US3820318A - Day date correcting device - Google Patents
Day date correcting device Download PDFInfo
- Publication number
- US3820318A US3820318A US00303047A US30304772A US3820318A US 3820318 A US3820318 A US 3820318A US 00303047 A US00303047 A US 00303047A US 30304772 A US30304772 A US 30304772A US 3820318 A US3820318 A US 3820318A
- Authority
- US
- United States
- Prior art keywords
- correcting
- rotary member
- indicator
- stem
- week day
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B19/00—Indicating the time by visual means
- G04B19/24—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars
- G04B19/243—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator
- G04B19/247—Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator disc-shaped
- G04B19/25—Devices for setting the date indicators manually
Definitions
- the movement comprises a calendar correcting device independent of the mechanism automatically driving the calendar indicators.
- This device is controlled by the winding and hand setting stem having a third axial position for the calendar correction and it comprises a pinion driven by the stem when the latter is rotated in correcting position.
- the pinion carries a correcting member driving the calendar indicators.
- a frictional coupling provided between the pinion and the correcting member however pennits the latter to stay at rest when the mechanism automatically driving the calendar indicators just engages the same.
- This invention relates to calendar watch movements and in particular to such movements comprising at least one indicator automatically driven one step forward every 24 hours by means of a driving mechanism, and a calendar correcting device including a rotary member driven in rotation together with a winding stem when the latter has been shifted into a predetermined calendar correcting axial position.
- the calendar watch movements known in the art and indicating either the month day alone or the month day and the week day usually comprise a calendar correcting device enabling resetting the calendar indicators if the same, for any reason, .do no longer indicate the correct date and/or week day.
- the calendar correcting device is independent of the mechanism automatically driving the calendar indicators one step forward every 24 hours.
- This driving mechanism usually comprises either a driving stud or a driving pawl engaging the calendar indicator to be driven one step forward and this driving member remains in meshing relation with the indicator during several hours every day.
- the calendar correcting device cannot possibly actuate the calendar indicator or indicators because the same are retained by their driving mechanism. Damages of either the driving mechanism or the correcting device or a calendar indicator due to a manual actuation of the correcting device during the time the driving mechanism engages the indicator could even be observed.
- Calendar watch movements are, however, known in the art which avoid that drawback.
- the calendar correcting device of these known watch movements is actuated by the winding stem which directly acts on the members of the driving mechanism engaging the indicator for removing them from the latter when the correcting device is actuated.
- Such a calendar watch movement is described, for instance, in the US. Pat. No. 3,413,800 of the Assignee.
- the calendar correcting device disclosed in that patent is, however, a pushing device which is actuated upon shifting the winding stem in the axial direction.
- Correcting devices of that kind can perfectly be used with watch movements which are to be mounted in watchcases, either provided with a recess or comprising a projection for protecting and also hiding the crown which is secured at the outer end of the winding stem.
- Some known calendar watch movements also comprise calendar correcting devices which operate a calendar correction upon rotating the winding stem after the latter has been shifted in a predetermined axial position.
- the watch movements equipped with such correcting devices have the advantage that they can be mounted in usual watchcases.
- thesecorrecting devices are independent of the mechanism automatically driving the calendar indicators, so that they are subject to the jamming and damaging risk mentioned above.
- a calendar correcting device comprising a rotary member composed of a pinion and a correcting member having a finger engaging the toothing of the calendar indicator, a frictional coupling being provided between said pinion and said correcting member and connecting them to one another.
- FIG. 1 is a plan view on the dial side of a part of the watch movement
- FIG. 2 is a similar plan view, some pieces having been removed, some broken away and the calendar correcting device being in another working position, and
- FIG. 3 is a sectional view along line III-III of FIG. 1.
- the drawings show a part of a calendar watch movement, for instance, for a wrist-watch.
- This movement comprises a date indicator and a week day indicator.
- the date indicator consists of a ring 1 being provided with an inner toothingand the week day indicator comprises a star 2 having fourteen teeth and being journalled in the center of the movement together with a disk 3 (FIG. 3) which is secured to star 2 and flush with the upper surface of ring 1.
- Disk 3 substantially fills the inner space of ring I.
- the indicators 1 and 3 are located below the dial (not shown) in the immediate vicinity thereof. The indications carried by these indicators, i.e.
- Ring 1 is prevented from rotating inopportunely by means of a spring-pressed detent 4 having a nose 5 with a particular shape provided for a purpose described more in detail hereinafter. Nose 5 engages toothing 6 of ring 1.
- a spring-pressed detent 7 similarly prevents star 2 from rotating inopportunely. Detent 7 therefore comprises a nose 8 urged into the gap between two adjacent teeth 9 of star 2.
- the date indicator 1 as well as the week day indicator 3 are automatically driven one step forward every 24 hours by a driving mechanism actuated gy the watch movement in a manner well known to those skilled in the art.
- This driving mechanism can drive the calendar indicators either progressively or so that they rapidly jump from one indication to the next one.
- the driving mechanism which has not been shown in the drawings engages the date indicator 1 at a point which is substantially diametrically opposed to the winding stem 14.
- the driving mechanism moves every 24 hours the ring 1 one tooth and the star 3 two teeth forward. Since the week day indications are printed radially on disk 3, they appear successively in the dial window (not shown).
- the watch movement represented in the drawings is of the mechanical type.
- Cannon pinion 10 meshes with a minute wheel (not shown) meshing itself with a further cannon pinion 11 located in the center of the watch movement and mounted for rotary motion on a pin secured to the base-plate 12.
- Cannon pinion 11 carries the minute hand (not shown).
- An hour wheel 13 is pivoted around cannon pinion 11 and the week day star 2 is itself mounted for rotary motion on the tubular projection of the hour wheel 13.
