US3822463A - Method for producing a three dimensional lattice - Google Patents

Method for producing a three dimensional lattice Download PDF

Info

Publication number
US3822463A
US3822463A US00272736A US27273672A US3822463A US 3822463 A US3822463 A US 3822463A US 00272736 A US00272736 A US 00272736A US 27273672 A US27273672 A US 27273672A US 3822463 A US3822463 A US 3822463A
Authority
US
United States
Prior art keywords
grid
strands
box
grid box
needles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00272736A
Inventor
H Amos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brunswick Corp
Original Assignee
Brunswick Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brunswick Corp filed Critical Brunswick Corp
Priority to US00272736A priority Critical patent/US3822463A/en
Priority to CA175,680A priority patent/CA987966A/en
Priority to NL7309931A priority patent/NL7309931A/xx
Priority to JP48082447A priority patent/JPS4944847A/ja
Priority to DE19732336536 priority patent/DE2336536C3/en
Priority to US467064A priority patent/US3896750A/en
Priority to US466974A priority patent/US3896747A/en
Priority to US467065A priority patent/US3884445A/en
Application granted granted Critical
Publication of US3822463A publication Critical patent/US3822463A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/07Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments otherwise than in a plane, e.g. in a tubular way
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • E04C2/22Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/24Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49838Assembling or joining by stringing

