US3819323A - Minimum scale reheating furnace and means relating thereto - Google Patents

Minimum scale reheating furnace and means relating thereto Download PDF

Info

Publication number
US3819323A
US3819323A US00235610A US23561072A US3819323A US 3819323 A US3819323 A US 3819323A US 00235610 A US00235610 A US 00235610A US 23561072 A US23561072 A US 23561072A US 3819323 A US3819323 A US 3819323A
Authority
US
United States
Prior art keywords
zone
air
housing
furnace
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00235610A
Other languages
English (en)
Inventor
K Hemsath
F Vereecke
N Ferguson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surface Combustion Corp
Grimes Aerospace Co
Original Assignee
Midland Ross Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midland Ross Corp filed Critical Midland Ross Corp
Priority to US00235610A priority Critical patent/US3819323A/en
Priority to CA161,455A priority patent/CA989610A/en
Priority to GB744473A priority patent/GB1386555A/en
Priority to AU52556/73A priority patent/AU5255673A/en
Priority to ES412051A priority patent/ES412051A1/es
Priority to IT21097/73A priority patent/IT981045B/it
Priority to DE2312176A priority patent/DE2312176A1/de
Priority to BR731761A priority patent/BR7301761D0/pt
Priority to FR7309122A priority patent/FR2176746B1/fr
Priority to JP48031352A priority patent/JPS5147404B2/ja
Priority to US00352708A priority patent/US3836320A/en
Application granted granted Critical
Publication of US3819323A publication Critical patent/US3819323A/en
Assigned to FL AEROSPACE CORP. reassignment FL AEROSPACE CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). 9/11/86 AND 1/05/88, OHIO Assignors: MIDLAND - ROSS CORPORATION, CHANGED TO, MIDLAND-ROSS CORPORATION MERGING INTO, MRC MERGER CORP., CHANGED NAME TO
Assigned to SURFACE COMBUSTION, INC. reassignment SURFACE COMBUSTION, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: FL AEROSPACE CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0037Rotary furnaces with vertical axis; Furnaces with rotating floor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Definitions