- the watch movement disclosed comprises a winding stem 14 extending along a radius of the movement.
- the inner end of stem 14 constitutes a pivot 15 joumalled within a boring provided in baseplate 12.
- Stem 14 is formed with a square portion 16 carrying a usual sliding clutch wheel 17 being provided with an annular grove receiving a portion of a clutch lever 18.
- the clutch wheel 17 can come into meshing relation with a winding pinion 19 idly mounted on a cylindrical bearing surface of stem 14.
- the stem portion extending beyond the winding pinion 19 is provided with an annular grove receiving a stud 20 made integral with a setting lever 21 (FIG. 1).
- the clutch lever 18 is rockably mounted on a pin 22 and it is set under the action of a spring 23.
- the particular shape of the clutch lever 18 as well as that of the setting lever 21 will be described hereinafter more in detail in connection with the operation of these members.
- the whole correcting device is held in place on baseplate 12 by means of a large steel plate 24 secured to base-plate 12 by means of a screw 25.
- Plate 24 is formed with a narrow arm 26 constituting a setting lever spring.
- Three notches are provided in the edge of this arm in the vicinity of the free end thereof.
- a stud 27 of the setting lever 21 may enter either one of these three notches which accordingly may hold the setting lever 21 in three different positions having predetermined orientations with respect to the base-plate 12.
- the setting lever 21 is rockably mounted on a setting lever screw 28, the end of which firmly engages a second rigid arm 29 of plate 24, which extends above the winding stem 14 and the setting lever 21.
- FIG. 2 The chief members of the correcting device are more clearly visible in FIG. 2 in which plate 24 has been removed.
- This device comprises a plate 30 rockably mounted on a stud 31 (FIG. 3) carried by plate 24. Stud 31 comprises a head portion 32 which holds a gear 33 axially in place on plate 24. As viewed on the dial side gear 33 is located under rocking plate 30 and the latter is itself arranged under plate 24 holding the whole correcting device on the base-plate 12.
- Gear 33
- the substantially triangular steel rocking plate comprises a projection 34 carrying an auxiliary gear 35.
- Gear 35 is held axially in place by means of a stud 36 having a flat head portion (FIG. 3).
- Stud 36 has a bearing surface which is set with force fit in a bore of plate 30 and it comprises a part extending beyond that bearing surface within an opening 37 provided in plate 24 (FIG. 1).
- This projection of stud 36 and opening 37 cooperate with one another in order to limit the angular motion of plate 30.
- this plate 30 is provided with a kneed slot 38, the edges of which are parallel.
- Slot 38 thus forms an arm 39 on plate 30.
- the front edge 40 of arm 39 extends along an arc of a circle centered on the axis of the setting lever screw 28 when plate 30 is in the position represented in FIG. 1.
- slot 38 cooperates with a clutching stud 41 made integral with the setting lever 21.
- the calendar correcting device moreover comprises a rotary member 42.
- Member 42 comprises a gear 43 milled in a portion of a shaft formed with a pivot 44 joumalled in a bore of base-plate 12. At its end opposed to pivot 44 this shaft is provided with an annular groove 45.
- Member 42 also comprises a second piece constituted by a steel plate 46 and serving as a correcting member.
- the shape of plate 46 is clearly shown in FIGS. 1 and 2. It comprises a split annular portion carrying a finger 47 extending radially outwards and three inner projections 48 having their inner ends cut along an arc of a circle. Projections 48 bear on the bottom of grove 45.
- Correcting member 46 is accordingly connected to gear 43 by means of a frictional coupling, the maximum torque of which may be adjusted at will. Finger 47 may engage the inner toothing 6 of the date ring 1.
- the calendar correcting device still comprises a correcting lever 50 which is also cut out of a sheet steel and rockably mounted on base-plate 12 by means of a step screw 51.
- Lever 50 comprises two arms having different lengths and forming an acute angle therebetween. One of these arms carries a stud 52 at its end while the other arm is cut so as to form a pawl 53.
- a circular cut-out 54 is provided between these two arms so as to form a narrow passage for a spring blade 55 made integral with an enlarged portion 56 secured to the base-plate 12.
- lever 50 as well as spring 55 extend above plate 24 and below disk 3.
- the shaft of gear 43 comprises a pivoting surface extending between the gear toothing and groove and being joumalled in a bore of plate 24.
- the correcting member 46 connected to gear 43 by means of a frictional coupling is accordingly located above plate 24 on the same level as stud 52 and toothing 6 of the date ring 1.
- the clutch lever 18 is provided with two projections 57 and 58. Projection 57 is limited by a cranked portion of lever 18.
- the calendar correcting device of the watch movement shown in the drawings is independent of the mechanism automatically driving the calendar indicators.
- this calendar correcting device is combined with the hand setting and winding mechanism and can be controlled upon rotating stem 14. The latter can be shifted into three different axial positions which are predetermined by the notches provided at the end of the setting lever spring for receiving stud 27 of the setting lever 21.
- the innermost position of stem 14 is, of course, the winding position, in which stud 27 engages the outer most notch of the setting lever spring 26. This position has not been represented in the drawings.
- clutch lever 18 In the position represented in FIG. 1 the clutch lever 18 holds the clutch wheel 17 in meshing relation with gear 33 constituting the setting pinion. The position disclosed of clutch lever 18 is ensured by the setting lever 21 pressing on projection 58 of lever 18. This position of FIG. 1 is that in which the date indicator and week day indicator can be moved manually for a correction.
- clutching stud 41 stands in the immediate vicinity of the mouth of slot 38. It will thus be noted that stud 41 holds plate 30 in such an angular position that the auxiliary gear stands in meshing relation with pinion 43. Although no spring acts on plate 30, the latter is nevertheless firmly held in the position shown in FIG. 1 so that upon rotating stem 14 in either direction member 42 will rotate therewith.