Definitions

  • ABSTRACT I A machine for making a three dimensional lattice array'of strands within a grid framework.
  • the strand lattice can be utilized as a reinforcement for other materialsA
  • the method of making the three dimensional lattice involves sewing strands "in three directions within a grid framework.
  • SHEU 7 UF 8 Ng@ b PATENTED JUL 91974 SHEET 8 0F 8 METHOD FOR PRODUCING A-THREE DIMENSIONAL LATTICE FIELD oF TI-IE INVENTION BACKGROUND OF THE INVENTION lVlany material forms are used today as composite materials in order ⁇ to take advantage of the best properties of the different materials forming the composite.
  • Fabric reinforced plasticresins are one class of such composite materials in wide use. Complicated designs have been employed to utilize the two dimensional limitations ofthe fabric in order to produce three dimensional shapes.
  • the invention contemplated and disclosed herein provides a new, novel and unique sewing machine that produces a substantially uniformly prestressed three dimensional strand lattice that vhas the attributes of being reliable, reproducible, uniform, economical and achieves solutions to the problems that the prior art has left unsolved.
  • Such a machine utilizes new and novel sewing needles which operate in conjunction with a new andnovel grid framework structure that supportsv the strands.
  • Another object of this invention is the provision for producing a lattice wherein each strand has substantially the same tension as every other strand inthe lattice.
  • Still another object of this invention is the provision.
  • Yet another object of this invention is the provision for an open grid framework structure that can have a three dimensional yarray of substantially equally tensioned strands sewn therein.
  • Still yet another object of this invention is to provide a method for making a three dimensional lattice array of strands in an open grid framework structure.
  • a feature of the invention is the provision Afor a needle that sews a plurality of threads.
  • Another feature of the inventiony is the provision for a grid framework structure wherein very fine flexible strands support the sides ofthe grid box.
  • Yet another feature of this invention is the provision for rigid and/or flexible'hooks that secure the strands to the grid box.
  • Still another feature of the invention is the provision for substantially equally tensioning a ⁇ plurality of strands that are sewn by such a machine using only a
  • Yet another object of this invention is the provisingle tensioning device.
  • Still another feature of the invention is the provision for means that secure the sides o f the gridsurfaces to form a grid structure box and also provide for uniformly feeding the. grid box in the machine.
  • a structural grid box formed with open grid surfaces is placed onto the table of the machine.
  • taching means or clip is used to fasten all the strands or yarns to the grid box; the strands coming from the plurality of needles secured to the machine.
  • the grid box is placed in position with respect'to Athe needles at the start of the operation.
  • the needles moving forward enter the openings in the grid box sewing the strands that-are secured to the grid surface opposite to where the needles enter, and then the needles are withdrawn from the grid box which is automatically advanced with the sewing cycle repeated.
  • the strands are fastened to the grid box and cut therefrom.
  • the grid box is repositioned on the machine in a secondl orientation and then a third orientation so that sewing of the second and third directions may take place in a manner similar to that of the first direction.
  • the grid box containsa three dimensional lattice array of strands.
  • FIG. l is a partial end elevation view of part of the machine portion of one embodiment of the invention.
  • FIG. 2 isapartial side elevation view of part of the machine portion of one embodiment of the invention.
  • FIG. 7 is a cross sectional segment view of a portion of the grid box on the feed table in contact with the feeding device of one embodiment of the invention.
  • FIG. 8 is a perspective view of an assembled grid box of one embodiment of the invention.
  • FIG. 9 is a partial sectional view of the driving mechanism for the feeding device portion of one embodiment of the invention.
  • FIG. l is a perspective view of a comer bracket for the grid box portion of one embodiment of the invention.
  • FIG. 11 is a side elevation view of a corner bracket of the grid box portion of one embodiment of the invention.
  • FIG. 12 is a side elevation view of a comer of a grid box wall of one embodiment of the invention.
  • FIG. 13 is a segmented cross section view of one grid box surface of one embodiment of the invention.
  • FIG. 13a is a segmented cross section view of a portion of one grid box surface and needles of one embodiment of the invention.
  • FIG. 14 is a segmented cross section view of a portion of one grid box surface of one embodiment of the invention.
  • FIG. l is a cut away perspective view of one embodiment of the invention.
  • FIG. 16 is a segmented cross section view of a portion of one embodiment of the invention.
  • FIG. 17 is a segmented cross section view of a portion of one embodiment of the invention.
  • FIG. 18 is a perspective view of the needle point of one embodiment of the invention.
  • FIG. 19 is a segmented cross section view of one grid surface and the needles during the sewing of one grid of one embodiment of the invention.
  • FIG. 20 is a segmented cross section view of one grid surface and the needles wherein the sewing has progressed farther than FIG. 19 and depicting one embodiment of the invention
  • FIG. 21 is a segmented cross section view of one grid surface and the needle wherein' the sewing has progressed farther than FIG. 20 and depicting one embodiment of the invention
  • FIG. 22 is a segmented cross section view of one grid surface and the needles on the upstroke of one embodiment of the invention.
  • FIG. 23 is a perspective view of another embodiment of the invention.
  • FIG. 24 is a segmented cross sectional view of the needle and the upper grid surface of one embodiment of the invention.
  • the basic parts ofthe machine comprise a feed table having a feeding means mounted thereon; a set of needles mounted on a slide that has a reciprocating motion with respect to the table; and, a yarn or strand tensioning device that is cooperatively mounted with respect to the needles.
  • a necessary adjunct to the machine is a grid box comprising foraminous grid surfaces with' the box being held together by rods that function cooperatively with the feeding means to move the grid box through the machine in a preselected time sequence.
  • the grid box is capable of being fed into the machine and sewn by the needles; the box maintains the strands in a three dimensional array.
  • the needles and the strand tensioning device function to provide substantially equal tension in all the strands during sewing.
  • strand includes wire, thread, yarn, monofilament, cable, etc.; all are used interchangeably and are contemplated to mean an elongated flexible element capable of being fed through the needles and the grid box to form a three dimensional lattice array.
  • sewing, looping and variations thereof are used in this specification to mean the positioning of a strand within the grid box.
  • an assembled grid box is positioned on the feed table with the starting ends of the strands or yarns secured to the grid box such as by a yarn clip.
  • the feeding means attached to the table moves the grid box along the machine table in a preselected time sequence of move and dwell.
  • the needles with the strands of yarns therein enter the grid box surface nearest thereto, passing into and through the grid box and just past the far surface of the opposite grid box surface.
  • the needles have special points to cooperate with the strand holding means mounted on the far side grid surface in order to loop and secure the strands thereto.
  • the grid box After the threaded needle had been withdrawn from the grid box, the grid box is indexed to its next position and at the same time the strands from the needles partially pass over the near side of the grid surface. These strands are positioned by strand guides located on the exterior of the near side grid box surface.
  • the needles When the grid box has been moved to the next position, and during the dwell portion of the timing sequence, the needles again enter the grid box thereby completing the first sewing pass and starting the second sewing pass of the strands. This operation is repeated until the grid box is completely sewn in one direction.
  • the strands are secured to the grid box such as by a yarn clip and then cut, thus completing the sewing operation in one direction, or for ease of understanding the X direction.
