprising: a steam turbine system having means for generating steam, at least one high pressure and at least one low pressure turbine, a generator rotated by said turbine, an electric load connected to said generator, means for valving a flow of steam through said steam turbine including at least one throttle-stop valve, at least one governor valve and at least one interceptor valve, means for moving said valving means from one position to another, first means for sensing the magnitude of the rotational velocity of said turbine system, means for measuring the magnitude of a flow of electric energy from said generator to said electric load, means for measuring a pressure of said steam in said steam turbine system, means for determining a position for said valving means including means for computing a desired valve position, said computing means connected to and receiving signals from said first rotational velocity sensing means, said energy flow measuring means and said pressure measuring means whereby said computing means upon receipt of said signals determines a direction of motion, and a position for said throttle-stop valve, said governor valve and said interceptor valve during the start-up phase, the synchronization and the power generation phases of operation of said electric power generating system, said moving means moving said throttle-stop valve, said governor valve, and said interceptor valve in a direction and to a position determined by said computing means, second means for sensing the magnitude of the rotational velocity of said steam turbine system, said second sensing means including a plurality of signal path means, means for determining whether a predetermined number of said signal path means have representations of turbine system conditions corresponding to predetermined conditions, means for deactivating one or more of said moving means upon determination by said determining means whether a predetermined number of said signal path means have representations of conditions corresponding to predetermined conditions whereby said deactivating means deactivates said moving means and said moving means closes said valving means thereby stopping the flow of steam through said steam turbine system.
14. The system of claim 13 wherein said means for determining including second means for determining whether a predetermined number of said signal path means have representations of rotational velocity exceeding a predetermined rotational velocity limit.
15. The system of claim 14, wherein said deactivating means includes at least two independent means for rapidly closing said valving means.
16. The system of claim 15, wherein said determining means including number determining means which determines whether a predetermined number of said signal path means have representations of turbine conditions, whereby determination of said representations not corresponding to said predetermined conditions in any two of said measuring signal path means causes deactivating means to deactivate said moving means thereby closing said valving means and stopping the flow of steam through said turbine system.
17. The system of claim 16, wherein said number determining means including means for generating said representations correspond to the turbine velocity and said predetermined conditions correspond to a predetermined rotational velocity.
18. The system of claim 17, wherein said deactivating means includes at least two independent means for rapidly closinG said valving means.
19. An independent overspeed protection system for a steam turbine system having speed control including independent overspeed protection, said independent overspeed protection system comprising: means for valving a flow of steam through said steam turbine, means for sensing the rotational velocity of said steam turbine, means for actuating said valving means, means connecting said sensing means and said actuating means, means for independently sensing the rotational velocity at said steam turbine system, means including sensing signal path means having a plurality of signal paths, means connecting said independent sensing means and said signal path means, means for determining whether a predetermined number of said signal paths of said signal path means have representations of turbine system conditions corresponding to predetermined conditions, means connecting said signal path means and said determining means, and means for deactivating said actuating means upon the determination by said determining means whether a predetermined number of said signal paths have representations of conditions corresponding to predetermined conditions whereby said deactivating means deactivates said actuating means and said actuating means closes said valving means thereby stopping the flow of steam through said turbine system.
20. The system of claim 19 wherein said determining means include second means for determining, said second determining means determines whether a predetermined number of said signal paths have representations of signal exceeding a predetermined rotational velocity limit.
21. A method of preventing overspeeds in an electric power generating system, a steam turbine system having means for generating steam, at least one high pressure and at least one low pressure steam turbine, a generator rotated by said turbine, an electric load connected to said generator, means for valving a flow of steam through said steam turbine including at least one throttle-stop valve, at least one governor valve, and at least one interceptor valve, means for moving said valving means, first means for sensing the magnitude of the rotational velocity of said steam turbine system, means for measuring the magnitude of the flow of energy from said generator to said electric load, means for measuring the pressure of said steam in said steam turbine system, independent second means for sensing the magnitude of the rotational velocity of said steam turbine system, two dumping signal channels including two separate dump valves connected to at least one of said actuators moving means independently actuated and connected for dumping hydraulic fluid contained therein, including the steps of: a generating steam in a suitable steam generator; b controlling the flow of said steam through said steam turbine generating system; c rotating said steam turbine in said steam turbine generating system; d measuring the rotational velocity of said steam turbine generating system; e measuring the flow of electric energy from said steam turbine generating system to said electric load; f measuring the pressure of said steam in said steam turbine generating system; g determining the rate of flow of said steam through said steam turbine during the startup of said steam turbine generating system; h computing the position of said valve in said steam turbine generating system utilizing a value of desired rate of flow of said steam, said steam pressure and said measured magnitude of electric load and said rotational velocity; i computing a desired rate of flow of said steam in said generating system; j controlling the rate of flow in said generated steam through said steam turbine generating system utilizing the values computed in the previous steps; k independently measuring the rotational velocity of said generating system; l determining by the use of the independent measureMent of rotational velocity whether a predetermined condition associated with said velocity of said steam turbine system has been exceeded; m activating each of said dump valves upon determination whether said predetermined condition has been exceeded.
22. The method as defined in claim 21 including the additional step of: dumping the hydraulic fluid from each of said hydraulic actuators.
23. The method as defined in claim 22 including the additional step of: leading the hydraulic fluid into a container.
24. The method as claimed in claim 23 including the additional step of: calculating the position of the throttle-stop valve in said steam turbine generating system utilizing a desired rate of flow of said steam and the steam pressure during the startup of said turbine.
25. The method of claim 24 including the additional step of: computing the direction of travel and a displacement for said throttle-stop valve, said governor valve and said interceptor valve.
26. The method of claim 25 including the additional step of: moving said throttle-stop valve, said governor valve and said interceptor valve in the direction and to the displacement computed previously.
27. The system of claim 20 wherein said determining means includes third means for determining, said third means determining whether a predetermined number of said signal paths have an interruption of any of said signals.
US00189226A 1971-10-14 1971-10-14 System and method for operating a steam turbine with independent overspeed protection especially adapted for a nuclear reactor powered steam turbine Expired - Lifetime US3826094A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US00189226A US3826094A (en) 1971-10-14 1971-10-14 System and method for operating a steam turbine with independent overspeed protection especially adapted for a nuclear reactor powered steam turbine
DE19722248019 DE2248019A1 (en) 1971-10-14 1972-09-29 CONTROL DEVICE FOR STEAM TURBINES
CA152,847A CA1012604A (en) 1971-10-14 1972-09-29 Steam turbine with overspeed protection
CH1478872A CH556467A (en) 1971-10-14 1972-10-10 CONTROL DEVICE FOR STEAM TURBINES.
JP72102392A JPS5330122B2 (en) 1971-10-14 1972-10-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00189226A US3826094A (en) 1971-10-14 1971-10-14 System and method for operating a steam turbine with independent overspeed protection especially adapted for a nuclear reactor powered steam turbine