- finger 47 of this member will once engage toothing 6 of the date ring and try to move the same.
- the nose of detent 4 has not a symmetrical shape. This nose is, on the contrary, cut in such a manner that when the date ring is normally at rest, the two teeth 6 being in the immediate vicinity of the rotary member 42 are not at the same distance from the axis thereof.
- the path along which finger 47 drives ring 1 when the rotary member 42 rotates counterclockwise in FIG. 1 is longer than the path along which finger 47 drives ring 1 when it moves in the opposite direction.
- the difference between the lengths of these two pathes can be adjusted in such a manner that during the counter-clockwise motion the tip of detent nose 5 moves beyond the tip of the tooth before which it stands at the beginning of the motion, thereby causing the detent 4 to engage the next tooth gap of ring 1 and moving the latter one step forward, while during a rotation of the correcting member 42 in the opposite direction, finger 47 does not drive ring 1 far enough in order to cause the tip of nose 5 to move over the tip of the tooth before which it stands. Under these circumstances the clockwise rotation of member 42 in FIG. 1 does not drive ring 1 one step forward.
- the two side edges of detent 4 thus need only be adjusted adequately in order to cause ring 1 to be driven one step forward upon rotating member 42 at will either in both directions or in one direction only.
- the correcting device disclosed Upon rotating stem 14 being in its intermediate correcting position, the correcting device disclosed permits to drive at will the date ring 1 one step forward, when rotary member 42 is driven counter-clockwise and the day star 2 when member 42 is driven clockwise.
- the device disclosed can, however, easily be arranged so as to operate in a different manner.
- the detent 4 can be arranged so that finger 47 drives the date ring one step forward or backward according to the direction in which the stem 14 is itself driven.
- Lever 50 and spring 55 can also be removed, the correction of the week day star being then carried out upon pulling stem 14 into its hand setting position disclosed hereinafter, thereby permitting the week day star to be driven by the mechanism automatically driving the same during the normal movement run.
- this device has the advantage mentioned hereabove, namely to permit a manual correction of the date indicator or of the week day indicator at any time without risking any jamming action or a damage of any element of the device. If nose 47, indeed, engages one tooth 6 of ring 1, when the mechanism automatically driving this ring is itself in meshing relation therewith, pinion 43 rotates alone while the correcting member 46 remains at rest owing to the frictional coupling provided between member 46 and pinion 43.
- the stem 14 is pulled outwards from the position represented in FIG. 1 until it reaches that represented in FIG. 2.
- the setting lever 21 rocks clockwise and its stud 27 engages the innermost notch of the setting lever spring 26.
- its clutching stud 41 moves along slot 38. Due to the gap between the two projections 58 and 57 of the clutch lever 18, the latter does not move the clutch wheel 17 nearer to gear 33.
- the motion of stud 41 along slot 38 produces a clockwise rocking of plate 30 until the projection of stud 36 butts against the edge of opening 37 at a point diametrically opposed to that shown in FIG. 1.
- the auxiliary gear 35 stands in meshing relation with the cannon pinion 10.
- plate 30 is firmly held in the position represented in FIG. 2 by means of stud 41 engaging slot 38.
- cannon pinion 10 is driven together with the minute wheel, the cannon pinion 11 and the hour wheel 13.
- the hour wheel itself drives the automatic driving mechanism of the calendar in a manner well known to those skilled in the art and not represented in the drawings.
- This driving mechanism can, for instance, comprise a wheel making one revolution in 24 hours and carrying two pins engaging, the first one, toothing 6, and the second one toothing 9.
- Another type of driving mechanism could, of course, also be used, for instance a mechanism causing the calendar indicators to be driven instantaneously one step forward.
- FIG. 2 shows indeed that during that motion stud 41 of the setting lever 21 firstly moves along the first part of slot 38 and then butts against the edge of arm 39 which defines a great angle with the first slot part. It is this arrangement which causes plate 30 to be rocked quickly around stud 31 and the auxiliary gear 35 to move out of meshing relation. During the opposite motion, i.e. from the position represented in FIG.
- stud 41 of the setting lever 21 bears against the other edge of slot 38 and similarly causes plate 30 to quickly rock, so that the auxiliary gear 35 comes in meshing relation with cannon pinion 10 in a precise manner.
- the device thus operates without moving the minute hand in an inopportune manner.
- the device disclosed finally permits an adjustment of the posi' tion of the sweep second hand so that the same will be exactly at the top of the dial when the minute hand lies opposite a division of the minute scale carried by the watch dial.
- a calendar watch movement comprising, in combination, a date indicator, a week day indicator, a driving mechanism automatically driving said indicators one step forward every 24 hours, a rotary setting stem being axially shiftable into a predetermined correcting position, a rotary member adapted for correcting said date indicator, connecting means provided between said stem and said rotary member and being adapted for driving said rotary member in rotation upon rotating said stem when said stem is in the correcting position, said connecting means being independent of said driving mechanism, a week day correcting lever being actuated by said rotary member and adapted for actuating said week day indicator, spring means normally holding said correcting lever in a rest position, and a finger forming part of said rotary member, said finger being adapted to rock said correcting lever against the action of said spring means from its rest position in one or the other direction away from or toward said week day indicator according to whether said rotary member is driven in one or the other direction.
- the week day indicator being provided with a toothing comprising 14 teeth and driven by said driving mechanism two teeth forward every 24 hours while said correcting lever moves said week day indicator only one tooth forward during every complete revolution of said rotary member in the direction causing said correcting lever to rock toward said week day indicator.