  • Patent 1191 Hemsath et a1.
  • a unique arrangement is provided wherein a continuous reheating process takes place utilizing a protective atmosphere generated by hot air burners [56] References Cited during the high temperature phase. These burners UNITED STATES PATENTS have a low air to fuel ratio and the gases are caused to 1,843,336 2/1932 Pike etal 432/122 flo oward the location where the work is intro- 2,296,791 9/1942 Keener et al. 432/138 cuted. The combustibles within the gases are com- 4. 1943 Waltz 13 busted through the introduction of air into the portion 2369,52) 2/ 1945 Buckhddtw 432/138 of the furnace nearest the charge end.
  • FIG. 1 is a partially schematic, plan cross-sectional view of a rotary hearth furnace utilizing the principles of the instant invention
  • FIG. 2 is a cross-sectional view taken along the line 22 of FIG. 1;
  • FIG. 3 is a plan view in detail showing means for introducing air into a portion of the furnace shown in FIG. I.
  • Ferrous work is placed into a continuous furnace wherein the work and the atmosphere within the furnace move countercurrent to one another.
  • Protective gas rich in combustibles and at a temperature from 3,000F. to 3,400F. is introduced to one end of the furnace.
  • the high temperature, rich gas is generated by preheated air burners operated at low air to gas ratios.
  • air is introduced to the furnace in a controlled fashion at a location a substantial distance from the location where the rich gas is introduced into the furnace.
  • combustion takes place and the nature of the atmosphere changes from a reducing atmosphere to a slightly oxidizing atmosphere. Since the work is at a relatively low temperature where the air is introduced, scale formation will not form readily.
  • a rotary hearth reheating furnace is shown generally at 10 and comprises an inner wall 12, an outer wall 14, a bottom seal member 16 and a roof 18 which in combination with a work W conveying rotary hearth 20 produce an enclosure.
  • the rotary hearth 20 has means for rotation 21, including a driving motor 23, the rotary hearth moving in a counterclockwise direction as seen in FIG. 1. It will be understood that the description of the invention as it applies to a rotary hearth furnace is for illustration purposes only and that the principles of the invention may be applied to other types of continuous furnaces.
  • the outside wall 14 has a charge opening 22 through which work may be inserted to be placed upon the rotary hearth 20 and a discharge opening 24 through which the work may be removed after treatment.
  • a partition wall 25 extends radially from the inner wall 12 to the outer wall 14 intermediate the openings 22 and 24 to segregate their respective areas.
  • the roof 18 of the furnace 10 has an opening 26 therein which re ceives a flue 28.
  • the flue 28 leads to a stack 32 about which is located an annularjacket 34, which jacket has an opening 36 at the upper end thereof that receives an air inlet pipe 38.
  • An air blower 40 is connected to the inlet pipe 38 thereby directing air through the jacket 34 and in contact with the stack 32.
  • the annular jacket 34 also has an opening 42 at its lower end and the lower opening receives an air outlet pipe 44 through which air from the jacket is able to pass.
  • the furnace 10 is segregated into six zones: 1, 2, 3 and 4, the charge zone and the discharge zone.
  • Zones l and 2 have burners 46 and 47, respectively, received within the roof l8 portion of their respective zones.
  • Zones 3 and 4 also receive burners 48 and 49, respectively, within the roof 18 thereof.
  • burners 48 and 49 in zones 3 and 4 are preheated air
  • burners in zones I and 2 may be of the same type, although it is not necessary.
  • the burners in zones 3 and 4 must provide a protective atmosphere during the time that the work W is at the scale formation temperature; whereas, the burners in zones I and 2 are used primarily for the puspose of bringing the furnace zones 1 and 2 to the operating temperature during start-up, after which the use of the burners is discontinued, unless supplemental heat is required in some operations or situations. For this reason, it is not necessary to use as expensive a burner in zones 1 and 2 as is required in zones 3 and 4.
  • a burner 50 is also located at the discharge zone of the furnace, this burner also being of the flat flame type which is able to produce a protective atmosphere.
  • the burners of each zone are connected to natural gas headers 51, which in turn are supplied with gas by a main gas line 53.
  • Each of the sets of burners 46 through 49 have valve units associated therewith, the gas delivered to the burners in zone 1 being metered by valve 52, in zone 2 by valve 54, in zone 3 by valve 56 and in zone 4 by valve 58.
  • the burners 46 are connected to an air line 60 which provides the combustion air to these burners.
  • the burners 47 in zone 2 are connected to an air line 62, the air lines 60 and 62 being in communication with an air header 64 which receives air from a blower 66.
  • Each of the air lines 60 and 62 is provided with a valve 68 and 70, respectively, in order to control the quantity of air passing therethrough.
  • the burners 48 in zone 3 are provided with air by a line 72 which is confluent with air line 44 leading from the annular jacket 34.
  • Another air line 74 branches off the initial air line 72 to provide air to the burners 49 in zone 4.
  • Still another air line 76 branches from air line 44 to provide air to the burner 50 in the discharge zone.
  • a valve 78 is provided in line 72 to meter the amount of air supplied to the burners 48
  • a valve 80 is provided in line 74 to meter the amount of air supplied to the burners 49
  • another valve 82 is provided in line 76 to meter the amount of air to the burner 50 in the discharge zone.
  • the flue 28 is also provided with a burner 77 which receives gas from a line 79 connected to the gas header 51 of zone 1.
  • a valve 81 is located within the flue gas line 79 to control the amount of gas to the flue burner 77.
  • a pair of tangential air inlet pipes 84 and 86 Received within the outer side wall 14 are a pair of tangential air inlet pipes 84 and 86, one tangential air inlet pipe 84 supplying air to zone 1 and the other tangential air inlet pipe 86 providing air to zone 2.
  • An air line 88 provides air to the tangential air inlet 84 in zone 1 and another air line 90 provides air to the tangential pipe 86.