  • the grid box is rotated on the table and again fed into the machine.
  • the strands are secured to the edge of the grid box and the grid box is, for a second time, indexed along the feeding table with the needle sewing repeated.
  • the strands are again secured to the box and cut, completing the sewing in the second or Y direction.
  • the grid structure is then rotated for a second time on the grid table and fed through the machine with the strands sewn in the same fashion as before, thereby completing sewing in the third-or Z direction.
  • a three dimensional lattice array of strends completely fills the interior of the grid box.
  • the needles operate in the same fashion during the total sewing operation and the strand tensioning device is mounted with the needles on the needle mount to operate continuously and cooperatively; all parts function to insure that all strands are all substantially equally tensioned as they are sewn.
  • the invention also contemplates the method of making an open surface gn'd box having a three dimensional lattice array of strands internally contained therein,
  • a grid box 500 shown in FIG. 8, comprises oppositely spaced foraminous grid walls 510 and 520.
  • the internal surfaces ofthe grid walls-510 and 520 are flat with the exterior surfaces providing hooks and notches for the strands, as shown in FIG. 6.
  • the grid walls 510 and 520 are used in pairs being oppositely spaced apart in forming the grid box 500.
  • the grid walls 510 and 520 are of substantially rigid frameworks and may be formed of interlocking strips 511 and 512; and, 521 and 522 which define passages 514 and 524 and the interior and exterior grid surfaces.
  • the strips l 1, 512, 521 and 522 have outwardly projecting undercut ends 515, 516, 525 and 526, as shown in FIGS. 6, 7 and l2.
  • the lugs 530 have ears 531 to provide a means for hooking the strands during the sewing operation.
  • the tips'532 of the ears 531 are recessed with respect to the exterior surface 520a vof the grid wall 520, as shown in FIGS. 14, l5 and I6.
  • the ears 531 of adjacent lugs 530 are spaced apart as shown in FIGSQ6 and 7.
  • Comer brackets 540 with legs 541 are secured to ⁇ each corner of the grid ,walls ⁇ 5l0 and 520 where the undercut ends 515, 516, 525 and 526 have been removed, as shown in FIGS. 6, 7, 8, l0, ll and l2.
  • the dogs 542 ofthe comer brackets 540 are at an angle with respect to the legs 541 and not in the same plane therewith; as shown in FIGS. l0 and ll.
  • the grid box 500 is assembled by inserting undercut ends 515,516, 525 and 526 of the grid walls 510 and 520 into the undercut grooves SSI of the edge rods 550.
  • the grid walls 510 and 520 are positioned opposite to each other with the notches 518 and lug 4530 facing outwardly.
  • a second series of grooves 552 on the rods A550 are aligned with the center of the grid passages 514 and 524.
  • the three adjacent dogs 542 of the Corner brackets 540 are fastened together withvsnap rings 543, as shown in FIGS. 6 and 8.
  • the dogs 542-do not extend beyond the edges formed by the rods 550.
  • the openings 514 and 524 must be aligned and the rows of lugs 530 must be parallel tothe notches 518 when the surfaces are opposite each other.A It is contemplated that the grid passages or openings 514 and 524 may be square, rectangular, triangular, pentagonal, etc., as desired. Rather than forming the grid surfaces 510 and 520 by interlocking strips, it is fully contemplated that the grid surfaces may be cast or formed in any desired manner.
  • edge rods 550 form planar surfaces but the grid surfaces 510 and 520 attached thereto do not necessarily have to beplanar.
  • the grid surfaces -510 and 520 can be any desired shape as long as they do not extend beyond the planar surfaces defined by the edge rods 550.
  • resiliently flexible lugs 5300 with ear portions 531a may be used in place of the rigid lugs 530.
  • lug 53012 having movable ear portions 531b may be used as shown in FIG. 17, wherein the ears 531b are mounted on shafts 532b which can rotate in such a fashion to release the hooked strands.
  • a l v The use of the assembled grid box 500 as it cooperatively functions with the machine will be discussed hereinafter in more detail.
  • the frame l0 supports a feed table 20 which ismounted thereon.
  • a pair of upper slideways 13 and a pair of lower slideways l2 are mounted on and secured to the frame l0 in a space relation to the table 20.
  • the slideways 12 and 13 are shown covered with dust protectors 12a and 13a.
  • Flywheel 30 is rotatably mounted on shaft 33 that is journal mounted 37 on the frame l0 at 32.
  • the flywheel 30 is located between the slideways l2 and 13.
  • the shaft 33 is connected toa prime mover, such as a motor (not shown) by means of sprockets and a chain (not shown), thereby providing motion for the operation of the machine.
  • a counterbalance 35 l is slideably mounted on the upper ways 13 and obtains reciprocating motion via the upper connecting rod 34 which ispivotally mounted on the flywheel 30 at 34a and on lthe counterbalance 35 at 34b.
  • the needle holder 40 is slideably on the lower guideways vl2 and pivotally connected to the flywheel 30 by the lower connecting rod 36 at 36a and to the needle holder 40 at 36h.
  • the needle holder 40 moves back and forth or upwards and downwards, as the case may be, in a reciprocating motion.
  • the counterbalance 35 moves in an opposite direction to the needle holder 40 to provide smooth and substantially vibrationless motion.
  • a strand tensioning device 50 is mounted on the needle holder 40 and operates to pull the multiple strands from a strand or yarn creel (not shown) during both the upward motion of the holder 40.
  • the strands 700 enter through the strand guides 752 secured to the guide plate l that is part of the strand guide assembly 750 mounted on the frame 10 at 753, shown in FIGS. 4 and 5.
  • the strands 700 passed under the roll 754 and then passes up and over the dancer roll 704 that is part of the strand tensioning assembly 50.
  • the strand tensioning assembly 50 is mounted on the movable needle mount 40 while the strand guide assembly 750 is stationary.
  • the dancer roll 704 is rotatably mounted on cantilevers 705 that are secured to the partially rotatable spring tensioned shaft 706.
  • the spring 708 and the coupler 708a fastened to shaft 706 tend to cause counter-clockwise rotation thereof which in turn cause the dancer roll 704 to rotate in a counter-- clockwise direction around the shaft 706.
  • Cam 709 se cured to shaft.706 and the cam keeper 710 secured to the movable needle mount 40 insures only partial counter-clockwise rotation of the shaft 706 and dancer roll 704.
  • Clockwise rotation of the dancer roll 704 about the shaft 706 causes an increased load on the spring 708 which/functions to restrain such rotation.
  • the semi-rotational confinement of the dancer roll 704 is what provides substantially equal tension on allthe strands as the lattice is formed.
  • the gridpusher assembly 2ll0 is mounted at the side and underneath the feed table 20, and driven by drive assembly 21 as shown in FIGS. l, 2, 3 and 9.
  • Assembly 2l comprises pairs of bevelled gears at each end of shaft 21a; one end thereof coupled to and being driven by the drive shaft 33 and the other end transferring the power for the grid pusher assembly 210.
  • the grid pusher assembly 2l has eccentric shaft 231 that is driven by the drive assembly 21 which is coupled by timing and power transmission gears 233 to the cam shaft 232.
  • Suitable journal bearings 234 are mounted on frame l to support shafts 231 and 232.
  • Pusher arm 211 is eccentrically mounted on shaft 231 at 213.
  • a pawl 212 which reciprocatively moves back and forth as the shaft 231 is rotated.
  • the upward pusher assembly 220 is mounted on the frame 10 adjacent the pusher arm 211 and connected thereto by coupler 227.
  • Cam 221 is mounted on shaft 232 and engaged by cam follower 222 which is part of linkage 223 that is pivotally mounted on the frame 10-at 226 and pivotally connected to the coupler 227 and 224.
  • the coupler 227 is pivotally connected to the arm 211 at 225.
  • cam follower 222 imparts an up and down motion to the pusher arm 211 that is translated by the linkage 223 in cooperation with the coupler 227.
  • the combined motions from eccentrically mounted pusher arm 221 and the cam follower 222 coupled thereto cause the pawl 212 to rise above the top surface of the table through hole 214; move forward; withdraw below the top surface of the table 20; oscillate back and forth; and, again rise above the top surface of the table 20 pushing forward and withdrawing in a timed sequence of move and dwell.
  • the amount of back and forth motion of the pawl 212 provides the incremental advance movement of the grid box 500 along the feed table 20.