Publications (1)

Publication Number Publication Date
US3826094A true US3826094A (en) 1974-07-30

Family

ID=22696471

Family Applications (1)

Application Number Title Priority Date Filing Date
US00189226A Expired - Lifetime US3826094A (en) 1971-10-14 1971-10-14 System and method for operating a steam turbine with independent overspeed protection especially adapted for a nuclear reactor powered steam turbine

Country Status (2)

Country Link
US (1) US3826094A (en)
CA (1) CA1012604A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2486144A1 (en) * 1980-07-07 1982-01-08 Simmering Graz Pauker Ag ADJUSTMENT AND PROTECTION SYSTEM FOR TURBINES
US5301499A (en) * 1990-06-28 1994-04-12 General Electric Company Overspeed anticipation and control system for single shaft combined cycle gas and steam turbine unit
US20070000230A1 (en) * 2005-07-01 2007-01-04 Ics Triplex Technology Ltd. Turbo machinery speed monitor
GB2427972A (en) * 2005-07-01 2007-01-10 Ics Triplex Technology Ltd Turbine speed monitor and overspeed trip
US20100293948A1 (en) * 2009-05-19 2010-11-25 Alstom Technology Ltd Method for primary control of a steam turbine installation
US20130301771A1 (en) * 2010-09-30 2013-11-14 Mitsubishi Heavy Industries, Ltd. Nuclear power plant control system and method of testing nuclear power plant
CN107905851A (en) * 2017-11-15 2018-04-13 中广核工程有限公司 Nuclear power system, steam turbine and its heap machine control method for coordinating and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060692A (en) * 1958-07-18 1962-10-30 English Electric Co Ltd Control gear for steam turbines
US3097488A (en) * 1961-11-03 1963-07-16 Gen Electric Turbine control system
US3102394A (en) * 1958-01-24 1963-09-03 Westinghouse Electric Corp Controlled relief system
US3421014A (en) * 1967-08-29 1969-01-07 Boris Petrovich Moorganov Apparatus for controlling operation of turbogenerator under emergency conditions in the power system
US3614457A (en) * 1965-07-01 1971-10-19 Gen Electric Turbine overspeed trip anticipator
US3630839A (en) * 1968-11-26 1971-12-28 Westinghouse Electric Corp System and method for operating a boiling water reactor-steam turbine plant
US3643437A (en) * 1969-10-16 1972-02-22 Westinghouse Electric Corp Overspeed protection system for a steam turbine generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102394A (en) * 1958-01-24 1963-09-03 Westinghouse Electric Corp Controlled relief system
US3060692A (en) * 1958-07-18 1962-10-30 English Electric Co Ltd Control gear for steam turbines
US3097488A (en) * 1961-11-03 1963-07-16 Gen Electric Turbine control system
US3614457A (en) * 1965-07-01 1971-10-19 Gen Electric Turbine overspeed trip anticipator
US3421014A (en) * 1967-08-29 1969-01-07 Boris Petrovich Moorganov Apparatus for controlling operation of turbogenerator under emergency conditions in the power system
US3630839A (en) * 1968-11-26 1971-12-28 Westinghouse Electric Corp System and method for operating a boiling water reactor-steam turbine plant
US3643437A (en) * 1969-10-16 1972-02-22 Westinghouse Electric Corp Overspeed protection system for a steam turbine generator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2486144A1 (en) * 1980-07-07 1982-01-08 Simmering Graz Pauker Ag ADJUSTMENT AND PROTECTION SYSTEM FOR TURBINES
US5301499A (en) * 1990-06-28 1994-04-12 General Electric Company Overspeed anticipation and control system for single shaft combined cycle gas and steam turbine unit
US20070000230A1 (en) * 2005-07-01 2007-01-04 Ics Triplex Technology Ltd. Turbo machinery speed monitor