  • Each of the air lines 88 and 90 are connected to a main header 9] which receives air from the blower 66.
  • An air completion control unit 89 is connected with header 91.
  • the air line 88 is provided with a valve 92 and the air line 90 is provided with a valve 94, each serving the function of controlling the amount of air flowing through their respective air lines.
  • a stack nozzle 93 supplies air to the flue 28, there being an air line 95, with a valve 97, connected to the air header 64 and to a blower 99.
  • thermocouples 96 and 96' are located in the first zone, a pair of thermocouples 98 and 98' are provided in the second zone, a pair of thermocouples 100 and 100' are provided in the third zone, a pair of thermocouples 102 and 102 are provided in the fourth zone and a thermocouple 104 is provided in the discharge zone. Additionally, a thermocouple 106 is provided in the flue 28. Each of these thermocouples is provided to measure the temperature within each of their respective zones, one thermocouple, 96, 98', 100 and 102' in each zone, serving as a high limit thermocouple and one thermocouple, 96, 98, 100 and 102,
  • thermocouples in each zone as a temperature control when there is a pair of thermocouples in a zone.
  • Control units are provided to control the flow of gas and air to the zones thereby individually controlling the temperature.
  • Each of the thermocouples, or pairs of thermocouples has the appropriate circuitry and instruments associated therewith which control the amount of gas and air supplied, these being a control unit 108 to serve the thermocouples 96 and 96' and valves 52, 68 and 92 associated with zone 1, a control unit 110 associated with the thermocouples 98 and 98' and valves 54, and 94 of zone 2, a control unit 112 associated with the thermocouples 100 and 100 and valves 56 and 78 of zone 3, a control unit 114 associated with the thermocouples 102 and 102' and valves 58 and of zone 4 and a control unit 115 associated with the thermocouple 104 and valves 59 and 82 of the discharge zone.
  • a flow computer control unit 116 is operatively connected to control units 108, 110, 112, 114 and
  • zone 4 control unit 114 activates zone 4 gas control valve 58 to allow gas flow to zone 4 at the preset air to gas ratio.
  • Zone 4 has a high limit thermocouple 102 which shuts down furnace gas supply in case of zone overheat.
  • the burners 48 in zone 3 also operate at a low air/ gas ratio to maintain an atmosphere rich in combustibles.
  • the air/gas ratio in zone 3 will normally be maintained from 6/1 to 8/1, again depending upon the temperature of operation and the type of work being processed. Temperatures in this zone are sensed by a thermocouple which controls the zone 3 air control valve 78.
  • the air flow to this zone is also metered by the zone 3 control unit 112.
  • This unit 112 actuates zone 3 gas control valve 56 to allow gas flow to zone 3 at the preset air to gas ratio.
  • Zone 3 has a high limit thermocouple 100' which shuts down furnace gas supply in case of zone overheat.
  • Preheated air is supplied to zones 3 and 4 from the blower 40, the air flowing from recuperator jacket 34 into the preheat air line 44.
  • the air is preferably preheated to a temperature of approximately 1,000F.
  • the burners 48 in zone 3 are provided with preheated air by the air line 72 which is confluent with the air line 44 leading from the annular jacket 34.
  • the air line 74 branches off the initial air line 72 to provide preheated air to the burners 49 in zone 4.
  • the air line 76 branching from air line 44 provides preheated air to the burner 50 in the discharge zone.
  • the discharge burner 50 normally operates at a low air/gas ratio and is controlled via discharge bumer control unit 115.
  • the total air and gas flow supplied to burners 49 of zone 4 and burners 48 of zone 3 is calculated by the flow computer unit 116.
  • This flow computer unit 116 determines the additional amount of air which must be supplied to the furnace system to complete combustion of all fuel.
  • a signal is relayed to the completion air control unit 89 which permits delivery of the required amount of air to complete combustion in zone 1, zone 2, and/or the flue gas stack 28.
  • Completion air is supplied via blower 66 to header 91.
  • Completion air is conducted to zone 2 through completion air line 90 which is a branch of completion header 91.
  • the temperature in zone 2 is sensed by the thermocouple 98 which activates zone 2 completion air valve 94 through zone 2 control unit 110.
  • zone 2 temperature can be maintained by the addition of completion air through inlet pipe 86.
  • the air entering zone 2 mixes with the combustible gases generated in zones 3 and 4 by burners 48 and 49, respectively.
  • the mixing action of completion air and combustible gases resultsin combustion causing a subsequent heat release.
  • the rate of mixing is controlled by the air inlet pipe diameter and correct sizing results in desirable heat distribution within zone 2.
  • zone 2 temperature requirements can be maintained by controlling zone 2 completion air flow to obtain the required amount of heat through burndown of downstream, relative to the rotation of the hearth, combustible atmosphere. Under special conditions of hold or start-up, additional heat in zone 2 may be required.
  • zone 2 temperature control unit 110 actuates zone 2 combustion air valve 70, which allows combustion air delivery to burners 47.
  • the zone 2 combustion gas is controlled by a zone 2 gas valve 54 backloaded to zone 2 combustion air line 62.
  • the pressure created in air line 62 by air flow opens valve 54 in zone 2 combustion gas line 51.
  • the zone combustion air and gas is conducted to zone 2 burners 47 where subsequent ignition occurs at the individual burners.
  • the control unit 110 will actuate combustion air valve 1 70 until zone temperature requirements can be maintained exclusively by zone 2 completion air burndown. At this time, zone 2 burners 47 will be shut off by full closing of zone combustion air valve 70 and gas valve 54.
  • Zone 2 has a high limit thermocouple 98' which will shut down all furnace gas in the case of zone overheat.