  • the pawl 212 engages the groove 552 and functions to progressively indexedly advance the grid box 500 along the feed table 20 in a preselected move and dwell time cycle sequence. Engagement of the pawl 212 in groove 552 of the rod 550 is shown in FIGS. 3 and 7.
  • a friction brake 45 shown in FIGS. 1 and 2 is mounted on feed table 20 and engages the sides of the grid box 500 to prevent overfeeding.
  • other types of brakes are contemplated, such as a device similar to the grid pusher assembly 210 but operating in a reverse fashion to prevent the grid box 500 from moving during the dwell portion; and will be well understood by those skilled in the art.
  • a dual set of pressure rolls 70 is mounted on a framework 71 that is attached to the frame 10 and the feed table 20.
  • One set of rollers 70 is located in front of and just adjacent to needle 60 at the feed-in section of the machine on table 20.
  • the second set of rollers 70 is located between the needle 60 and the upright portion of the frame 10. Both sets of rollers are adjusted to a preselected height to create a slight pressure on the rod 550 of the grid box 500 as it is automatically fed to the machine to prevent the grid box 500 from lifting up from the table 20 during the sewing operation.
  • the feed table can'be slidably mounted on the frame and indexedly moved or advanced by a feeding device similar to the grid pusher assembly 210. This would permit thel grid box to be secured to the feed table with both the table and the grid box thereon advancing past the needle mount 40 during the reciprocating motion thereof.
  • the grid box can be secured to the table 20 and the needle mount slidably mounted on the frame l0 so that after every reciprocating motion thereof, the mount is advanced with respect to the grid box by a feeding device similar to the grid pusher assembly.
  • the grid box can be mounted in such a manner as to be provided with a forward and back motion for sewing with the needles in the needle mount held stationary.
  • either the grid box or the needle mount can be slidably advanced.
  • the butt or proximal ends 601 of the needle 60 are secured to the moveable needle mounts with mounting brackets 610 as shown in FIG. 4.
  • the point or distal end 602 of the needle 60 may be fashioned to sew one or more strands as shown in FIG. 18.
  • the needle point 602 has a rather sharply tapered side portion 606 converging at the tip 614. Extending rearwardly toward the butt end 601 are undercut slots 604 on both sides of the needle 60.
  • the web 611 formed by the slot 604 must be thinner than the distance between the ears 531 of the lug 530.
  • Gradually tapered top and bottom portions 606a of the point 602 form the other portions of the needle point 602 which converge at the tip 614.
  • the slots 604 provide a flat portion 613 with a further tapered curvilinear undercut portions 612 formed towards the tip 614.
  • a tapered flat portion 609 is located between the tip 614 and the portion 612.
  • Strand holes 603 open onto the portion 6l2'with the axis of the hole 603 projecting rearwardly at any angle, and
  • the holes 603 open on the bottom side 615 of the needle which is actually the leading surface wherein the holes 603 cooperate with strand grooves 608 that project rearwardly toward the butt end 601.
  • On the upper side 616 of the point 602 are strand slot grooves 607 that project rearwardly and intersect and cooperate with the slots 605. It has been found desirable to offset the holes 603 with respect to the slots 605 wherein the slots 605 are closer OPERATION
  • strands 700 from a creel are fed through the strand tensioning device 50 as described hereinabove, and threaded through the needle holes 603, around the point 602 and back through the slots 605.
  • An assembled grid box 500 is placed on the feed table 20 so that the grid wall 510 with notches 518 is adjacent the needles 60 with the opposite grid wall 520 next to the table 20 with the ears 531 of the lugs 530 projecting towards the table.
  • the needles 60 and the needle mount 40 are moved to a full upright, back or withdrawn position above or outside the grid box 500 and exterior to the grid wall 510, similar to FIG. 22.
  • the strands 700 from the needles 60 are initially secured to the grid wall 510 in the slot 560, as shown in FIG.
  • the brake 45 is clamped on the of the strands to the box v500 may employ such simple means as taping the strands to the box, or more sophisticated mechanical securing devices, well understood by those skilled in the art.
  • the grid box 500 with strands 700 secured thereto is positioned on table 20 under the first set of pressure holddown rollers 70 in such a manner that the pawl 212 contacts the first of the series of rod 550 grooves 552. sides of the grid box 500.
  • the machine is started by the prime mover with the needles 60 aligned with respect to entering the opening 514 of the grid surface 510.
  • the notches 518 align the strands 700, as shown in FlGflSa.
  • the strands 700 are pulled by the needle 60 motion as the needles 60 continue to move through the open-4 ings 524 of the grid wall 520 to a positionv where the needle holes 603 v'and the needles slot 605 have cleared the ears 531, the strands 700 are automatically pulled back to the normal position, as shown in FIG. 20.
  • the pawl 212 engages the next groove 552 and indexes or pushes the grid box 500 forward to the next sewing position; the grid box 500 is prevented from overfeeding by the brake 45.
  • the notches 518 align the strands 700 for the next sewing cycle.
  • the forward motion of the needles 60 starts to repeat the sewing cycle, and the strands 700 automatically align themselves in the needle slots 605 as a result of the pre-alignment of the strands 700 by the notches 518, as shown in FIGS. 22 and 24.
  • the sewing-indexing operation automatically proceeds until the strands are sewn in each of the aligned dual passages S14-524 by the row of needles 60-2.v After the lastV row of dual grid passages S14-524 is sewn, the edge rods 550 have been indexed past the table hole 214 so that the pawl 212 contacts the comer bracket 540 as it starts its upward travel. The bracket 540 prevents the pawl 212 from completing its predetermined travel thereby causing the switch 210a to stop the machine at the end of the last sewing operation.
  • the strands 700 are secured to the grid box 500 by a U-shaped spring clip (not shown) inslots 560; similar to the manner in which the strands were initially secured to the grid box 500.
  • the strands 700 are then cut separating the needles 60 and the grid box 500.
  • this completes the sewing of the grid box in the first of three directions; or in other words, the grid box has strands 700 laced iri thev X direction.
  • the grid box 500 is turned 90 on the feed table 20 with the complete sewing operation described hereinabove repeated, thereby completing the sewing of the grid box 500 in the second direction; the grid box 500 now having strands also in the Y direction.
  • box 500 is turned 90 on the feed table 20 with the orthogonal.
  • the amount of prestressing or tensioning of the strands canbe controlled bythe force required to pull the strands from their spools on the creel coupled with the cooperative interaction ⁇ of the dancer roll 704 and the spring tensioned shaft. It has been found that the edge rods 550 and the snap rings 543 may be removed after the three dimensionallattice has been sewn and yet the grid box 500 with the grid walls remain intact.
  • more than one set of needles mounted on more than one reciprocating needle mount can be assembled on the machine'so that sewing in the vX, Y and Z directions can be performed continuously,
  • machines l, II and lII represent the needles on reciprocating needle mounts, and will be understood by those skilled in theart.
  • the grid box 500 can be any desired configuration as long as the edge rods 550 define exterior surfaces that are substantially planar forming a box such as a parallelepiped. Since the grid surface openings can be made any desired cross directional configuration, needles having a similar cross sectional configuration can be used therewith. It is also contemplated that the needles can sew one or more strands, as desired. It has been found that any type of strand material may be used as long as it is sufficiently flexible for the size of the needles and the size of the grid box used. It is also contemplated that the strand material and different sizes of strands may be mixed while sewing the grid in one direction; or, alternatively, .the strands in one direction can be of different size and material than the strands in any other direction.
  • a method of making a three dimensional lattice array of strands comprising the steps of:

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Textile Engineering (AREA)
  • Sewing Machines And Sewing (AREA)
  • Nonwoven Fabrics (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

A machine for making a three dimensional lattice array of strands within a grid framework. The strand lattice can be utilized as a reinforcement for other materials. The method of making the three dimensional lattice involves sewing strands in three directions within a grid framework.

Description

nited StatesvPatent i191 Amos 4 [54] METHOD FOR PRODUCING A THREE DIMENSIONALv LATTICE [75] Inventor: Homer C. Amos, Palm Springs,
Calif.
[73] Assignee: Brunswick Corporation, Skokie, Ill. [22] Filed; July 18,1972 [2l] Appl. No.: 272,736
[52] U.S. Cl. 29/433 [5l] Int. Cl B23p 19/04 [58] Field of Search 112/400, 401, 402; 29/433 [56] y l References Cited UNITEDSTATES PATENTS 3,322,868 5/1967 Kruse et al 264/45 mi 3,822,463 i451 July 9,1974
Primary Examiner-Alfred R. Guest [5 7] ABSTRACT I A machine for making a three dimensional lattice array'of strands within a grid framework. The strand lattice can be utilized as a reinforcement for other materialsA The method of making the three dimensional lattice involves sewing strands "in three directions within a grid framework.
1 claim, 2s vDrawing FiguresA PATENTEU JUL 9 |974 suma uf 8 PATENIEUJUL 91974 3.822.463
SHEU 7 UF 8 Ng@ b PATENTED JUL 91974 SHEET 8 0F 8 METHOD FOR PRODUCING A-THREE DIMENSIONAL LATTICE FIELD oF TI-IE INVENTION BACKGROUND OF THE INVENTION lVlany material forms are used today as composite materials in order `to take advantage of the best properties of the different materials forming the composite. Fabric reinforced plasticresins are one class of such composite materials in wide use. Complicated designs have been employed to utilize the two dimensional limitations ofthe fabric in order to produce three dimensional shapes. There are many problems in producing a three dimensional shape from a two dimensionally reinforced material; for example, a laminated glass fabric-plastic resin composite can delaminate just like paint peeling off a house because the composite is not reinforced in all three dimensions.'Thus, the obvious need for three dimensionally reinforced composite ma terials exists. v
`ln order to provide a three dimensionally reinforced product, it is first' necessary to provide a lattice of strands or yarns in a three dimensional array. One attempt to make such a three dimensional strand array is taught inU.S. Pat. No. 3,322,868, wherein two rather crude devices are used in combination. The first device provides a plurality of parallelstrands on a structure similar to a picture frame. Multiple frames are then alternately stacked to provide groups of strands that are SUMMARY OF THE INVENTION The invention contemplated and disclosed herein provides a new, novel and unique sewing machine that produces a substantially uniformly prestressed three dimensional strand lattice that vhas the attributes of being reliable, reproducible, uniform, economical and achieves solutions to the problems that the prior art has left unsolved. Such a machine utilizes new and novel sewing needles which operate in conjunction with a new andnovel grid framework structure that supportsv the strands.
Therefore, it is an object of this invention to provide a three dimensional lattice array of strands made automatically and economically.
Another object of this invention is the provision for producing a lattice wherein each strand has substantially the same tension as every other strand inthe lattice.
for producing a three dimensional lattice arrayof Still another object of this invention is the provision.
Yet another object of this invention is the provision for an open grid framework structure that can have a three dimensional yarray of substantially equally tensioned strands sewn therein.
sion for a new type of sewing needle.
Still yet another object of this invention is to provide a method for making a three dimensional lattice array of strands in an open grid framework structure.
A feature of the invention is the provision Afor a needle that sews a plurality of threads.
Another feature of the inventiony is the provision for a grid framework structure wherein very fine flexible strands support the sides ofthe grid box.
Yet another feature of this invention is the provision for rigid and/or flexible'hooks that secure the strands to the grid box.
Still another feature of the invention is the provision for substantially equally tensioning a `plurality of strands that are sewn by such a machine using only a And still another object of this inventionis the provisingle tensioning device.
And still another feature of the invention is the provision for means that secure the sides o f the gridsurfaces to form a grid structure box and also provide for uniformly feeding the. grid box in the machine.
A structural grid box formed with open grid surfaces is placed onto the table of the machine. A strand atstrands wherein the strands are in a substantially or- I thogonal configuration.
taching means or clip is used to fasten all the strands or yarns to the grid box; the strands coming from the plurality of needles secured to the machine. The grid box is placed in position with respect'to Athe needles at the start of the operation. During operation, the needles moving forward enter the openings in the grid box sewing the strands that-are secured to the grid surface opposite to where the needles enter, and then the needles are withdrawn from the grid box which is automatically advanced with the sewing cycle repeated. When the sewing operation in one direction is completed, the strands are fastened to the grid box and cut therefrom. The grid box is repositioned on the machine in a secondl orientation and then a third orientation so that sewing of the second and third directions may take place in a manner similar to that of the first direction. Thus, upon completion, the grid box containsa three dimensional lattice array of strands.
The above and further objects and features will be more readily understood by the reference to the following detailed description and the accompanying drawings. y
BRIEF DESCRIPTION OF THE DRAWINGS FIG. l is a partial end elevation view of part of the machine portion of one embodiment of the invention;
FIG. 2 isapartial side elevation view of part of the machine portion of one embodiment of the invention;
FIG. 7 is a cross sectional segment view of a portion of the grid box on the feed table in contact with the feeding device of one embodiment of the invention;
FIG. 8 is a perspective view of an assembled grid box of one embodiment of the invention;
FIG. 9 is a partial sectional view of the driving mechanism for the feeding device portion of one embodiment of the invention;
FIG. l is a perspective view of a comer bracket for the grid box portion of one embodiment of the invention;
FIG. 11 is a side elevation view of a corner bracket of the grid box portion of one embodiment of the invention;
FIG. 12 is a side elevation view of a comer of a grid box wall of one embodiment of the invention;
FIG. 13 is a segmented cross section view of one grid box surface of one embodiment of the invention;
FIG. 13a is a segmented cross section view of a portion of one grid box surface and needles of one embodiment of the invention;
FIG. 14 is a segmented cross section view of a portion of one grid box surface of one embodiment of the invention;
FIG. l is a cut away perspective view of one embodiment of the invention;
FIG. 16 is a segmented cross section view of a portion of one embodiment of the invention;
FIG. 17 is a segmented cross section view of a portion of one embodiment of the invention;
FIG. 18 is a perspective view of the needle point of one embodiment of the invention;
FIG. 19 is a segmented cross section view of one grid surface and the needles during the sewing of one grid of one embodiment of the invention;
FIG. 20 is a segmented cross section view of one grid surface and the needles wherein the sewing has progressed farther than FIG. 19 and depicting one embodiment of the invention;
FIG. 21 is a segmented cross section view of one grid surface and the needle wherein' the sewing has progressed farther than FIG. 20 and depicting one embodiment of the invention;
FIG. 22 is a segmented cross section view of one grid surface and the needles on the upstroke of one embodiment of the invention;
FIG. 23 is a perspective view of another embodiment of the invention; and g FIG. 24 is a segmented cross sectional view of the needle and the upper grid surface of one embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a preferred embodiment, the basic parts ofthe machine comprise a feed table having a feeding means mounted thereon; a set of needles mounted on a slide that has a reciprocating motion with respect to the table; and, a yarn or strand tensioning device that is cooperatively mounted with respect to the needles. A necessary adjunct to the machine is a grid box comprising foraminous grid surfaces with' the box being held together by rods that function cooperatively with the feeding means to move the grid box through the machine in a preselected time sequence. The grid box is capable of being fed into the machine and sewn by the needles; the box maintains the strands in a three dimensional array. The needles and the strand tensioning device function to provide substantially equal tension in all the strands during sewing.
As used herein, the term strand includes wire, thread, yarn, monofilament, cable, etc.; all are used interchangeably and are contemplated to mean an elongated flexible element capable of being fed through the needles and the grid box to form a three dimensional lattice array. As used herein, the term sewing, looping and variations thereof are used in this specification to mean the positioning of a strand within the grid box.
