US3911667A - Instantaneous feed mechanism for a day-date timepiece - Google Patents

Instantaneous feed mechanism for a day-date timepiece Download PDF

Info

Publication number
US3911667A
US3911667A US35227173A US3911667A US 3911667 A US3911667 A US 3911667A US 35227173 A US35227173 A US 35227173A US 3911667 A US3911667 A US 3911667A
Authority
US
United States
Prior art keywords
calendar
day
date
feed
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Katsuhiko Komiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP4565672U priority Critical patent/JPS5241424Y2/ja
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Application granted granted Critical
Publication of US3911667A publication Critical patent/US3911667A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/24Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars
    • G04B19/243Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator
    • G04B19/247Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator disc-shaped
    • G04B19/25Devices for setting the date indicators manually
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/24Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars
    • G04B19/243Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator
    • G04B19/247Clocks or watches with date or week-day indicators, i.e. calendar clocks or watches; Clockwork calendars characterised by the shape of the date indicator disc-shaped
    • G04B19/253Driving or releasing mechanisms
    • G04B19/25333Driving or releasing mechanisms wherein the date indicators are driven or released mechanically by a clockwork movement
    • G04B19/25373Driving or releasing mechanisms wherein the date indicators are driven or released mechanically by a clockwork movement driven or released stepwise by an energy source which is released at determined moments by the clockwork movement
    • G04B19/25386Driving or releasing mechanisms wherein the date indicators are driven or released mechanically by a clockwork movement driven or released stepwise by an energy source which is released at determined moments by the clockwork movement manually corrected at the end of months having less than 31 days

Abstract

A quick acting calendar feed mechanism for a timepiece having a day and date calendar display means is disclosed in which a resilient member is provided for preventing any double calendar feed.