  • Zone 1 Temperature in zone 1 is maintained by a control sequence identical to that explained above for zone 2. Completion air is supplied to zone 1 through air line 88 and enters zone 1 chamber through the tangential air inlet pipe 84. Zone temperature is sensed via thermocouple 96 which actuates completion air control valve 92 through zone 1 control unit 108. When required, additional heat is supplied to zone 1 through burners 46. Zone 1 combustion air is controlled by zone 1 combustion air control valve 68 actuated by the control unit 108. Air pressure developed in zone 1 combustion air air supplied to zone 1 is controlled so that the temperature of the work W does not exceed 1,400F.
  • zone 2 additional heat through burners is not required at normal operating conditions. In normal cases, all heat requirements are maintained through burndown of the combustible atmosphere gas resulting from the admission and mixing with zone 1 completion air. Also, under the normal conditions, all the completion air delivered from completion air blower 66 will be distributed evenly to zone 1 and zone 2 completion air nozzles 84 and 86, respectively. In this case, gases leaving zone 1 through flue 28 will be completely burned down. This results by achieving final stoichiometric air to gas ratios in the burndown process of zones 1 and 2.
  • completion air nozzles 84 and 86 In hold conditions, where the heat demand in zones 1 and 2 are reduced, all completion air will not be required through completion air nozzles 84 and 86. In this case, excess completion air is directed along completion air line 64 to the stack air line 95.
  • a stack completion air control valve 97 is operated via completion air control unit 89 to allow excess completion air to enter the stack at stack nozzle 93. At this condition, the burndown of the combustible gases is completed by mixing of completion air and combustible gases within the stack, downstream of stack nozzle 93. Additional air may be added through stack nozzle 93 via the dilution air blower 99. The amount of dilution air needed to maintain safe gas temperatures within the stack 32 is sensed by stack gas thermocouple 106. This activates dilution air control valve 97.
  • the hot air burners 48 and 49 generate a protective atmosphere in zones 3 and 4, respectively, by operating at an air to fuel ratio of from 5/1 to 6/1 in zone '4 and a ratio of 6/ l to 8/1 in zone 3, which air/gas ratios result in a protective gas containing 30 percent to 22 percent and 22 percent to 8 percent combustibles, respectively.
  • the rich gases are drawn into zone 2 by the effect of flue 28, and the air jets from pipes 84 and 86, thereby setting up a flow of gases in a clockwise direction to yield a counterfiow between the work and the gas.
  • the products of combustion are withdrawn from the furnace by the flue 28 and escape through the stack 32 to the atmosphere.
  • the flue products escape through the stack 32, they come into heat exchange relationship with atmosphere air directed through the jacket 34 by action of the blower 40 in cooperation with line 38. Provisions are made for additional cold air to be added in the stack 32 through stack nozzle 93. This air is re- 7 quired, under certain operating conditions, for incineration or cooling of the flue products.
  • the air traveling through the annular jacket 34 After the air traveling through the annular jacket 34 is heated, it escapes through the outlet 42. This preheated air then becomes the source of oxygen for the burners 48, 49, 50 in zones 3, 4 and the discharge zone, respectively.
  • the air is preheated up to a temperature of 1,000F. It is an important feature of this invention that the air is preheated so that the temperature within zones 3, 4 and the discharge zone may be sufficiently high while still maintaining a gas rich in the products of combustion. Without the preheated air, the burners would not have the ability to achieve the desired high temperature in these latter zones.
  • the air jet spreads out at a constant rate and continually entrains the surrounding hot gases.
  • the mixing rate of the air with the rich gases determines the rate of combustion or burndown. Burndown will continue until all air or combustible gas has been used.
  • the angle or direction of the jet is determined by its natural expansion and entrainment length. From FIG. 3 it can be seen that this angle may be adjusted to give impingement on the inside furnace wall 12 at the maximum mixing length. This is done since the downstream flow conditions created by the furnace shape automatically cause distortion of the jet gases into the relatively rich outer atmosphere. This arrangement combined with the natural mixing of the gases as they proceed towards the charge end results in uniform atmosphere distribution by the time the gases reach a downstream nozzle or the furnace flue.
  • the direction of the nozzle is determined by aiming the jets so as to obtain impingement on the inside furnace wall at the same cross section where roof impingement occurs. After traveling approximately two-thirds of the way through each zone 1 and 2, the gas is completely entrained. Correct nozzle location, size and direction are necessary to insure favorable atmosphere conditions.
  • the furnace shown and described is able to reheat ferrous work with a minimum of scale formation while economically utilizing the thermal units associated with the gaseous fuel.
  • 6 inches X 6 inches ferrous billets have been reheated to 2.300F. at a rate of 10.5 tons per hour, its scale loss being less than 0.1 percent by weight. This compares with a scale loss of 2 percent to 3 percent in reheating furnaces that do not use measures to provide a protective atmosphere.
  • steel may be elevated to 2,300F. at a rate of approximately 2.0 MM BTU per ton which compares favorably with 2.5 MM BTU per ton in a normal reheating furnace operating with cold air.
  • a rotary hearth furnace comprising: an annular housing having spaced inside and outside side walls, a roof extending between the tops of said walls to define a furnace enclosure, one of said side walls having adjacent work charging and work discharging openings therein, a horizontally disposed, annular hearth located within said housing, means for rotating said hearth in a direction from said charging opening toward said discharging opening, a partition wall disposed intermediate said openings and radially extending from said inside wall to said outside wall and above said hearth to said roof, a first plurality of burners located within a first zone of said housing and operative to direct gases rich in combustibles into said housing, said gases being caused to flow in a direction counter to the rotation of the hearth, said housing allowing unrestricted flow of said gases from said first zone to the charging end of the housing, said first zone being adjacent said discharging opening, first means for controlling the air to gas ratio of said first plurality of burners, a second plurality of burners located in