In the operation of the machine, an assembled grid box is positioned on the feed table with the starting ends of the strands or yarns secured to the grid box such as by a yarn clip. The feeding means attached to the table moves the grid box along the machine table in a preselected time sequence of move and dwell. During the dwell portion of the time sequence the needles with the strands of yarns therein enter the grid box surface nearest thereto, passing into and through the grid box and just past the far surface of the opposite grid box surface. The needles have special points to cooperate with the strand holding means mounted on the far side grid surface in order to loop and secure the strands thereto. After the threaded needle had been withdrawn from the grid box, the grid box is indexed to its next position and at the same time the strands from the needles partially pass over the near side of the grid surface. These strands are positioned by strand guides located on the exterior of the near side grid box surface. When the grid box has been moved to the next position, and during the dwell portion of the timing sequence, the needles again enter the grid box thereby completing the first sewing pass and starting the second sewing pass of the strands. This operation is repeated until the grid box is completely sewn in one direction. The strands are secured to the grid box such as by a yarn clip and then cut, thus completing the sewing operation in one direction, or for ease of understanding the X direction. The grid box is rotated on the table and again fed into the machine. The strands are secured to the edge of the grid box and the grid box is, for a second time, indexed along the feeding table with the needle sewing repeated. Upon completion of the sewing operation, the strands are again secured to the box and cut, completing the sewing in the second or Y direction. The grid structure is then rotated for a second time on the grid table and fed through the machine with the strands sewn in the same fashion as before, thereby completing sewing in the third-or Z direction. Thus, a three dimensional lattice array of strends completely fills the interior of the grid box. Since the grid box is a substantially rigid structure, the needles operate in the same fashion during the total sewing operation and the strand tensioning device is mounted with the needles on the needle mount to operate continuously and cooperatively; all parts function to insure that all strands are all substantially equally tensioned as they are sewn.
The invention also contemplates the method of making an open surface gn'd box having a three dimensional lattice array of strands internally contained therein,
with all strands substantially equally tensioned, by the THEG'RID Box In 'a preferred embodiment of the invention, a grid box 500, shown in FIG. 8, comprises oppositely spaced foraminous grid walls 510 and 520. The internal surfaces ofthe grid walls-510 and 520 are flat with the exterior surfaces providing hooks and notches for the strands, as shown in FIG. 6. The grid walls 510 and 520 are used in pairs being oppositely spaced apart in forming the grid box 500. The grid walls 510 and 520 are of substantially rigid frameworks and may be formed of interlocking strips 511 and 512; and, 521 and 522 which define passages 514 and 524 and the interior and exterior grid surfaces. The strips l 1, 512, 521 and 522 have outwardly projecting undercut ends 515, 516, 525 and 526, as shown in FIGS. 6, 7 and l2. On each ofthe strips 512 of the grid wall 510 there are notches 518 to accommodate the positioning of the strands during the sewing operation. On each of the strips 521 of the grid wall 520 there are lugs 530 secured thereto. The lugs 530 have ears 531 to provide a means for hooking the strands during the sewing operation. The tips'532 of the ears 531 are recessed with respect to the exterior surface 520a vof the grid wall 520, as shown in FIGS. 14, l5 and I6. The ears 531 of adjacent lugs 530 are spaced apart as shown in FIGSQ6 and 7. Comer brackets 540 with legs 541 are secured to`each corner of the grid ,walls`5l0 and 520 where the undercut ends 515, 516, 525 and 526 have been removed, as shown in FIGS. 6, 7, 8, l0, ll and l2. The dogs 542 ofthe comer brackets 540 are at an angle with respect to the legs 541 and not in the same plane therewith; as shown in FIGS. l0 and ll.
The grid box 500 is assembled by inserting undercut ends 515,516, 525 and 526 of the grid walls 510 and 520 into the undercut grooves SSI of the edge rods 550. In forming the grid box 500 the grid walls 510 and 520 are positioned opposite to each other with the notches 518 and lug 4530 facing outwardly. A second series of grooves 552 on the rods A550 are aligned with the center of the grid passages 514 and 524. The three adjacent dogs 542 of the Corner brackets 540 are fastened together withvsnap rings 543, as shown in FIGS. 6 and 8. The dogs 542-do not extend beyond the edges formed by the rods 550. For proper operation, the openings 514 and 524 must be aligned and the rows of lugs 530 must be parallel tothe notches 518 when the surfaces are opposite each other.A It is contemplated that the grid passages or openings 514 and 524 may be square, rectangular, triangular, pentagonal, etc., as desired. Rather than forming the grid surfaces 510 and 520 by interlocking strips, it is fully contemplated that the grid surfaces may be cast or formed in any desired manner.
lIt has been found necessary that the edge rods 550 form planar surfaces but the grid surfaces 510 and 520 attached thereto do not necessarily have to beplanar.
The grid surfaces -510 and 520 can be any desired shape as long as they do not extend beyond the planar surfaces defined by the edge rods 550.
Alternatively, resiliently flexible lugs 5300 with ear portions 531a, as shown in FIG. 16, may be used in place of the rigid lugs 530. Also, lug 53012 having movable ear portions 531b may be used as shown in FIG. 17, wherein the ears 531b are mounted on shafts 532b which can rotate in such a fashion to release the hooked strands. A l v The use of the assembled grid box 500 as it cooperatively functions with the machine will be discussed hereinafter in more detail.
THE MACHINE Ina preferred embodiment of the machine as shown in FIGS. l and 2, the frame l0 supports a feed table 20 which ismounted thereon. A pair of upper slideways 13 and a pair of lower slideways l2 are mounted on and secured to the frame l0 in a space relation to the table 20. The slideways 12 and 13 are shown covered with dust protectors 12a and 13a. Flywheel 30 is rotatably mounted on shaft 33 that is journal mounted 37 on the frame l0 at 32. The flywheel 30 is located between the slideways l2 and 13. The shaft 33 is connected toa prime mover, such as a motor (not shown) by means of sprockets and a chain (not shown), thereby providing motion for the operation of the machine. A counterbalance 35 lis slideably mounted on the upper ways 13 and obtains reciprocating motion via the upper connecting rod 34 which ispivotally mounted on the flywheel 30 at 34a and on lthe counterbalance 35 at 34b. The needle holder 40 is slideably on the lower guideways vl2 and pivotally connected to the flywheel 30 by the lower connecting rod 36 at 36a and to the needle holder 40 at 36h. As' the flywheel 30 revolves, the needle holder 40 moves back and forth or upwards and downwards, as the case may be, in a reciprocating motion. At the same time,- the counterbalance 35 moves in an opposite direction to the needle holder 40 to provide smooth and substantially vibrationless motion. A strand tensioning device 50 is mounted on the needle holder 40 and operates to pull the multiple strands from a strand or yarn creel (not shown) during both the upward motion of the holder 40.
The strands 700 enter through the strand guides 752 secured to the guide plate l that is part of the strand guide assembly 750 mounted on the frame 10 at 753, shown in FIGS. 4 and 5. The strands 700 passed under the roll 754 and then passes up and over the dancer roll 704 that is part of the strand tensioning assembly 50. The strand tensioning assembly 50 is mounted on the movable needle mount 40 while the strand guide assembly 750 is stationary. The dancer roll 704 is rotatably mounted on cantilevers 705 that are secured to the partially rotatable spring tensioned shaft 706. The spring 708 and the coupler 708a fastened to shaft 706 tend to cause counter-clockwise rotation thereof which in turn cause the dancer roll 704 to rotate in a counter-- clockwise direction around the shaft 706. Cam 709 se cured to shaft.706 and the cam keeper 710 secured to the movable needle mount 40 insures only partial counter-clockwise rotation of the shaft 706 and dancer roll 704. Clockwise rotation of the dancer roll 704 about the shaft 706 causes an increased load on the spring 708 which/functions to restrain such rotation. As explained hereinafter, the semi-rotational confinement of the dancer roll 704 is what provides substantially equal tension on allthe strands as the lattice is formed.
The gridpusher assembly 2ll0 is mounted at the side and underneath the feed table 20, and driven by drive assembly 21 as shown in FIGS. l, 2, 3 and 9. Assembly 2l comprises pairs of bevelled gears at each end of shaft 21a; one end thereof coupled to and being driven by the drive shaft 33 and the other end transferring the power for the grid pusher assembly 210. As shown in FIGS. 3 and 9, the grid pusher assembly 2l has eccentric shaft 231 that is driven by the drive assembly 21 which is coupled by timing and power transmission gears 233 to the cam shaft 232. Suitable journal bearings 234 are mounted on frame l to support shafts 231 and 232. Pusher arm 211 is eccentrically mounted on shaft 231 at 213. At the other end of the pusher arm 211 is a pawl 212 which reciprocatively moves back and forth as the shaft 231 is rotated. The upward pusher assembly 220 is mounted on the frame 10 adjacent the pusher arm 211 and connected thereto by coupler 227. Cam 221 is mounted on shaft 232 and engaged by cam follower 222 which is part of linkage 223 that is pivotally mounted on the frame 10-at 226 and pivotally connected to the coupler 227 and 224. The coupler 227 is pivotally connected to the arm 211 at 225. As cam shaft 232 rotates, the cam follower 222 imparts an up and down motion to the pusher arm 211 that is translated by the linkage 223 in cooperation with the coupler 227. Thus, the combined motions from eccentrically mounted pusher arm 221 and the cam follower 222 coupled thereto cause the pawl 212 to rise above the top surface of the table through hole 214; move forward; withdraw below the top surface of the table 20; oscillate back and forth; and, again rise above the top surface of the table 20 pushing forward and withdrawing in a timed sequence of move and dwell. The amount of back and forth motion of the pawl 212 provides the incremental advance movement of the grid box 500 along the feed table 20. When the grid box 500 with the edge rods 550 is positioned on the feed table, the pawl 212 engages the groove 552 and functions to progressively indexedly advance the grid box 500 along the feed table 20 in a preselected move and dwell time cycle sequence. Engagement of the pawl 212 in groove 552 of the rod 550 is shown in FIGS. 3 and 7.