- a calendar watch movement comprising, in combination, a date indicator, a week day indicator, a driving mechanism automatically driving said indicators one step forward every 24 hours, a rotary setting stem being axially shiftable into a predetermined correcting position, a rotary member adapted for correcting said date indicator, connecting means provided between said stern and said rotary member and being adapted for driving said rotary member in rotation upon rotating said stem when said stem is in the correcting position, said connecting means being independent of said driving mechanism, and a week day correcting lever being actuated by said rotary member and adapted for actuating said week day indicator, the week day indicator being provided with a toothing comprising fourteen teeth and driven by said driving mechanism two teeth forward every 24 hours while said correcting lever moves said week day indicator only one tooth forward during every complete revolution of said rotary member in the direction causing said correcting lever to rock toward said week day indicator.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromechanical Clocks (AREA)
Abstract
The movement comprises a calendar correcting device independent of the mechanism automatically driving the calendar indicators. This device is controlled by the winding and hand setting stem having a third axial position for the calendar correction and it comprises a pinion driven by the stem when the latter is rotated in correcting position. The pinion carries a correcting member driving the calendar indicators. A frictional coupling provided between the pinion and the correcting member however permits the latter to stay at rest when the mechanism automatically driving the calendar indicators just engages the same.
Description
United States Patent [191 F luck et al.
[111 3,820,318 June 28, 1974 4] DAY-DATE CORRECTING DEVICE [75] Inventors: Josef Fluck; Roland Zaugg, both of Grenchen, Switzerland [73] Assignee: A. Schild S.A., Canton of Soleure,
Switzerland [22] Filed: Nov. 2, 1972 [21] Appl. No.: 303,047
Related US. Application Data [62] Division of Ser. No. 172,464, Aug. 17, 1971, Pat. No.
[30] Foreign Application Priority Data Nov. 9, 1972 Switzerland 12400/72 [52] US. Cl. 58/58 [51] Int. Cl. G04b 19/24 [58] Field of Search 58/4, 5, 58
[56] References Cited UNlTED STATES PATENTS 3,597,916 8/197] Nakagawa 58/58 Primary Examiner-George H. Miller, Jr. Attorney, Agent, or Firm-Stevens, Davis, Miller & Mosher [5 7] ABSTRACT The movement comprises a calendar correcting device independent of the mechanism automatically driving the calendar indicators. This device is controlled by the winding and hand setting stem having a third axial position for the calendar correction and it comprises a pinion driven by the stem when the latter is rotated in correcting position. The pinion carries a correcting member driving the calendar indicators. A frictional coupling provided between the pinion and the correcting member however pennits the latter to stay at rest when the mechanism automatically driving the calendar indicators just engages the same.
4 Claims, 3 Drawing Figures PATENTEDJUH 2a 1924 SHEET 2 [IF 3 DAY-DATE CORRECTING DEVICE This is a division of application, Ser. No. 172,464, filed Aug. 17, 1971, now US. Pat. No. 3,735,581.
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to calendar watch movements and in particular to such movements comprising at least one indicator automatically driven one step forward every 24 hours by means of a driving mechanism, and a calendar correcting device including a rotary member driven in rotation together with a winding stem when the latter has been shifted into a predetermined calendar correcting axial position.
2. Description of the Prior Art The calendar watch movements known in the art and indicating either the month day alone or the month day and the week day usually comprise a calendar correcting device enabling resetting the calendar indicators if the same, for any reason, .do no longer indicate the correct date and/or week day. In a great number of the known calendar watch movements the calendar correcting device is independent of the mechanism automatically driving the calendar indicators one step forward every 24 hours. This driving mechanism usually comprises either a driving stud or a driving pawl engaging the calendar indicator to be driven one step forward and this driving member remains in meshing relation with the indicator during several hours every day. During that time the calendar correcting device cannot possibly actuate the calendar indicator or indicators because the same are retained by their driving mechanism. Damages of either the driving mechanism or the correcting device or a calendar indicator due to a manual actuation of the correcting device during the time the driving mechanism engages the indicator could even be observed.
Calendar watch movements are, however, known in the art which avoid that drawback. The calendar correcting device of these known watch movements is actuated by the winding stem which directly acts on the members of the driving mechanism engaging the indicator for removing them from the latter when the correcting device is actuated. Such a calendar watch movement is described, for instance, in the US. Pat. No. 3,413,800 of the Assignee. The calendar correcting device disclosed in that patent is, however, a pushing device which is actuated upon shifting the winding stem in the axial direction. Correcting devices of that kind can perfectly be used with watch movements which are to be mounted in watchcases, either provided with a recess or comprising a projection for protecting and also hiding the crown which is secured at the outer end of the winding stem.
Some known calendar watch movements also comprise calendar correcting devices which operate a calendar correction upon rotating the winding stem after the latter has been shifted in a predetermined axial position. The watch movements equipped with such correcting devices have the advantage that they can be mounted in usual watchcases. However, thesecorrecting devices are independent of the mechanism automatically driving the calendar indicators, so that they are subject to the jamming and damaging risk mentioned above.
SUMMARY OF THE INVENTION It is therefore an object of this invention to provide a calendar watch movement comprising a calendar correcting device which can be actuated upon rotating the winding stem of the watch movement thereby avoiding any jamming and damage.
It is also an object of the invention to provide a calendar watch movement comprising a date indicator and a week day indicator, both being adjustable at will by means of the calendar correcting device actuated upon rotating the winding stem of the watch movement.
I It is still a more particular object of the invention to use a calendar correcting device comprising a rotary member composed of a pinion and a correcting member having a finger engaging the toothing of the calendar indicator, a frictional coupling being provided between said pinion and said correcting member and connecting them to one another.
Still further objects of the invention will become apparent in the course of the following description.