  • said means for introducing air into said third and fourth zones comprises at least one pipe received within the outside side wall of each zone, said pipe being so positioned to direct a jet of air into said housing in such a direction as to be generally tangential relative to said inside wall.
  • a rotary hearth furnace comprising: an annular housing having spaced inside and outside side walls, a roof extending between the tops of said walls to define a furnace enclosure, one of said side walls having adjacent work charging and work discharging openings therein, a horizontally disposed, annular hearth located within said housing spaced from said roof, means for rotating said hearth in a direction from said charging opening to said discharging opening, seal means located at the bottom of said furnace to seal said housing from the atmosphere, a partition wall disposed intermediate said openings and joining said walls and roof, a plurality of burners located within a first portion of said housing and operative to direct gases rich in combustibles into said housing, said gases being caused to flow in a direction counter to the rotation of said hearth, said housing allowing unrestricted flow of said gases from said first portion to the charging end of the housing, said first portion being adjacent said discharging opening, means for introducing air into a second portion of said housing which is adjacent said first portion, said air introduced into
  • a rotary hearth furnace comprising: an annular housing having spaced inside and outside side walls, and a roof extending between the tops of said walls to define a furnace enclosure, one of said side walls having adjacent work charging and work discharging openings therein, a horizontally disposed, annular hearth located within said housing, seal means located beneath said furnace sealing the enclosure from the atmosphere, means for rotating said hearth in a direction from said charging opening toward said discharging opening, a radially extending partition wall located above said hearth and extending intermediate the openings from said inside wall to said outside wall,
  • a first plurality of burners located within a first zone of said housing and operative to direct gases rich in combustibles into said housing, said first zone being at the downstream end of said housing relative to the rotation of said hearth, and adjacent to said discharging opening, said housing allowing unrestricted flow of said gases from said first zone to the charging end of the housing, first means for controlling the air to gas ratio of said first plurality of burners, a second plurality of burners located in a second zone of said furnace, said second zone being upstream from and adjacent said first zone, said gases in said first and second zones flowing in a direction counter to the rotation of said hearth,
  • second plurality of burners means for measuring the total amount of gas and air supplied to said first and second plurality of burners, means for introducing air into a third zone of said housing which is adjacent said second zone, means for introducing air into a fourth zone of said housing adjacent said third zone, said means for introducing air into said third and fourth zones directing the air in a direction counter to the rotation of said hearth, means for controlling the air supplied to said third and fourth zones in response to said measuring means, exhaust means located intermediate said fourth zone and said second opening for withdrawing the spent gases from said housing.
  • a rotary hearth furnace comprising: an annular housing having spaced inside and outside side walls and a roof extending between the tops of said walls to define a chamber in the furnace, a horizontally disposed annular hearth located within said housing, a partition wall radially extending from said inside wall to said outside wall and above said hearth to said roof, said partition wall dividing said housing into a downstream end and an upstream end and allowing unrestricted flow of combustion gases from the downstream end to the upstream end of the housing, a charging opening in said outside wall dis.- posed on one side of said partition wall and providing access to said hearth for loading work elements thereon in said upstream end, a discharge opening in said outside wall disposed on the other side of said partition wall through which the work elements are removed from said hearth in said downstream end, said hearth being rotatable in a direction from said upstream end toward said downstream end, a plurality of burners located within a first zone in said downstream end and operative to direct gases rich in combus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Details (AREA)
US00235610A 1972-03-17 1972-03-17 Minimum scale reheating furnace and means relating thereto Expired - Lifetime US3819323A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US00235610A US3819323A (en) 1972-03-17 1972-03-17 Minimum scale reheating furnace and means relating thereto
CA161,455A CA989610A (en) 1972-03-17 1973-01-17 Minimum scale reheating furnace and a method relating thereto
GB744473A GB1386555A (en) 1972-03-17 1973-02-15 Reheating furnace
AU52556/73A AU5255673A (en) 1972-03-17 1973-02-23 AN improved REHEATING FURNACE
ES412051A ES412051A1 (es) 1972-03-17 1973-02-24 Perfeccionamientos en hornos de recalentamiento.
IT21097/73A IT981045B (it) 1972-03-17 1973-03-02 Forno di post riscaldamento perfezionato
DE2312176A DE2312176A1 (de) 1972-03-17 1973-03-12 Gluehofen, insbesondere fuer eisenhaltige werkstuecke
BR731761A BR7301761D0 (pt) 1972-03-17 1973-03-13 Forno de reaquecimento e processo de reaquecimento de uma forno de reaquecimento e processo de reaquecimento de uma peca metalica a trabalhar peca metalica a trabalhar
FR7309122A FR2176746B1 (es) 1972-03-17 1973-03-14
JP48031352A JPS5147404B2 (es) 1972-03-17 1973-03-16
US00352708A US3836320A (en) 1972-03-17 1973-04-19 Minimum scale reheating furnace and means relating thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00235610A US3819323A (en) 1972-03-17 1972-03-17 Minimum scale reheating furnace and means relating thereto