A friction brake 45, shown in FIGS. 1 and 2, is mounted on feed table 20 and engages the sides of the grid box 500 to prevent overfeeding. However, other types of brakes are contemplated, such as a device similar to the grid pusher assembly 210 but operating in a reverse fashion to prevent the grid box 500 from moving during the dwell portion; and will be well understood by those skilled in the art.
A dual set of pressure rolls 70 is mounted on a framework 71 that is attached to the frame 10 and the feed table 20. One set of rollers 70 is located in front of and just adjacent to needle 60 at the feed-in section of the machine on table 20. The second set of rollers 70 is located between the needle 60 and the upright portion of the frame 10. Both sets of rollers are adjusted to a preselected height to create a slight pressure on the rod 550 of the grid box 500 as it is automatically fed to the machine to prevent the grid box 500 from lifting up from the table 20 during the sewing operation.
In another embodiment of the invention, the feed table can'be slidably mounted on the frame and indexedly moved or advanced by a feeding device similar to the grid pusher assembly 210. This would permit thel grid box to be secured to the feed table with both the table and the grid box thereon advancing past the needle mount 40 during the reciprocating motion thereof.
Alternatively, in another embodiment of the invention, the grid box can be secured to the table 20 and the needle mount slidably mounted on the frame l0 so that after every reciprocating motion thereof, the mount is advanced with respect to the grid box by a feeding device similar to the grid pusher assembly.
In yet another embodiment of the invention, it is contemplated that the grid box can be mounted in such a manner as to be provided with a forward and back motion for sewing with the needles in the needle mount held stationary. In this embodiment either the grid box or the needle mount can be slidably advanced. These order embodiments will be well understood by those skilled in the art. All of these embodiments provide relative motion between the grid box and the needles to insure a satisfactory sewing operation of the total grid.
THE NEEDLES The butt or proximal ends 601 of the needle 60 are secured to the moveable needle mounts with mounting brackets 610 as shown in FIG. 4. The point or distal end 602 of the needle 60 may be fashioned to sew one or more strands as shown in FIG. 18. The needle point 602 has a rather sharply tapered side portion 606 converging at the tip 614. Extending rearwardly toward the butt end 601 are undercut slots 604 on both sides of the needle 60. The web 611 formed by the slot 604 must be thinner than the distance between the ears 531 of the lug 530. Gradually tapered top and bottom portions 606a of the point 602 form the other portions of the needle point 602 which converge at the tip 614. The slots 604 provide a flat portion 613 with a further tapered curvilinear undercut portions 612 formed towards the tip 614. A tapered flat portion 609 is located between the tip 614 and the portion 612. Strand holes 603 open onto the portion 6l2'with the axis of the hole 603 projecting rearwardly at any angle, and
. preferably about a 30 angle. The holes 603 open on the bottom side 615 of the needle which is actually the leading surface wherein the holes 603 cooperate with strand grooves 608 that project rearwardly toward the butt end 601. On the upper side 616 of the point 602 are strand slot grooves 607 that project rearwardly and intersect and cooperate with the slots 605. It has been found desirable to offset the holes 603 with respect to the slots 605 wherein the slots 605 are closer OPERATION In making a three dimensional lattice array of strands, strands 700 from a creel are fed through the strand tensioning device 50 as described hereinabove, and threaded through the needle holes 603, around the point 602 and back through the slots 605. An assembled grid box 500 is placed on the feed table 20 so that the grid wall 510 with notches 518 is adjacent the needles 60 with the opposite grid wall 520 next to the table 20 with the ears 531 of the lugs 530 projecting towards the table. The needles 60 and the needle mount 40 are moved to a full upright, back or withdrawn position above or outside the grid box 500 and exterior to the grid wall 510, similar to FIG. 22. The strands 700 from the needles 60 are initially secured to the grid wall 510 in the slot 560, as shown in FIG. 6, by a U-shaped The brake 45 is clamped on the of the strands to the box v500 may employ such simple means as taping the strands to the box, or more sophisticated mechanical securing devices, well understood by those skilled in the art. The grid box 500 with strands 700 secured thereto is positioned on table 20 under the first set of pressure holddown rollers 70 in such a manner that the pawl 212 contacts the first of the series of rod 550 grooves 552. sides of the grid box 500.
The machine is started by the prime mover with the needles 60 aligned with respect to entering the opening 514 of the grid surface 510. As the needles enter the grid surface 510 the notches 518 align the strands 700, as shown in FlGflSa. As the needles 60 with the surface 615v leading and the surface 616 trailing move through the grid surface 510 toward the grid surface 520 the strands 700 are pulled by the needle 60 motion as the needles 60 continue to move through the open-4 ings 524 of the grid wall 520 to a positionv where the needle holes 603 v'and the needles slot 605 have cleared the ears 531, the strands 700 are automatically pulled back to the normal position, as shown in FIG. 20. This* return to the normal position occurs through the cooperative action of the dancer'roll 704 and the spring tension shaft 706. As the needles60 start on their backstroke to pull upward through the grid box 500, the strands 700 are hooked or looped on the vundercut portions 533 of the ears 531, as shown in FIG. 21. During thecontinued backstroke of the needles 60, the strands 700 are pulled from the grooves 605 and remain in this position throughout the complete backstroke of the machine. Substantially equal tensionris maintained on the strands during the backstroke which is completed after the needles 60 have been withdrawn from the grid wall 510, as shown in FIG. 22.
After the needles 60 have been fully withdrawn from the grid wall 510 at the upper end of the backstroke, the pawl 212 engages the next groove 552 and indexes or pushes the grid box 500 forward to the next sewing position; the grid box 500 is prevented from overfeeding by the brake 45. During the advancing motion of the grid box 500 the notches 518 align the strands 700 for the next sewing cycle. The forward motion of the needles 60 starts to repeat the sewing cycle, and the strands 700 automatically align themselves in the needle slots 605 as a result of the pre-alignment of the strands 700 by the notches 518, as shown in FIGS. 22 and 24. The sewing-indexing operation automatically proceeds until the strands are sewn in each of the aligned dual passages S14-524 by the row of needles 60-2.v After the lastV row of dual grid passages S14-524 is sewn, the edge rods 550 have been indexed past the table hole 214 so that the pawl 212 contacts the comer bracket 540 as it starts its upward travel. The bracket 540 prevents the pawl 212 from completing its predetermined travel thereby causing the switch 210a to stop the machine at the end of the last sewing operation.
The strands 700 are secured to the grid box 500 by a U-shaped spring clip (not shown) inslots 560; similar to the manner in which the strands were initially secured to the grid box 500. The strands 700 are then cut separating the needles 60 and the grid box 500. Thus, this completes the sewing of the grid box in the first of three directions; or in other words, the grid box has strands 700 laced iri thev X direction.
' The grid box 500 is turned 90 on the feed table 20 with the complete sewing operation described hereinabove repeated, thereby completing the sewing of the grid box 500 in the second direction; the grid box 500 now having strands also in the Y direction. Again, the
box 500 is turned 90 on the feed table 20 with the orthogonal.
The amount of prestressing or tensioning of the strands canbe controlled bythe force required to pull the strands from their spools on the creel coupled with the cooperative interaction `of the dancer roll 704 and the spring tensioned shaft. It has been found that the edge rods 550 and the snap rings 543 may be removed after the three dimensionallattice has been sewn and yet the grid box 500 with the grid walls remain intact.
It is contemplated that more than one set of needles mounted on more than one reciprocating needle mount can be assembled on the machine'so that sewing in the vX, Y and Z directions can be performed continuously,
as shown in FIG. 23, wherein machines l, II and lII represent the needles on reciprocating needle mounts, and will be understood by those skilled in theart.
The grid box 500 can be any desired configuration as long as the edge rods 550 define exterior surfaces that are substantially planar forming a box such as a parallelepiped. Since the grid surface openings can be made any desired cross directional configuration, needles having a similar cross sectional configuration can be used therewith. It is also contemplated that the needles can sew one or more strands, as desired. It has been found that any type of strand material may be used as long as it is sufficiently flexible for the size of the needles and the size of the grid box used. It is also contemplated that the strand material and different sizes of strands may be mixed while sewing the grid in one direction; or, alternatively, .the strands in one direction can be of different size and material than the strands in any other direction.
Although specific embodiments of the invention have been described, many modifications and changes may be made in the machine and the companion grid struc ture without departing from the spirit and scope of the invention as defined in the appended claims.
l. A method of making a three dimensional lattice array of strands comprising the steps of:
a. providing an assembled three dimensional grid box; and,
b. positioning a plurality of strands in a three dimensional array within the assembled grid box.
* i= k l