BRIEF DESCRIPTION OF THE DRAWINGS One embodiment of the calendar watch movement according to the invention is represented diagrammatically and by way of example in the accompanying drawings.
In the drawings:
FIG. 1 is a plan view on the dial side of a part of the watch movement;
FIG. 2 is a similar plan view, some pieces having been removed, some broken away and the calendar correcting device being in another working position, and
FIG. 3 is a sectional view along line III-III of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT The drawings show a part of a calendar watch movement, for instance, for a wrist-watch. This movement comprises a date indicator and a week day indicator. The date indicator consists of a ring 1 being provided with an inner toothingand the week day indicator comprises a star 2 having fourteen teeth and being journalled in the center of the movement together with a disk 3 (FIG. 3) which is secured to star 2 and flush with the upper surface of ring 1. Disk 3 substantially fills the inner space of ring I. The indicators 1 and 3 are located below the dial (not shown) in the immediate vicinity thereof. The indications carried by these indicators, i.e. the dates from 1 to 3 1 appearing on ring 1 and the seven week days printed on disk 3 can successively be observed in an elongated window provided in the watch dial. Ring 1 is prevented from rotating inopportunely by means of a spring-pressed detent 4 having a nose 5 with a particular shape provided for a purpose described more in detail hereinafter. Nose 5 engages toothing 6 of ring 1. A spring-pressed detent 7 similarly prevents star 2 from rotating inopportunely. Detent 7 therefore comprises a nose 8 urged into the gap between two adjacent teeth 9 of star 2.
The date indicator 1 as well as the week day indicator 3 are automatically driven one step forward every 24 hours by a driving mechanism actuated gy the watch movement in a manner well known to those skilled in the art. This driving mechanism can drive the calendar indicators either progressively or so that they rapidly jump from one indication to the next one. The driving mechanism which has not been shown in the drawings engages the date indicator 1 at a point which is substantially diametrically opposed to the winding stem 14. The driving mechanism moves every 24 hours the ring 1 one tooth and the star 3 two teeth forward. Since the week day indications are printed radially on disk 3, they appear successively in the dial window (not shown). The watch movement represented in the drawings is of the mechanical type. It is accordingly driven by a spring motor and comprises a usual gearing connecting the barrel enclosing the spring to an escapement mechanism. This movement, however, comprises an off-centered center wheel, the shaft of which carries a cannon pinion connected thereto by a frictional coupling. Cannon pinion 10 meshes with a minute wheel (not shown) meshing itself with a further cannon pinion 11 located in the center of the watch movement and mounted for rotary motion on a pin secured to the base-plate 12. Cannon pinion 11 carries the minute hand (not shown). An hour wheel 13 is pivoted around cannon pinion 11 and the week day star 2 is itself mounted for rotary motion on the tubular projection of the hour wheel 13.
As shown in FIG. 3 the watch movement disclosed comprises a winding stem 14 extending along a radius of the movement. The inner end of stem 14 constitutes a pivot 15 joumalled within a boring provided in baseplate 12. Stem 14 is formed with a square portion 16 carrying a usual sliding clutch wheel 17 being provided with an annular grove receiving a portion of a clutch lever 18. Upon sliding along the square portion 16 the clutch wheel 17 can come into meshing relation with a winding pinion 19 idly mounted on a cylindrical bearing surface of stem 14. The stem portion extending beyond the winding pinion 19 is provided with an annular grove receiving a stud 20 made integral with a setting lever 21 (FIG. 1). The clutch lever 18 is rockably mounted on a pin 22 and it is set under the action of a spring 23. The particular shape of the clutch lever 18 as well as that of the setting lever 21 will be described hereinafter more in detail in connection with the operation of these members.
The whole correcting device is held in place on baseplate 12 by means of a large steel plate 24 secured to base-plate 12 by means of a screw 25. Plate 24 is formed with a narrow arm 26 constituting a setting lever spring. Three notches are provided in the edge of this arm in the vicinity of the free end thereof. A stud 27 of the setting lever 21 may enter either one of these three notches which accordingly may hold the setting lever 21 in three different positions having predetermined orientations with respect to the base-plate 12. As with the usual watch movements, the setting lever 21 is rockably mounted on a setting lever screw 28, the end of which firmly engages a second rigid arm 29 of plate 24, which extends above the winding stem 14 and the setting lever 21.