Publications (1)

Publication Number Publication Date
US3819323A true US3819323A (en) 1974-06-25

Family

ID=22886230

Family Applications (1)

Application Number Title Priority Date Filing Date
US00235610A Expired - Lifetime US3819323A (en) 1972-03-17 1972-03-17 Minimum scale reheating furnace and means relating thereto

Country Status (10)

Country Link
US (1) US3819323A (es)
JP (1) JPS5147404B2 (es)
AU (1) AU5255673A (es)
BR (1) BR7301761D0 (es)
CA (1) CA989610A (es)
DE (1) DE2312176A1 (es)
ES (1) ES412051A1 (es)
FR (1) FR2176746B1 (es)
GB (1) GB1386555A (es)
IT (1) IT981045B (es)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2410785A1 (fr) * 1977-11-30 1979-06-29 Bruun & Soerensen Incinerateur
US4763880A (en) * 1987-04-03 1988-08-16 Holcroft/Loftus Inc. Rotary hearth multi-chamber, multi-purpose furnace system
US4924785A (en) * 1988-12-05 1990-05-15 Surface Combustion, Inc. Thermal cleaning system
US5078368A (en) * 1990-05-07 1992-01-07 Indugas, Inc. Gas fired melting furnace
US5145056A (en) * 1976-04-07 1992-09-08 Smith Thomas M Air bag tensioning device
US5207972A (en) * 1990-05-07 1993-05-04 Indugas, Inc. High temperature furnace
US5240404A (en) * 1992-02-03 1993-08-31 Southern California Gas Company Ultra low NOx industrial burner
US5297959A (en) * 1990-05-07 1994-03-29 Indugas, Inc. High temperature furnace
US20100304320A1 (en) * 2007-11-05 2010-12-02 Ansac Pty Ltd. Kiln
CN106488989A (zh) * 2014-07-16 2017-03-08 株式会社神户制钢所 转底炉
CN104792153B (zh) * 2014-01-20 2017-12-01 宜宾恒旭窑炉科技开发有限公司 一种旋转窑的烟气收集系统
CN112135864A (zh) * 2018-05-16 2020-12-25 株式会社日本触媒 吸水性树脂颗粒的制造方法
US12030997B2 (en) 2018-05-16 2024-07-09 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3231225A1 (de) * 1982-08-21 1984-03-01 Verwaltungsgesellschaft Heinrich Neitz GmbH & Co KG, 4930 Detmold Ofen zur waermebehandlung und durchfuehrung von waermeprozessen fuer werkstuecke aus eisenwerkstoffen und nichteisenmetallen