Description

United States Patent 1191 Korniyama Oct. 14, 1975 INSTANTANEOUS FEED NIECHANISM FOR [56] References Cited A DAY-DATE 'HMEPIECE I UNITED STATES PATENTS [75 Inventor: Katsuhiko Komiyama, Tokyo, Japan 3,703,805 1 H1972 Ganter et al 58/58 X 3,726,085 3/l973 Zaugg 58/58 [.73] Assgnee- Cmze Watch Tokyo 3,748,848 7 1973 Laesser et a1 58/58 3 Japan 3,775,965 12/1973 Besson et al 58/58 122 Filed: Apr. 18, 1973 Primary Exa'm'irz erGeorge H. Miller, Jr. 1 Appl' 35227l Attorney, Agent; or FirmRobert T. Tobin, Esq.
[30] Foreign Application Priority Data [57] I ABSTRACT 1 A r. 19, 1972 Ja an 47-45656 A quick acting calendar feed mechanism f a time piece having a day and date calendar display means is [52] US. Cl. 58/58 disclosed in which a resilient member is provided for [51] Int. Cl. G04b 19/24 preventing anydbuble calendar feed [58] Field of Search 58/58, 4, 5
4 Claims, 13 Drawing Figures US. Patent Oct. 14,1975 Sheetlof 10 3,911,667
Patent Oct. 14, 1975 Sheet 2 of 10 US. Patent Oct.14,1975 Sheet3of 10 3,911,667
FIG. 3
U.S. Patent Oct. 14, 1975 Sheet4 of 10 3,911,667
US. Patent Oct.14,1975 SheetSof 10 3,911,667
U.S.Patent Oct. 14, 1975 Sheet 6 of 10 3,911,667
US. Patent 00. 14, 1975 Sheet 7 of 10 3,911,667
US. Patent Oct. 14, 1975 Sheet 9 of 10 3,911,667
US. Patent Oct. 14, 1975 Sheet 10 0f 10 3,911,667
FIG. l3
INSTANTANEOUS FEED MECHANISM FOR A DAY-DATE TIMEPIECE This invention relates in general to a quick acting calendar feed mechanism for a timepiece having a day and date calendar display means.
There are two types of calendar feed mechanisms for feeding the day and date calendar display means. In the first type of calendar feed mechanisms, the next succeeding calendar displays appear gradually at the re- .spective viewing windows over a period of several hours. Because of the limited viewing areas at these windows, it is rather difficult to determine the correct calendar displays during the transient period of 2 3 hours. This therefore represents a substantial drawback in this conventional timepiece.
On the other hand, in the second type of calendar feed mechanism, the next succeeding calendar displays appear instantaneously at the respective windows at 24 oclock or 12 pm. In this type of feed mechanism, a disadvantageous double feed may frequently be encountered. This therefore represents a grave drawback in the conventional timepiece.
In the timepiece having a quick calendar correction mechanism, care must be taken in the timepiece design so that at any desired time, a quick calendar correction can be made in a smooth way without hindering the instantaneous calendar feed mechanism.
The main object of the present invention therefore is to provide an improved instantaneous calendar feed mechanism adapted to prevent double calendar feeding and to allow a quick calendar correction at any time during 24 hours of a complete day.
These and further objects, and features of the invention will become more apparent when the following detailed description of the invention is read by reference to the accompanying drawings, in which:
FIG. I is a perspective view of a first embodiment showing several main working elements of the invention in their disassembled state;
FIG. 2 is a plan view of the first embodiment in its assembled state shown directly before the operation of an instantaneous calendar feed operation.
FIG. 3 is a similar view to FIG. 2, wherein, however, the constituent parts are seen directly after the execution of the instantaneous calendar feed;
FIG. 4 is an enlarged sectional view taken substantially along a section line A--A in FIG. 3.
FIG. 5 is a plan view of several preferred constituent parts shown during the operation of data calendar quick correcting operation in the foregoing embodiment.
FIG. 6 is a plan view of essential working parts of the foregoing embodiment shown during the day calendar quick correcting operation.
FIG. 7 is an exploded perspective view of several working parts of a second embodiment of the invention.
FIG. 8 is a plan view of the essential parts of the second embodiment shown directly after the operation of the instantaneous calendar correcting mechanism.
FIG. 9 is an enlarged plan view of several preferred working parts of the second embodiment, shown during the operation of the data calendar quick correcting operation.
FIGS. 10 12 are plan views of the second embodiment, shown during its several working stages.
FIG. 13 is a sectional view taken substantially along a section line BB shown in FIG. 12.
Referring now to FIGS. 1 6, illustrative of the first embodiment of the invention, numeral 1 represents a stationary pin which is studded on a pillar plate, (not shown,) of a timepiece movement, and carries rotatably thereon a date gear 2, the latter being centrally perforated zit-2b for this purpose and further formed with a curved slot 2a, as shown, positioned in relative proximity to the central bore 2b. As will be easily seen from FIG. 4, the slot 2a loosely receives a pin 3a which integrally depends from the back or lower surface of a control cam 3 ,having a spiral disc configuration, as most clearly'seen from FIG. 1. The spiral-shaped control edge of thecam 3 is represented at 3b, cooperating with a concavely curved follower edge 40 of a calendar feed lever 4 piv'otably mounted at 4a and having a motionrec'eivingprojection 4d which is kept in permanent pressure contact with an elongated urging spring 5 (only partially shown for convenience). The cam 3 is centrally perforated at 3c for rotatable mounting on the pin 1. I
An irregular-shaped intermediate motiontransmitting disc 6 is also centrally bored at 6g for rotatable mounting on the pin 1, and formed with an elongated recess 6a which permanently receives a drive pin 4b fixedly attached to the tip end of a curved elongated arm 4d of the feed lever 4. Thus, movement of the feed lever 4 will be transmitted to the intermediate disc 6.