GB2427972A (en) * 2005-07-01 2007-01-10 Ics Triplex Technology Ltd Turbine speed monitor and overspeed trip
US20070013365A1 (en) * 2005-07-01 2007-01-18 Ics Triplex Technology Ltd. Turbo machinery speed monitor
US7355828B2 (en) 2005-07-01 2008-04-08 Ics Triplex Technology Ltd Turbo machinery speed monitor
US7509189B2 (en) * 2005-07-01 2009-03-24 Ics Triplex Technology Limited Turbo machinery speed monitor
US20100293948A1 (en) * 2009-05-19 2010-11-25 Alstom Technology Ltd Method for primary control of a steam turbine installation
US20130301771A1 (en) * 2010-09-30 2013-11-14 Mitsubishi Heavy Industries, Ltd. Nuclear power plant control system and method of testing nuclear power plant
US9666316B2 (en) * 2010-09-30 2017-05-30 Mitsubishi Heavy Industries, Ltd. Nuclear power plant control system and method of testing nuclear power plant
CN107905851A (en) * 2017-11-15 2018-04-13 中广核工程有限公司 Nuclear power system, steam turbine and its heap machine control method for coordinating and device
CN107905851B (en) * 2017-11-15 2019-12-03 中广核工程有限公司 Nuclear power system, steam turbine and its heap machine control method for coordinating and device

Also Published As

Publication number Publication date
CA1012604A (en) 1977-06-21

Similar Documents

Publication Publication Date Title
US3643437A (en) Overspeed protection system for a steam turbine generator
US3829232A (en) System and method for operating a steam turbine with dual hydraulic independent overspeed protection especially adapted for a nuclear reactor powered steam turbine
US3709626A (en) Digital analog electrohydraulic turbine control system
US3826094A (en) System and method for operating a steam turbine with independent overspeed protection especially adapted for a nuclear reactor powered steam turbine
US3848138A (en) Method of effecting fast turbine valving for improvement of power system stability
US4217617A (en) Turbine trip circuit
US3931503A (en) System for operating a boiling water reactor steam turbine power plant utilizing dual analog throttle pressure controllers
US3826095A (en) General system and method for operating a steam turbine with independent overspeed protection especially adapted for a nuclear reactor powered steam turbine
US3785148A (en) Electronic system and method for operating a steam turbine with independent overspeed protection especially adapted for a nuclear reactor powered steam turbine
US4464577A (en) Turbine speed control
US3931714A (en) Electrohydraulic emergency trip system and method for a turbine power plate
US4238290A (en) Nuclear reactor installation
GB1485560A (en) Electrohydraulic emergency trip system for a turbine power plant
KR930011109B1 (en) Method of controlling a pwr to prevent overpressure in the event of feed water loss
US3156848A (en) Protective arrangements for prime movers coupled to electric generators
US4474013A (en) Overspeed anticipation circuit for steam turbine speed control
US3342194A (en) Emergency governor exerciser system
US3446483A (en) Control system for turbines
Baldwin et al. Power systems performance as affected by turbine-generator controls response during frequency disturbances
US3211957A (en) Protective device for a prime mover having an overspeed governor
US3757130A (en) Overspeed preventive apparatus for engines
GB2079987A (en) Turbine control and protection system
US3611039A (en) Apparatus for preventing overspeed of elastic fluid turbine driven generators
Weaver Reliable Overspeed Protection for Industrial Drive Turbines
JPS61202190A (en) Nuclear power generation main steam separation valve test apparatus