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1843336A (en) * 1930-03-18 1932-02-02 Kalif Corp Nonoxidizing heating furnace
US2296791A (en) * 1941-06-07 1942-09-22 Sam F Keener Rotary furnace
US2334050A (en) * 1942-08-04 1943-11-09 Thomas A Waltz Rotary furnace
US2369529A (en) * 1942-12-22 1945-02-13 Salem Engineering Company Rotary furnace drive
US2417063A (en) * 1943-08-05 1947-03-11 Cold Metal Products Company Rotating annular hearth annealing furnace
US2507274A (en) * 1947-01-23 1950-05-09 Cold Metal Products Company Furnace
US3063878A (en) * 1958-05-07 1962-11-13 Wilson Lee Method of and apparatus for annealing
US3197184A (en) * 1961-11-13 1965-07-27 Stein & Roubaix Apparatus for heating metals to high temperatures
US3386717A (en) * 1965-04-01 1968-06-04 Kaiser Aluminium Chem Corp Process and apparatus for heat treating aluminum ingots
US3399873A (en) * 1965-07-26 1968-09-03 B P Przemyslu Hutniczego Furnace for scaleless direct heating of metal charge destined to heattreatment
US3544090A (en) * 1968-11-08 1970-12-01 Martinus F Peeters Kiln for making cement clinker
US3544093A (en) * 1968-11-05 1970-12-01 Wyandotte Chemicals Corp Calcining limestone

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293549A (en) * 1939-05-20 1942-08-18 Sam F Keener Method and apparatus for heating billets
FR1218675A (fr) * 1958-12-30 1960-05-12 Salem Brosius S A Holding Fours à soles tournantes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1843336A (en) * 1930-03-18 1932-02-02 Kalif Corp Nonoxidizing heating furnace
US2296791A (en) * 1941-06-07 1942-09-22 Sam F Keener Rotary furnace
US2334050A (en) * 1942-08-04 1943-11-09 Thomas A Waltz Rotary furnace
US2369529A (en) * 1942-12-22 1945-02-13 Salem Engineering Company Rotary furnace drive
US2417063A (en) * 1943-08-05 1947-03-11 Cold Metal Products Company Rotating annular hearth annealing furnace
US2507274A (en) * 1947-01-23 1950-05-09 Cold Metal Products Company Furnace
US3063878A (en) * 1958-05-07 1962-11-13 Wilson Lee Method of and apparatus for annealing
US3197184A (en) * 1961-11-13 1965-07-27 Stein & Roubaix Apparatus for heating metals to high temperatures
US3386717A (en) * 1965-04-01 1968-06-04 Kaiser Aluminium Chem Corp Process and apparatus for heat treating aluminum ingots
US3399873A (en) * 1965-07-26 1968-09-03 B P Przemyslu Hutniczego Furnace for scaleless direct heating of metal charge destined to heattreatment
US3544093A (en) * 1968-11-05 1970-12-01 Wyandotte Chemicals Corp Calcining limestone
US3544090A (en) * 1968-11-08 1970-12-01 Martinus F Peeters Kiln for making cement clinker