The chief members of the correcting device are more clearly visible in FIG. 2 in which plate 24 has been removed. This device comprises a plate 30 rockably mounted on a stud 31 (FIG. 3) carried by plate 24. Stud 31 comprises a head portion 32 which holds a gear 33 axially in place on plate 24. As viewed on the dial side gear 33 is located under rocking plate 30 and the latter is itself arranged under plate 24 holding the whole correcting device on the base-plate 12. Gear 33,
which also constitutes a setting pinion, is engaged by clutch wheel 17 when the latter has been shifted into its hand setting position which is also the calendar correcting position. The substantially triangular steel rocking plate comprises a projection 34 carrying an auxiliary gear 35. Gear 35 is held axially in place by means of a stud 36 having a flat head portion (FIG. 3). Stud 36 has a bearing surface which is set with force fit in a bore of plate 30 and it comprises a part extending beyond that bearing surface within an opening 37 provided in plate 24 (FIG. 1). This projection of stud 36 and opening 37 cooperate with one another in order to limit the angular motion of plate 30. At its opposed end this plate 30 is provided with a kneed slot 38, the edges of which are parallel. Slot 38 thus forms an arm 39 on plate 30. The front edge 40 of arm 39 extends along an arc of a circle centered on the axis of the setting lever screw 28 when plate 30 is in the position represented in FIG. 1. As explained more in detail hereinafter slot 38 cooperates with a clutching stud 41 made integral with the setting lever 21. I
The calendar correcting device moreover comprises a rotary member 42. Member 42 comprises a gear 43 milled in a portion of a shaft formed with a pivot 44 joumalled in a bore of base-plate 12. At its end opposed to pivot 44 this shaft is provided with an annular groove 45. Member 42 also comprises a second piece constituted by a steel plate 46 and serving as a correcting member. The shape of plate 46 is clearly shown in FIGS. 1 and 2. It comprises a split annular portion carrying a finger 47 extending radially outwards and three inner projections 48 having their inner ends cut along an arc of a circle. Projections 48 bear on the bottom of grove 45. Correcting member 46 is accordingly connected to gear 43 by means of a frictional coupling, the maximum torque of which may be adjusted at will. Finger 47 may engage the inner toothing 6 of the date ring 1. v
The calendar correcting device still comprises a correcting lever 50 which is also cut out of a sheet steel and rockably mounted on base-plate 12 by means of a step screw 51. Lever 50 comprises two arms having different lengths and forming an acute angle therebetween. One of these arms carries a stud 52 at its end while the other arm is cut so as to form a pawl 53. A circular cut-out 54 is provided between these two arms so as to form a narrow passage for a spring blade 55 made integral with an enlarged portion 56 secured to the base-plate 12. As viewed from the dial side, lever 50 as well as spring 55 extend above plate 24 and below disk 3. The shaft of gear 43 comprises a pivoting surface extending between the gear toothing and groove and being joumalled in a bore of plate 24. The correcting member 46 connected to gear 43 by means of a frictional coupling is accordingly located above plate 24 on the same level as stud 52 and toothing 6 of the date ring 1.
Along one of its edges the clutch lever 18 is provided with two projections 57 and 58. Projection 57 is limited by a cranked portion of lever 18.
It will be understood from the preceding description that the calendar correcting device of the watch movement shown in the drawings is independent of the mechanism automatically driving the calendar indicators. Those skilled in the art will also understand that this calendar correcting device is combined with the hand setting and winding mechanism and can be controlled upon rotating stem 14. The latter can be shifted into three different axial positions which are predetermined by the notches provided at the end of the setting lever spring for receiving stud 27 of the setting lever 21. The innermost position of stem 14 is, of course, the winding position, in which stud 27 engages the outer most notch of the setting lever spring 26. This position has not been represented in the drawings. Those skilled in the art will note that pushing stem 14 from its intermediate axial position represented in FIG. 1 into the winding position causes the clutch lever 18 to rock clockwise around its stud 22 and the clutch wheel to be shifted axially toward the winding pinion 19 until it meshes with the latter, thus enabling the watch to be wound up upon rotating the crown being in winding position. Upon pushing the stem 14 from the position represented in FIG. 1 into the winding position the stud 41 carried by the setting lever slides along the arcuate front edge 40 of the rocking plate without producing any motion of this plate. The different members of the calendar correcting device accordingly do not move when the stem is moved from its intermediate position into its winding position and vice versa. It will also be observed that the members of the calendar correcting device are not actuated by the stem 14 being shifted between its two innermost axial positions.
In the position represented in FIG. 1 the clutch lever 18 holds the clutch wheel 17 in meshing relation with gear 33 constituting the setting pinion. The position disclosed of clutch lever 18 is ensured by the setting lever 21 pressing on projection 58 of lever 18. This position of FIG. 1 is that in which the date indicator and week day indicator can be moved manually for a correction. In the correcting position clutching stud 41 stands in the immediate vicinity of the mouth of slot 38. It will thus be noted that stud 41 holds plate 30 in such an angular position that the auxiliary gear stands in meshing relation with pinion 43. Although no spring acts on plate 30, the latter is nevertheless firmly held in the position shown in FIG. 1 so that upon rotating stem 14 in either direction member 42 will rotate therewith. Whatever the rotating direction of member 42 may be, finger 47 of this member will once engage toothing 6 of the date ring and try to move the same. However, it should be noted that the nose of detent 4 has not a symmetrical shape. This nose is, on the contrary, cut in such a manner that when the date ring is normally at rest, the two teeth 6 being in the immediate vicinity of the rotary member 42 are not at the same distance from the axis thereof. As a consequence of that arrangement, the path along which finger 47 drives ring 1 when the rotary member 42 rotates counterclockwise in FIG. 1 is longer than the path along which finger 47 drives ring 1 when it moves in the opposite direction. The difference between the lengths of these two pathes can be adjusted in such a manner that during the counter-clockwise motion the tip of detent nose 5 moves beyond the tip of the tooth before which it stands at the beginning of the motion, thereby causing the detent 4 to engage the next tooth gap of ring 1 and moving the latter one step forward, while during a rotation of the correcting member 42 in the opposite direction, finger 47 does not drive ring 1 far enough in order to cause the tip of nose 5 to move over the tip of the tooth before which it stands. Under these circumstances the clockwise rotation of member 42 in FIG. 1 does not drive ring 1 one step forward. The two side edges of detent 4 thus need only be adjusted adequately in order to cause ring 1 to be driven one step forward upon rotating member 42 at will either in both directions or in one direction only.
Upon rotating stem 14 being in its intermediate axial position so that correcting member 42 rotates clockwise in FIG. 1, nose 47 once engages stud 52 carried by lever 50. This lever accordingly rocks against the action of spring 55 in such a direction that pawl 53 thereof engages toothing 9 of the week day star 2. This star is then driven far enough in order that nose 8 of detent 7 jumps over one tooth 9 of star 2, thus causing the same to move one step forward. As soon as finger 47 has moved beyond stud 52, spring 55 rocks lever 50 back into its rest position represented in FIG. 1. Upon driving the rotary member 42 counter-clockwise, finger 47 also engages stud 52 and rocks lever 50. The latter, however, rocks clockwise so that its pawl 53 moves away from star 2. This motion of lever 50 thus remains without any action as regaards the calendar correction. Spring 55 also causes lever 50 to come back to its position of rest once finger 47 has moved beyond stud 52.