Numerals 7 and 8 represent a data drive pawl and a day drive pawl, respectively, which are rotatably mounted on the disc 6 by means of respective mounting pins 9 and 10. For this purpose, these pawls 7 and 8 are formed with perforations 7a and 8a for snugly receiving respective mounting pins 9 and 10 which are adapted for snugly passing through respective perforations 6b and 6c of the disc 6. An urging spring assembly 11 is mounted on the disc 6 in a relatively stationary way. For this purpose, the assembly 11 is formed with a perforation l1 a and a curved arm 11d, said perforation being kept in engagement with a pin 6d which projects integrally from the disc 6. The curved arm 11d defines a substantially semi-circular recess lle for snugly embracing a circular flange 611 formed around the perforation 6g on the disc 6. The spring assembly 11 is provided with a pair of spring arms 11b and 110 to cooperate with motion-receiving convex portions and 8d formed on the pawls 7 and 8, respectively.
Pawl 7 has a stationary pin 7b extending upwards and downwards in the body of said pawl, as seen from FIG. 1. The disc 6 is formed with a concaved curved portion 6e designed and arranged to cooperate with the pin 7!; for limiting the rotational range of the pawl 7. Similarly, the disc 6 is also formed with a concaved curved portion 6f which is designed and arranged to cooperate with a thickened tip end portion of the pawl 8 to limit the rotational range of the latter. Pawl 8 is formed with an actuating or feeding portion 8b adapted for cooperation with a day feed intermediate gear 23, as will be more fully described hereinafter.
In FIG. 2, the calendar feed mechanism comprising the previously described and other operating parts is shown in a schematic plan view showing its nonoperating position, in direct advance of operation of the instant calendar feeding operation.
In FIG. 2, numeral 21 schematically represents a cannon wheel which is rotatably mounted in a conventional manner through a cannon pinion, (not shown), on the pillar plate. The cannon wheel 21 has its integral shaft 21a on which a day star wheel 24 is'rotatably mounted. A stepped or composite gear 22 comprises a larger gear element 22a and a small gear element 22b made integral therewith and is rotatably mounted through a stud pin 220 on the pillar plate, (not shown). As seen, the larger gear element 220 meshes with said cannon wheel 21, while the smaller gear 22b meshes with date gear 2, shown only schematically in FIG. 2. Thus, the composite gear 22 serves as an intermediate date feed element.
Numeral 23 represents schematically a day feed gear which is rotatably mounted on a pin 27 studded on a supporting bridge 26 (which is only partially shown), although it is in practice fixedly mounted on the pillar plate.
A conventional day jumper spring 25 having its root portion fixedly attached to the pillar plate (not shown), is so designed and arranged to cooperate with the day star wheel 24.
Numeral 29 represents a conventional date dial ring, only partially shown, having thirty one integral teeth 29a, 29b said dial ring being mounted rotatably on the pillar plate, as is commonly known to those skilled in the art.
Numeral 28 represents a conventional calendar plate, although it is shown only partially in schematic for the purpose of convenience because it is well known. This calendar plate 28 may take the shape of a concentric disc, ring or certain modifications thereof, as is commonly known, and is fixedly attached to the pillar plate, thus constituting a stationary member of the timepiece movement. The calendar plate 28 is formed with at least several outer concentric arcshaped guide portions, (not shown), which are adapted for sliding contact with the feed teeth on the date dial ring 29 for preventing the slipping out of the latter from position. As a most important feature of the invention, an overfeed prevention means, preferably in the form of an elongated resilient arm 28a, is fixedly attached to or made integral with the calendar plate 28, as will be more fully described hereinafter.
The operation of the apparatus so far shown and described is as follows.
Date gear 2 receives motion from cannon wheel 21 through composite gear 22, so as to perform a complete revolution every 24 hours. During this motion, the pin 3a will engage the wall of the slot 2a, thus cam 3 performs the same rotation. The feed lever 4 will thus rise along the peripheral cam rise surface, thereby the spring 5 is gradually flexed.
Numeral 34 represents a day calendar quick correction lever which is rotatably mounted on a pin 35 studded on the plate.
Numeral 36 represents a date calendar correction lever spring which is fixedly mounted on the pillar plate by means of positioning pin 37 and screw 38. The former lever 34 is urged to rotate in clockwise direction under the influence of the spring 36, but this rotational movement is controlled by a stationary stop pin 39. Numeral 40 represents an operating member for a quick correction of the day calendar and is arranged to be manipulated by an operator from outside.
The operating member 40 is so designed and arranged that when it is pushed-in for the execution of day calendar quick correction, the wheel 23 is rotated without hindrance to perform the required quick correction.
With further rotation of the wheel 2 in FIG. 3 and when the feed lever 4 rides over the top cam rise on cam 3, the lever 4 will rotate in clockwise direction about a studded pin 30 on the plate, until the rotation is checked by a stationary stop pin 31 studded thereon. Thus, the disc 6 will rotate instantly in a clockwise direction about pin 1. By this movement, pawl 7 will feed the date dial until a tooth 29b occupies the position shown at 29d, for example. At this point, jumper 32 will act under the influence of its spring 33 upon the date dial until the tooth 29b occupies a further advanced position shown at 290. By virtue of the inertia caused by the date dial 29, the latter is further fed until the tooth 29b engages the tip end 7c of the pawl 7, as shown. By this motion, the pawl 7 is urged to rotate clockwise around its pivot pin 9. But, in fact, the pin 7b on the pawl 7 can not flex the resilient arm 28a on dial 28 and thus, the date dial is definitely positioned, with its tooth 29b occupying position 29c, the position 29b under the action of the jumper 32 fitted with its spring 33. In this way, the disadvantageous over, or double feed operation can be positively prevented.