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145056A (en) * 1976-04-07 1992-09-08 Smith Thomas M Air bag tensioning device
US4257335A (en) * 1977-11-30 1981-03-24 Bruun & Sorensen Ab Incinerator
FR2410785A1 (fr) * 1977-11-30 1979-06-29 Bruun & Soerensen Incinerateur
US4763880A (en) * 1987-04-03 1988-08-16 Holcroft/Loftus Inc. Rotary hearth multi-chamber, multi-purpose furnace system
WO1988007589A1 (en) * 1987-04-03 1988-10-06 Holcroft/Loftus, Incorporated Rotary hearth multi-chamber multi-purpose furnace system
US4924785A (en) * 1988-12-05 1990-05-15 Surface Combustion, Inc. Thermal cleaning system
US5297959A (en) * 1990-05-07 1994-03-29 Indugas, Inc. High temperature furnace
US5078368A (en) * 1990-05-07 1992-01-07 Indugas, Inc. Gas fired melting furnace
US5207972A (en) * 1990-05-07 1993-05-04 Indugas, Inc. High temperature furnace
US5240404A (en) * 1992-02-03 1993-08-31 Southern California Gas Company Ultra low NOx industrial burner
US20100304320A1 (en) * 2007-11-05 2010-12-02 Ansac Pty Ltd. Kiln
US9239189B2 (en) * 2007-11-05 2016-01-19 Ansac Pty Ltd Kiln
CN104792153B (zh) * 2014-01-20 2017-12-01 宜宾恒旭窑炉科技开发有限公司 一种旋转窑的烟气收集系统
CN106488989A (zh) * 2014-07-16 2017-03-08 株式会社神户制钢所 转底炉
CN112135864A (zh) * 2018-05-16 2020-12-25 株式会社日本触媒 吸水性树脂颗粒的制造方法
EP3795616A4 (en) * 2018-05-16 2022-02-16 Nippon Shokubai Co., Ltd. METHOD FOR PRODUCTION OF WATER-ABSORBENT RESIN PARTICLES
US12030997B2 (en) 2018-05-16 2024-07-09 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin particles

Also Published As

Publication number Publication date
AU5255673A (en) 1974-08-29
DE2312176A1 (de) 1973-09-20
FR2176746B1 (es) 1976-09-10
IT981045B (it) 1974-10-10
ES412051A1 (es) 1976-01-01
GB1386555A (en) 1975-03-05
FR2176746A1 (es) 1973-11-02
JPS4911711A (es) 1974-02-01
CA989610A (en) 1976-05-25
BR7301761D0 (pt) 1974-06-27
JPS5147404B2 (es) 1976-12-15

Similar Documents

Publication Publication Date Title
US3819323A (en) Minimum scale reheating furnace and means relating thereto
US3418062A (en) Burner structures
US7766649B2 (en) Multi-ported, internally recuperated burners for direct flame impingement heating applications
US4642047A (en) Method and apparatus for flame generation and utilization of the combustion products for heating, melting and refining
US4622007A (en) Variable heat generating method and apparatus
US3836320A (en) Minimum scale reheating furnace and means relating thereto
US4181491A (en) Method and apparatus for heating a furnace chamber
MXPA96004941A (es) Suministro de calor a un sistema de energia que seenciende externamente
US3209808A (en) Soaking pit burner or the like
JPS60235910A (ja) 低負荷燃焼対策のバ−ナ
EP0261219A1 (en) DEVICE WITH A PAIR OF BURNERS.
US2845260A (en) Neutral heating with controlled preheat
CA1061547A (en) Method and apparatus for heating a furnace chamber
US4022571A (en) Industrial heating
KR20150068918A (ko) 공업용 노 내의 금속 재료 가열 방법
US2329211A (en) Continuous heating furnace and method of operating the same
US3197184A (en) Apparatus for heating metals to high temperatures
US3022057A (en) Direct-heating oven
JPH06228632A (ja) 加熱設備およびそれを使用した加熱方法
US4573909A (en) Billet heating furnace with adjustable pressurized entrance seal
US2514084A (en) Apparatus for supplying heated air to blast furnaces and the like
US3198855A (en) Method of operating soaking pits
US3583691A (en) Furnace with preheated combustion air and ceramic burner blocks
US3373981A (en) Apparatus for operating a burner fired shaft furnace
KR790000825B1 (ko) 고연료효율 및 최소의 스케일 생성을 위한 철물작업용 재가열로

Legal Events

Date Code Title Description
AS Assignment

Owner name: SURFACE COMBUSTION, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FL AEROSPACE CORP.;REEL/FRAME:005091/0582

Effective date: 19880608

Owner name: FL AEROSPACE CORP.

Free format text: CHANGE OF NAME;ASSIGNORS:MIDLAND-ROSS CORPORATION MERGING INTO;MRC MERGER CORP., CHANGED NAME TO;MIDLAND - ROSS CORPORATION, CHANGED TO;REEL/FRAME:005240/0352

Effective date: 19880926