Upon rotating stem 14 being in its intermediate correcting position, the correcting device disclosed permits to drive at will the date ring 1 one step forward, when rotary member 42 is driven counter-clockwise and the day star 2 when member 42 is driven clockwise. The device disclosed can, however, easily be arranged so as to operate in a different manner. For instance, the detent 4 can be arranged so that finger 47 drives the date ring one step forward or backward according to the direction in which the stem 14 is itself driven. Lever 50 and spring 55 can also be removed, the correction of the week day star being then carried out upon pulling stem 14 into its hand setting position disclosed hereinafter, thereby permitting the week day star to be driven by the mechanism automatically driving the same during the normal movement run.
Whatever the manner in which the device disclosed is used, this device has the advantage mentioned hereabove, namely to permit a manual correction of the date indicator or of the week day indicator at any time without risking any jamming action or a damage of any element of the device. If nose 47, indeed, engages one tooth 6 of ring 1, when the mechanism automatically driving this ring is itself in meshing relation therewith, pinion 43 rotates alone while the correcting member 46 remains at rest owing to the frictional coupling provided between member 46 and pinion 43.
In order to set the hands, the stem 14 is pulled outwards from the position represented in FIG. 1 until it reaches that represented in FIG. 2. During this motion the setting lever 21 rocks clockwise and its stud 27 engages the innermost notch of the setting lever spring 26. During this rocking motion of the setting lever 21 its clutching stud 41 moves along slot 38. Due to the gap between the two projections 58 and 57 of the clutch lever 18, the latter does not move the clutch wheel 17 nearer to gear 33. The motion of stud 41 along slot 38 produces a clockwise rocking of plate 30 until the projection of stud 36 butts against the edge of opening 37 at a point diametrically opposed to that shown in FIG. 1. In this new position the auxiliary gear 35 stands in meshing relation with the cannon pinion 10. As in FIG. 1, plate 30 is firmly held in the position represented in FIG. 2 by means of stud 41 engaging slot 38. Upon rotating stem 14, cannon pinion 10 is driven together with the minute wheel, the cannon pinion 11 and the hour wheel 13. The hour wheel itself drives the automatic driving mechanism of the calendar in a manner well known to those skilled in the art and not represented in the drawings. This driving mechanism can, for instance, comprise a wheel making one revolution in 24 hours and carrying two pins engaging, the first one, toothing 6, and the second one toothing 9. Another type of driving mechanism could, of course, also be used, for instance a mechanism causing the calendar indicators to be driven instantaneously one step forward. I
Instead of a week day indicator comprising a star with 14 teeth one could obviously also resort to a week day star having only seven teeth. Due to the shape of plate 30 and in particular to that of slot 38 the calendar correcting device disclosed has also the advantage that the auxiliary gear 35 is quickly removed from cannon pinion 10, when stem 14 is pushed from its hand setting position toward its intermediate correcting position. FIG. 2 shows indeed that during that motion stud 41 of the setting lever 21 firstly moves along the first part of slot 38 and then butts against the edge of arm 39 which defines a great angle with the first slot part. It is this arrangement which causes plate 30 to be rocked quickly around stud 31 and the auxiliary gear 35 to move out of meshing relation. During the opposite motion, i.e. from the position represented in FIG. 1 into that represented in FIG. 2, stud 41 of the setting lever 21 bears against the other edge of slot 38 and similarly causes plate 30 to quickly rock, so that the auxiliary gear 35 comes in meshing relation with cannon pinion 10 in a precise manner. The device thus operates without moving the minute hand in an inopportune manner. The device disclosed finally permits an adjustment of the posi' tion of the sweep second hand so that the same will be exactly at the top of the dial when the minute hand lies opposite a division of the minute scale carried by the watch dial.
Various modifications of the embodiment described will appear obvious to those skilled in the art within the scope of the appended claims.
We claim:
1. A calendar watch movement comprising, in combination, a date indicator, a week day indicator, a driving mechanism automatically driving said indicators one step forward every 24 hours, a rotary setting stem being axially shiftable into a predetermined correcting position, a rotary member adapted for correcting said date indicator, connecting means provided between said stem and said rotary member and being adapted for driving said rotary member in rotation upon rotating said stem when said stem is in the correcting position, said connecting means being independent of said driving mechanism, a week day correcting lever being actuated by said rotary member and adapted for actuating said week day indicator, spring means normally holding said correcting lever in a rest position, and a finger forming part of said rotary member, said finger being adapted to rock said correcting lever against the action of said spring means from its rest position in one or the other direction away from or toward said week day indicator according to whether said rotary member is driven in one or the other direction.
2. In the calendar watch mechanism of claim 1, the week day indicator being provided with a toothing comprising 14 teeth and driven by said driving mechanism two teeth forward every 24 hours while said correcting lever moves said week day indicator only one tooth forward during every complete revolution of said rotary member in the direction causing said correcting lever to rock toward said week day indicator.
3. The calendar watch movement of claim 1 wherein said finger extends on the same level as said date indicator and a stud secured to said correcting lever, said finger engaging successively said date indicator and said stud upon rotation of said rotary member.