On the other hand, the day calendar is also fed in a corresponding manner by means of the pawl 8 through the wheel 23. In this way, day star wheel 24 is fed a day calendar division. At this point, the tip end 8b of the pawl 8 will be positioned between resilient part 26a of the bridge 26 and a tooth 23a of the wheel 23.
By virtue of the inertia of day star wheel 24, the wheel 23 will be urged to rotate and the tooth 2311 will try to turn the pawl 8 about its pivot 10 in a clockwise direction. But, this turning movement is not strong enough to flex the resilient part 26a and thus, a disadvantageous over, or double feed is again positively prevented. The resilient part 26a may be, when necessary, designated and arranged to project from a proper part of the bridge 26.
During the rise-up movement of the tip of feed lever 4 along the cam surface on the cam 3 and the pawls 7 and 8 engage the teeth 29b and 23b, respectively, the spring 11 is caused to flex and the operation can be effected without hindrance.
In FIG. 5, when the date calendar is subjected to a correction by means of a quick calendar correction means, not shown, directly upon a date feed operation, date dial tooth 29b will be brought into pressure contact with the pawl tip end 7c. In this case, however, the date drive pawl 7 is forcibly caused to rotate, so as to flex the resilient part 28a which is thus shifted to its position shown by a dotted line. Thus, the tooth 29b will-ride over pawl tip end 70, so as to occupy the position 290 which is positively maintained by the action of a conventional jumper, not shown. It will be thus seen that the quick calendar correction job can be performed at any desired opportunity.
When, in FIG. 3, the calendars have been fed, it is now assumed that directly thereupon, the operating member is pushed in. In this case, the lever 34 is rotated correspondingly around its pivot pin 35, so as to feed the day calendar dial tooth 24a in clockwise direction. In this case, the wheel 23 is urged to rotate counter clockwise. In FIG. 6, the relationship between the wheel 23 and pawl 8 at this stage is shown. By performing a day calendar quick Correction operation, the
. tooth 23a will ride over the tip end 8b of pawl 8 without hindrance. In this way, the quick correction can be "date calendar dial supporting bridge. But, it should be mentioned that its operation is the same as before.
Now, it is assumed that the tooth occupying the position at 2917 is fed instantly by the action of the feed pawl 7 to that shown at 29d. At this stage, the tooth is advanced by the jumper 32 having' spring 33 to the position shown at- 29c. The date calendar dial 29 has'a tendency to advance further,'and indeed, by its own inertia. But, inthis case, the projection 4c on feed lever 4 will be brought into contact with the tooth at 29g, thereby further rotation of the date calendar dial being positively prevented. In this way, the tooth 29g is definitely positioned at 29f under the action of the jumper 32. Thus, a disadvantageous over or double calendar feed can be effectively prevented.
In FIG. 9, the relationship among the several constituent parts is shown, when performing a quick calendar correcting operation directly upon the completion of a date calendar dial feed, wherein, however, the quick correction mechanism has been omitted from the draw- When the quick correction operation is executed, the date calendar dial 29 is rotated clockwise and the tooth 29f, by way of example, is brought into contact with the projection 4:- on lever 4. During this quick correcting job, a positive and substantial force is applied to the feed lever 4 which is thus caused to rotate counter clockwise around its pivot pin 30 until it occupies its new position shown by a dotted line. On the other hand, during the above operation, the calendar dial tooth will also contact with the pawl 7. But, the dial tooth can still advance by flexing the spring 11. In this way, the quick calendar correcting operation can be performed without hindrance and at any desired chance.
In the mechanism shown in FIG. 10, the day and date double feed preventing member constitutes a rigid one. FIG. represents the related parts directly after the execution of the feed. In the similar way described above, the day calendar dial will exert its effort to excessively turn the wheel 23 by virtue of the inertia caused by said dial. In fact, in this case, an excess rotation of the wheel 23 is prevented by the fact that the tooth 23a is checked by the tip end 41a of double feed prevention member'4l through the intermediary of the bent-up end 8b of pawl 8.
When a quick calendar correction operation is initiated under these conditions, the member 41 is rotated counter clockwise around its pivot 42 by contact with pin 41b and kept in slidable engagement with recess 34 formed on the related forked end of quick correction lever 34 to a new position shown by chain-dotted lines. Thus, in the case of the quick calendar correction, pawl 8 is capable of rotation about-its pivot 10, thus allowing the quick correction. I
v As a modification, (not shown) applied to such a timepiece, in which the conventional winding stem is pulled to its calendar correcting position, it is easily conceivable by any person skilled in the art to design and arrange to release the overor double feed prevention means so that it is released from position, when the stem has been pulled outto said operational position. I In FIG. 11, the .overor" double feed prevention means is separately provided.