Claims (1)

1. A method of making a three dimensional lattice array of strands comprising the steps of: a. providing an assembled three dimensional grid box; and, b. positioning a plurality of strands in a three dimensional array within the assembled grid box.
US00272736A 1972-07-18 1972-07-18 Method for producing a three dimensional lattice Expired - Lifetime US3822463A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00272736A US3822463A (en) 1972-07-18 1972-07-18 Method for producing a three dimensional lattice
CA175,680A CA987966A (en) 1972-07-18 1973-07-04 Machine for making 3-d orthogonal strand lattice
JP48082447A JPS4944847A (en) 1972-07-18 1973-07-17
NL7309931A NL7309931A (en) 1972-07-18 1973-07-17
DE19732336536 DE2336536C3 (en) 1972-07-18 1973-07-18 Device for the production of three-dimensional reinforcement strand structures
US467064A US3896750A (en) 1972-07-18 1974-05-06 Machine and method for producing a three dimensional lattice
US466974A US3896747A (en) 1972-07-18 1974-05-06 Machine for producing a three dimensional lattice
US467065A US3884445A (en) 1972-07-18 1974-05-06 Machine and method for producing a three dimensional lattice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00272736A US3822463A (en) 1972-07-18 1972-07-18 Method for producing a three dimensional lattice

Publications (1)

Publication Number Publication Date
US3822463A true US3822463A (en) 1974-07-09

Family

ID=23041060

Family Applications (1)

Application Number Title Priority Date Filing Date
US00272736A Expired - Lifetime US3822463A (en) 1972-07-18 1972-07-18 Method for producing a three dimensional lattice

Country Status (4)

Country Link
US (1) US3822463A (en)
JP (1) JPS4944847A (en)
CA (1) CA987966A (en)
NL (1) NL7309931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0236500A1 (en) * 1985-09-13 1987-09-16 Shikishima Canvas Kabushiki Kaisha Construction material reinforcing fiber structure
CN108468159A (en) * 2018-03-16 2018-08-31 西安工程大学 The preparation method of quasi-isotropic suture fabric in a kind of three-dimensional surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322868A (en) * 1963-07-02 1967-05-30 Douglas Aircraft Co Inc Three dimensional reinforced structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322868A (en) * 1963-07-02 1967-05-30 Douglas Aircraft Co Inc Three dimensional reinforced structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0236500A1 (en) * 1985-09-13 1987-09-16 Shikishima Canvas Kabushiki Kaisha Construction material reinforcing fiber structure
EP0236500A4 (en) * 1985-09-13 1988-06-13 Shikishima Canvas Kk Construction material reinforcing fiber structure.
CN108468159A (en) * 2018-03-16 2018-08-31 西安工程大学 The preparation method of quasi-isotropic suture fabric in a kind of three-dimensional surface
CN108468159B (en) * 2018-03-16 2021-03-02 西安工程大学 Preparation method of quasi-isotropic sewing fabric in three-dimensional plane

Also Published As

Publication number Publication date
NL7309931A (en) 1974-01-22
CA987966A (en) 1976-04-27
JPS4944847A (en) 1974-04-27
DE2336536B2 (en) 1977-02-03
DE2336536A1 (en) 1974-02-21

Similar Documents

Publication Publication Date Title
US5154130A (en) Multi-needle double lock chain stitch tack, jump and thread trimming quilting method and apparatus
US3521466A (en) Circular knitting machine
US3727433A (en) Method and apparatus for warp knitting hook and loop fasteners
US3115856A (en) Yarn clamp for tufting machine
EP2330242B1 (en) Multihead sewing machine and lower thread assembly for multihead sewing machine
DE1785652A1 (en) TUFTING DEVICE
US2989014A (en) Tufting machine
US3822463A (en) Method for producing a three dimensional lattice
DE2215444A1 (en) Device for the production of winding coils
US3896750A (en) Machine and method for producing a three dimensional lattice
US3896747A (en) Machine for producing a three dimensional lattice
US3884445A (en) Machine and method for producing a three dimensional lattice
US3158118A (en) Attaching method for slide fastener elements
US3882804A (en) Two hook sewing machine needle for rooting hair and an apparatus for rooting hair
US3157554A (en) Apparatus for making patterned pile fabric
US2682842A (en) Device for making tufted articles
RU94045267A (en) Device for production of multiaxial nonwoven structure, method for its production, and multiaxial structure
CN206245042U (en) New tufting machine
US3207105A (en) Pattern attachment for tufting machines
US3939030A (en) Carpet machine
KR950004580B1 (en) Knitting apparatus
SU1664704A1 (en) Apparatus for laying-out webs
CN210945980U (en) Presser foot lifting control device of sewing machine
US3943027A (en) Carpet machine
US2176710A (en) Apparatus and method of forming crosses in warp beams and thread windings therefor