4. A calendar watch movement comprising, in combination, a date indicator, a week day indicator, a driving mechanism automatically driving said indicators one step forward every 24 hours, a rotary setting stem being axially shiftable into a predetermined correcting position, a rotary member adapted for correcting said date indicator, connecting means provided between said stern and said rotary member and being adapted for driving said rotary member in rotation upon rotating said stem when said stem is in the correcting position, said connecting means being independent of said driving mechanism, and a week day correcting lever being actuated by said rotary member and adapted for actuating said week day indicator, the week day indicator being provided with a toothing comprising fourteen teeth and driven by said driving mechanism two teeth forward every 24 hours while said correcting lever moves said week day indicator only one tooth forward during every complete revolution of said rotary member in the direction causing said correcting lever to rock toward said week day indicator.
Claims (4)
1. A calendar watch movement comprising, in combination, A date indicator, a week day indicator, a driving mechanism automatically driving said indicators one step forward every 24 hours, a rotary setting stem being axially shiftable into a predetermined correcting position, a rotary member adapted for correcting said date indicator, connecting means provided between said stem and said rotary member and being adapted for driving said rotary member in rotation upon rotating said stem when said stem is in the correcting position, said connecting means being independent of said driving mechanism, a week day correcting lever being actuated by said rotary member and adapted for actuating said week day indicator, spring means normally holding said correcting lever in a rest position, and a finger forming part of said rotary member, said finger being adapted to rock said correcting lever against the action of said spring means from its rest position in one or the other direction away from or toward said week day indicator according to whether said rotary member is driven in one or the other direction.
2. In the calendar watch mechanism of claim 1, the week day indicator being provided with a toothing comprising 14 teeth and driven by said driving mechanism two teeth forward every 24 hours while said correcting lever moves said week day indicator only one tooth forward during every complete revolution of said rotary member in the direction causing said correcting lever to rock toward said week day indicator.
3. The calendar watch movement of claim 1 wherein said finger extends on the same level as said date indicator and a stud secured to said correcting lever, said finger engaging successively said date indicator and said stud upon rotation of said rotary member.
4. A calendar watch movement comprising, in combination, a date indicator, a week day indicator, a driving mechanism automatically driving said indicators one step forward every 24 hours, a rotary setting stem being axially shiftable into a predetermined correcting position, a rotary member adapted for correcting said date indicator, connecting means provided between said stem and said rotary member and being adapted for driving said rotary member in rotation upon rotating said stem when said stem is in the correcting position, said connecting means being independent of said driving mechanism, and a week day correcting lever being actuated by said rotary member and adapted for actuating said week day indicator, the week day indicator being provided with a toothing comprising fourteen teeth and driven by said driving mechanism two teeth forward every 24 hours while said correcting lever moves said week day indicator only one tooth forward during every complete revolution of said rotary member in the direction causing said correcting lever to rock toward said week day indicator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00303047A US3820318A (en) | 1971-08-17 | 1972-11-02 | Day date correcting device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17246471A | 1971-08-17 | 1971-08-17 | |
US00303047A US3820318A (en) | 1971-08-17 | 1972-11-02 | Day date correcting device |
CH1240072 | 1972-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3820318A true US3820318A (en) | 1974-06-28 |
Family
ID=27176830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00303047A Expired - Lifetime US3820318A (en) | 1971-08-17 | 1972-11-02 | Day date correcting device |
Country Status (1)
Country | Link |
---|---|
US (1) | US3820318A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040095850A1 (en) * | 2001-03-21 | 2004-05-20 | Christian Schmiedchen | Device for adjusting a time indicator |
US20080106979A1 (en) * | 2006-11-06 | 2008-05-08 | Eta Sa Manufacture Horlogere Suisse | Timepiece including a mechanism for correcting a device displaying a time related quantity |
-
1972
- 1972-11-02 US US00303047A patent/US3820318A/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040095850A1 (en) * | 2001-03-21 | 2004-05-20 | Christian Schmiedchen | Device for adjusting a time indicator |
US7134783B2 (en) * | 2001-03-21 | 2006-11-14 | Glashütter Uhrenbetrieb GmbH | Device for adjusting a time indicator |
US20080106979A1 (en) * | 2006-11-06 | 2008-05-08 | Eta Sa Manufacture Horlogere Suisse | Timepiece including a mechanism for correcting a device displaying a time related quantity |
US7625116B2 (en) * | 2006-11-06 | 2009-12-01 | Compagnie Des Montres Longines, Francillon Sa | Timepiece including a mechanism for correcting a device displaying a time related quantity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4945521A (en) | Watch | |
JP2525360B2 (en) | clock | |
US7170824B2 (en) | Calendar mechanism having means driving and correcting two indicators | |
US3982388A (en) | Digital display mechanism for a time-keeper | |
US3911667A (en) | Instantaneous feed mechanism for a day-date timepiece | |
JP3256908B2 (en) | Mechanical and / or electromechanical timepiece with automatic reverse display | |
JPH0684382U (en) | clock | |
US3451211A (en) | Calendar watches | |
US3543506A (en) | Self-winding wristwatch with a chronograph mechanism | |
US3710567A (en) | Calendar watch with isolated hour hand changing means combined with synchronization gearing | |
US6814483B2 (en) | Self-winding timepiece having train wheel setting apparatus | |
US4060977A (en) | Timepiece | |
US3611703A (en) | Watch for indicating time of two geographic zones | |
US3844107A (en) | Timepiece | |
GB1402432A (en) | Calender timepiece | |
US3820318A (en) | Day date correcting device | |
US3735581A (en) | Day-date correcting device | |
US3855785A (en) | Calendar correcting device for timepiece | |
US3439493A (en) | Day-date calendar timepiece | |
US3818692A (en) | Drive mechanism for two coaxial calendar members in watch movement | |
US3427798A (en) | Watch calendar setting mechanism | |
US3721085A (en) | Calendar driving mechanism for date and week day indicating timepiece | |
US3559395A (en) | Digital timepiece | |
US3695029A (en) | Calendar day and date watch | |
US4027468A (en) | Day-date mechanism for travel clock |