The prevention pawl shown at 43 is rotatably mounted on a pin '44 studded on the pillar plate, (not shown). There are provided two stationary stop pins 45, 46 for the control of the rotational range of the pawl 43 which is caused to rotate by the disc 6, the latter being in turn rotated by the feed lever 4. By the rotation of the disc 6,'day feed wheel 23 is fed correspondingly. Upon the changing of the day calendar representation by one step, the feed pawl 8 is caused to move into the idle space between two neighboring teeth of day feed wheel 23, by being urged by the lever tip end 4d, to prevent a double feed.
Directly upon execution of this feed, the quick correction may be made by the action of lever 34, so as to rotate the wheels 24 and 23. During this movement, the tooth 2312 will exert a pressure upon the bent-up portion at 43a of the prevention pawl 43 which is thus rotated around the pivot 44 and the feed lever 4 is rotated correspondingly around its pivot 30. Thus, the spring 5 is flexed. The dotted lines represent such position of the related parts that the pawl 43 is properly rotated by contact with tooth 23b and the wheel 23 is about to be moved one step. Therefore, the quick calendar correction can be executed at any time.
In FIGS. 12 and 13, the double feed prevention member is made rigid. v,
Numeral 47 represents a slot formed through the pillar plate, (not shown), and numeral 48 shows the shaft of the day feed wheel. In FIG. 12, the wheel 23 is positioned by a positioning member 49 the root end of which is fixedly mounted on the pillar plate by a set screw 50 and a positioning pin 51. The member 49 has an elongated resilient arm 49 which is so dimensioned that it can not be flexed when subjected to a weak force applied during the regular calendar feed. It is however flexed by a stronger force produced during operation of the quick calendar correction, when the wheel is turned.
Thus, in this case also, an undesirable double calendar feed can not occur. When day star wheel 24 is rotated by the quick calendar correction lever 34, the day feed wheel 23 is urged to rotate about its shaft 47. But, in this case, the tip end 8b of pawl 8 occupies a position between a projection 23a of the bridge 28 and the tooth 23a of the wheel 23, the wheel 23 can not be rotated. Thus, the star wheel 24 causes the elastic arm 49a of the member 49 to flex so that the day feed wheel 23 is released. Therefore, a quick calendar operation can be executed without hindrance.
The embodiments of the invention in which an exclusive property or privilege is claimed are as follows:
I. In a calendar timepiece having a pillar plate, a time keeping gear train, a data calendar, a day calendar, and a day calendar quick correction means, an instantaneous calendar feed mechanism comprising the combination of:
a date gear rotatably mounted on said pillar plate and driven by the time-keeping gear train of said timepiece to make one complete revolution every twenty-four hours;
a generally spiral shaped control cam mounted concentrically to said date gear and rotatable in unison with said date gear;
a calendar feed lever pivotally mounted on said pillar plate for cooperation with said control cam to retate quickly through a predetermined angle every twenty-four hours;
a spring attached to the pillar plate and connected for biasing said calendar feed lever towards its camcooperating position;
an intermediate disc pivotably mounted on the pillar plate and adapted to be driven by said calendar feed lever through a predetermined angle upon the rotation of said calendar feed lever;
a spring-biased date drive pawl pivotably mounted on said intermediate disc and operatively connected to said disc to move quickly upon the angular movement of said disc and thereby advance said date calendarone unit;
a spring-biased day drive pawl pivotably mounted on said intermediate disc and operatively connected to said disc to move quickly upon the angular movement of said disc and thereby advance said day calendar one unit; and
a calendar over feed prevention means comprising respectively a first and a second spring arm mounted on said pillar plate and connected with said first and second spring arms opposing the rotational inertia of both said date and day calendars by pressure contact against said date drive pawl and said day drive pawl, respectively, upon completion 'of the instantaneous feed of both said calendars said second spring arm adapted to permit a resilient escapement movement upon receiving a quick correction reverse movement from said day calendar quick correction means.
2. A calendar timepiece as recited in claim 1, wherein said first and second spring arms cooperate respectively with convex portions of said date drive pawl and said day drive pawl, respectively.
3. A calendar timepiece as recited in claim 1, wherein said calendar over feed prevention means is mounted on said intermediate disc.
4. A calendar timepiece as recited in claim 1, wherein said second spring arm receives a quick correction reverse movement from said day calendar quic'k correction means through a day star wheel, and
an intermediate gear PATENT N DATED INVENTOR(S) October 14, 1975 Katsuhiko Komiyama .It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column Column Column Column [SEAL] line line
line
line
line
50, change 64, change 31, change 41, change 2, change A ttes t:
"data" to "data" to "data" to "designated" "data" to Signed and Scaled this RUTH C. MASON Arresting Officer ninth Day of Marqh1976 C. MARSHALL DANN Commissioner nfParents and Trademarks UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3,911,667 DATED October 14, 1975 INVENTOR(S) Katsuhiko Komiyama It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 1, llne 50, change "data" to date line 64, change "data" to date Column 2, line 31, change "data" to date a Column 4, line 41, change "designated" to designed Column 7, line 2, change "data" to date o Signed and Sealed-this n h Day Of March 1976 [SEAL] Attest:
RUTHC. MA SON c. MARSHALL DANN Artestmg Officer Commissioner oj'Parenls and Trademarks

Claims (4)

1. In a calendar timepiece having a pillar plate, a time keeping gear train, a data calendar, a day calendar, and a day calendar quick correction means, an instantaneous calendar feed mechanism comprising the combination of: a date gear rotatably mounted on said pillar plate and driven by the time-keeping gear train of said timepiece to make one complete revolution every twenty-four hours; a generally spiral shaped control cam mounted concentrically to said date gear and rotatable in unison with said date gear; a calendar feed lever pivotally mounted on said pillar plate for cooperation with said control cam to rotate quickly through a predetermined angle every twenty-four hours; a spring attached to the pillar plate and connected for biasing said calendar feed lever towards its cam-cooperating position; an intermediate disc pivotably mounted on the pillar plate and adapted to be driven by said calendar feed lever through a predetermined angle upon the rotation of said calendar feed lever; a spring-biased date drive pawl pivotably mounted on said intermediate disc and operatively connected to said disc to move quickly upon the angular movement of said disc and thereby advance said date calendar one unit; a spring-biased day drive pawl pivotably mounted on said intermediate disc and operatively connected to said disc to move quickly upon the angular movement of said disc and thereby advance said day calendar one unit; and a calendar over feed prevention means comprising respectively a first and a second spring arm mounted on said pillar plate and connected with said first and second spring arms opposing the rotational inertia of both said date and day calendars by pressure contact against said date drive pawl and said day drive pawl, respectively, upon completion of the instantaneous feed of both said calendars, said second spring arm adapted to permit a resilient escapement movement upon receiving a quick correction reverse movement from said day calendar quick correction means.
2. A calendar timepiece as recited in claim 1, wherein said first and second spring arms cooperate respectively with convex portions of said date drive pawl and said day drive pawl, respectively.
3. A calendar timepiece as recited in claim 1, wherein said calendar over feed prevention means is mounted on said intermediate disc.
4. A calendar timepiece as recited iN claim 1, wherein said second spring arm receives a quick correction reverse movement from said day calendar quick correction means through a day star wheel, and an intermediate gear.
US35227173 1972-04-19 1973-04-18 Instantaneous feed mechanism for a day-date timepiece Expired - Lifetime US3911667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4565672U JPS5241424Y2 (en) 1972-04-19 1972-04-19

Publications (1)

Publication Number Publication Date
US3911667A true US3911667A (en) 1975-10-14

Family

ID=12725409

Family Applications (1)

Application Number Title Priority Date Filing Date
US35227173 Expired - Lifetime US3911667A (en) 1972-04-19 1973-04-18 Instantaneous feed mechanism for a day-date timepiece

Country Status (4)

Country Link
US (1) US3911667A (en)
JP (1) JPS5241424Y2 (en)
DE (1) DE2319907C3 (en)
GB (1) GB1433038A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059953A (en) * 1976-06-18 1977-11-29 General Time Corporation Timepiece calendar indexing apparatus
US4188777A (en) * 1976-10-04 1980-02-19 Ebauches S.A. Electro-mechanical calendar watch
FR2496288A1 (en) * 1980-12-11 1982-06-18 Timex Corp DATE ADJUSTING DEVICE FOR NEEDLE WATCH
US4372687A (en) * 1978-06-23 1983-02-08 Krasovsky Boris P Instantaneous calender device with spring and tappet mounted on rotary shifter
CH674913A (en) * 1988-02-16 1990-08-15 Data mechanism for watch - includes spring-biased pivoting lever actuated by pin on 24 hour wheel to advance date indicator
US5384755A (en) * 1991-12-20 1995-01-24 Eta Sa Fabriques D'ebauches Timepiece of the mechanical or electromechanical type including a drive wheel controlling at least one display system such as a date display
EP0895142A1 (en) * 1997-01-17 1999-02-03 Seiko Epson Corporation Display device and watch with same
US5956294A (en) * 1996-12-26 1999-09-21 Seiko Instruments Inc. Multi-functional timepiece
US6490231B1 (en) * 1997-12-25 2002-12-03 Seiko Instruments Inc. Intermittent feeding mechanism
US6687191B2 (en) * 2000-03-31 2004-02-03 Seiko Instruments Inc. Calendar timepiece
US20060034157A1 (en) * 2002-10-30 2006-02-16 Jean-Pierre Charpier Date indicator mechanism for watch movement
US20090067295A1 (en) * 2006-12-23 2009-03-12 Gil Ramon On-demand display device for a timepiece
WO2013102598A3 (en) * 2011-12-27 2013-09-06 Rolex S.A. Spring for clock movement
WO2014033510A1 (en) 2012-08-28 2014-03-06 Breitling Ag Display mechanism, for timepiece
US8710135B2 (en) 2009-12-21 2014-04-29 Basf Se Composite materials comprising aggregate and an elastomeric composition
US9464003B2 (en) 2009-06-24 2016-10-11 Basf Se Method of producing a composite material using a mixing system
US9856363B2 (en) 2010-12-29 2018-01-02 Basf Se Colored composite pavement structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615823Y2 (en) * 1988-07-19 1994-04-27 川崎重工業株式会社 Small planing boat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703805A (en) * 1970-03-11 1972-11-28 Junghans Gmbh Geb Electric timepiece with date dial
US3726085A (en) * 1971-06-07 1973-04-10 Back Sivalls & Bryson Inc Preventing thermal pollution of ambient water used as a process cooling medium
US3748848A (en) * 1971-10-29 1973-07-31 Ebauches Sa Day-date timepiece
US3775965A (en) * 1971-05-05 1973-12-04 Ebauches Sa Calendar timepiece

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703805A (en) * 1970-03-11 1972-11-28 Junghans Gmbh Geb Electric timepiece with date dial
US3775965A (en) * 1971-05-05 1973-12-04 Ebauches Sa Calendar timepiece
US3726085A (en) * 1971-06-07 1973-04-10 Back Sivalls & Bryson Inc Preventing thermal pollution of ambient water used as a process cooling medium
US3748848A (en) * 1971-10-29 1973-07-31 Ebauches Sa Day-date timepiece

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059953A (en) * 1976-06-18 1977-11-29 General Time Corporation Timepiece calendar indexing apparatus
US4188777A (en) * 1976-10-04 1980-02-19 Ebauches S.A. Electro-mechanical calendar watch
US4372687A (en) * 1978-06-23 1983-02-08 Krasovsky Boris P Instantaneous calender device with spring and tappet mounted on rotary shifter
FR2496288A1 (en) * 1980-12-11 1982-06-18 Timex Corp DATE ADJUSTING DEVICE FOR NEEDLE WATCH
CH674913A (en) * 1988-02-16 1990-08-15 Data mechanism for watch - includes spring-biased pivoting lever actuated by pin on 24 hour wheel to advance date indicator
US5384755A (en) * 1991-12-20 1995-01-24 Eta Sa Fabriques D'ebauches Timepiece of the mechanical or electromechanical type including a drive wheel controlling at least one display system such as a date display
CN1040477C (en) * 1991-12-20 1998-10-28 Eta草图制造公司 Timepiece of the mechanical or electromechanical type including a drive wheel controlling at least one display system such as a date display
US5956294A (en) * 1996-12-26 1999-09-21 Seiko Instruments Inc. Multi-functional timepiece
EP0895142A1 (en) * 1997-01-17 1999-02-03 Seiko Epson Corporation Display device and watch with same
EP0895142A4 (en) * 1997-01-17 2000-04-05 Seiko Epson Corp Display device and watch with same
US6490231B1 (en) * 1997-12-25 2002-12-03 Seiko Instruments Inc. Intermittent feeding mechanism
US6687191B2 (en) * 2000-03-31 2004-02-03 Seiko Instruments Inc. Calendar timepiece
US20060034157A1 (en) * 2002-10-30 2006-02-16 Jean-Pierre Charpier Date indicator mechanism for watch movement
US7382693B2 (en) * 2002-10-30 2008-06-03 Zenith International S.A. Date indicator mechanism for watch movement
CN100416429C (en) * 2002-10-30 2008-09-03 泽尼斯国际有限公司 Date indicator mechanism for watch movement
US20090067295A1 (en) * 2006-12-23 2009-03-12 Gil Ramon On-demand display device for a timepiece
US7782717B2 (en) * 2006-12-23 2010-08-24 Franck Müller Watchland S.A. On-demand display device for a timepiece
US9464003B2 (en) 2009-06-24 2016-10-11 Basf Se Method of producing a composite material using a mixing system
US10040721B2 (en) 2009-06-24 2018-08-07 Basf Se Method of producing a composite material using a mixing system
US9896381B2 (en) 2009-06-24 2018-02-20 Basf Se Method of producing a composite material using a mixing system
US10253460B2 (en) 2009-12-21 2019-04-09 Basf Se Composite pavement structure
US8710135B2 (en) 2009-12-21 2014-04-29 Basf Se Composite materials comprising aggregate and an elastomeric composition
US9850625B2 (en) 2009-12-21 2017-12-26 Basf Se Composite pavement structures
US9505931B2 (en) 2009-12-21 2016-11-29 Basf Se Composite pavement structure
US9631088B2 (en) 2009-12-21 2017-04-25 Basf Se Composite pavement structures
US10480128B2 (en) 2009-12-21 2019-11-19 Basf Se Composite pavement structures
US9856363B2 (en) 2010-12-29 2018-01-02 Basf Se Colored composite pavement structure
US9471037B2 (en) 2011-12-27 2016-10-18 Rolex Sa Spring for clock movement
US9395691B2 (en) 2011-12-27 2016-07-19 Rolex Sa Spring for clock movement
CN104011607A (en) * 2011-12-27 2014-08-27 劳力士有限公司 Spring for clock movement
WO2013102600A3 (en) * 2011-12-27 2013-09-06 Rolex S.A. Spring for clock movement
WO2013102598A3 (en) * 2011-12-27 2013-09-06 Rolex S.A. Spring for clock movement
WO2014033510A1 (en) 2012-08-28 2014-03-06 Breitling Ag Display mechanism, for timepiece

Also Published As

Publication number Publication date
JPS496076U (en) 1974-01-19
DE2319907A1 (en) 1973-10-25
JPS5241424Y2 (en) 1977-09-19
GB1433038A (en) 1976-04-22
DE2319907C3 (en) 1975-12-18
DE2319907B2 (en) 1975-04-03

Similar Documents

Publication Publication Date Title
JP5374571B2 (en) Quick corrector for indicators that display time-related magnitudes for watches
KR100909938B1 (en) Clock with date display with clockwise operation of clock device
KR101247937B1 (en) Timepiece comprising a mechanical chinese calendar
US5742565A (en) Crown setting device for a timepiece
US7029169B2 (en) Chronograph timepiece having zeroing structure
US7522476B2 (en) Calendar mechanism for displaying the date and the day of the week in one timepiece
US8264912B2 (en) Watch with calendar mechanism having two date indicators
EP0230878B1 (en) Clockwork movement
JP5483781B2 (en) Mechanism for displaying and correcting two different time measurable quantities
JP2006501451A (en) Mechanical hour and minute display
US7625116B2 (en) Timepiece including a mechanism for correcting a device displaying a time related quantity
EP0558756B1 (en) Multi-time indicating analog watch
JP2006504080A (en) Analog display for clock
US8398299B2 (en) Display mechanism for a timepiece enabling the current time to be displayed or not displayed
JP5300887B2 (en) On-demand time zone display with clock main hand
US6885614B2 (en) Moon phase display device, particularly for a timepiece
EP1349020A1 (en) Timepiece with calendar
US3675411A (en) World timepiece
US4674889A (en) Watch
US6925032B2 (en) Timepiece with a date mechanism comprising two superposed date rings
US7731416B2 (en) Time-setting member for a time indicator
JP4537655B2 (en) Bi-directional rotating chronograph
US8760975B2 (en) Timepiece furnished with a device for displaying determined time periods
JP6029893B2 (en) Calendar mechanism
US3470687A (en) Date and day correcting device of a calendar timepiece