US3817646A - Vibration generator - Google Patents
Vibration generator Download PDFInfo
- Publication number
- US3817646A US3817646A US00355580A US35558073A US3817646A US 3817646 A US3817646 A US 3817646A US 00355580 A US00355580 A US 00355580A US 35558073 A US35558073 A US 35558073A US 3817646 A US3817646 A US 3817646A
- Authority
- US
- United States
- Prior art keywords
- ring gear
- crankshaft
- vibration generator
- housing
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D3/00—Improving or preserving soil or rock, e.g. preserving permafrost soil
- E02D3/02—Improving by compacting
- E02D3/046—Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
- E02D3/074—Vibrating apparatus operating with systems involving rotary unbalanced masses
Definitions
- Vibratory thrust is generated by a rotating crankshaft and controlled orbital movement of a single weight pivoted to the crankpin of the crankshaft.
- the direction of the vector is adjustable M 2 4mmm M ZM u m m m u 4 :M7 m M m0 6 m Mm m &7 "m M L316, mm s m UhF within a substantial angular range about the crankshaft axis.
- the invention provides an improved one-weight vibration generator wherein an orbiting weight member is arranged in such a manner that it will produce a vibratory thrust force in the direction of a vector which extends through the central orbit axis of the weight member.
- the improved vibration generator embodying the invention further includes provisions for adjusting the vector of the thrust force within a substantial angular range about the central orbit axis of the weight memher.
- the invention further provides an improved vibration generator of the above mentioned character which involves relatively few and simple structural components, and whose overall weight may be kept low without sacrifice of strength and reliability. This is especially important with some of the hand held tools.
- a further feature of the improved vibration generator embodying the invention is the provision of a driving mechanism for the orbiting weight member which is readily adjustable so as to progressively change the position the thrust vectors from a forwardly inclined position through a vertical position into a rearwardly inclined position, and vice versa.
- a further feature of the improved vibration generator embodying the invention is the absence of thrust forces other than those acting in the direction of the angularly adjustable thrust vector, and the consequent optimization of the machine performance and overall efficiency.
- a further feature of the vibration generator embodying the invention is a reduction of operating noise and a decreased transmission of vibratory forces to the engine due to the absence of side forces.
- a further feature of the improved vibrating mechanism embodying the invention is the provision of a housing which completely seals the orbiting weight member and its associated drive mechanism against the ingress of dust and other environmental foreign matter.
- the vibration generator embodying the invention When used on some apparatus such as rammers, the vibration generator embodying the invention may be directly connected to the exterior working part, and no seals will be needed for the connections.
- FIG. 1 is a perspective view of a compactor having a vibration generator incorporating the invention
- FIG. 2 is a perspective detail view of an adjusting mechanism for the vibration generator shown in FIG.
- FIG. 3 is an enlarged perspective view, partly in section, of the vibration generator shown in FIG. 1;
- FIG. 4 is a vertical longitudinal section of the vibration generator shown in FIGS. 1 and 3, parts shown in FIG. 4 being shown in a rotatively displaced position with reference to FIG. 3;
- FIGS. 5-9 are diagrammatic views illustrating various operating phases of the vibration generator shown in FIGS. 1, 3 and 4, the views of FIGS. 5-9 being taken in the direction of the arrows E-E in FIG. 4.
- the compactor shown in FIG. 1 comprises a rigid, unitary tamping body 1; a vibration generator 2 mounted on top of and rigidly secured to the tamping body 1; an internal combustion engine 3 and accessories supported by the body 1; a belt drive 4 transmitting driving power from the engine 3 to the vibration generator 2; a U-shaped handle bar 6 for manipulation by an operator walking behind the compactor; and an adjusting lever 7 on the handle bar for controlling the direction in which vibratory thrust is exerted by the vibration generator 2 upon the tamping body 1, as will be explained more fully hereinbelow.
- a generally cup shaped housing section 8 is closed by an end cover 9, and the journal 10 of a crankshaft 11 is rotatably supported in a bearing opening of the cover 9 by means of axially spaced antifriction bearings 15 and 13.
- the crankshaft 11 has a crankpin 12 which extends partway into the housing space between the closed end of the cut section 8 and the end cover 9.
- An orbiting weight 13 within the cup section 8 comprises a sector shaped body portion 14 (FIG. 3), a central radial prong l6, and two radial prongs l7 and 18 at the axially opposite sides of the mounting prong l6 and spaced therefrom by recesses 19 and 21, respectively.
- the radial prongs l6 and 17 are axially apertured to accommodate the crankpin 12 of the crankshaft 11, and a needle bearing 22 is seated on the end of the crankpin 12 and fitted into the axial aperture of the mounting prong 16 so as to pivotally connect the weight member 13 with the crankpin 12.
- a pinion 23 is rigidly secured to the radial prong 18 in axial alignment with the crankpin 12 of the crankshaft 11.
- a stub shaft 24 of the prong 18 extends into a central axial bore of the pinion 23, and a key 26 and a cap screw 27 secure the pinion 23 in axially and rotatively fixed position to the weight member 13.
- the pinion 23 comprises a smooth cylindrical collar 28 adjacent to prong 18 of the weight 13, and a circumferential series of external gear teeth 29 at its axially outer end. The purpose of the collar 28 is to provide for the transmission of centrifugal force from the weight member 13 to an annular guide track 30 within the housing section 8.
- a similar collar 31 is secured to the radial prong 17 of the weight member 13 for cooperative engagement with an annular guidetrack 32 within the housing cover 9.
- the cylindrical inner surfaces of the guidetrack 30 and 32, and the cylindrical outer surfaces of the collars 28 and 31 are diametrically so proportioned that the collars will roll along the guide tracks as the crankshaft 11 is rotated in its bearings and 13.
- the effective diameters of the guide tracks 30 and 32 are made twice as large as the effective diameters of the collars 28 and 31, respectively.
- the gear teeth 29 of the pinion 23 mesh with gear teeth 33 of an internal ring gear 34 which is rotatably seated in a cylindrical recess 36 of the housing section 8.
- a cylindrical outer surface and a radial end face of the ring gear 34 bear against cylindrical and radial inner surfaces, respectively, of the recess 36, and a stub shaft 37 integrally formed with the ring gear 34 extends through a central axial aperture 38 of the housing section 8.
- a seal 39 surrounding the stub shaft 37 is retained in the aperture 38 by a snap ring 41, and a similar seal 42 surrounding the crankshaft journal 10 is retained in an axial aperture 43 of the end cover 9 by a snap ring 44.
- the ring gear 34 is axially aligned with the crankshaft journal 10. Also, the ring gear 34 is prevented from rotating about its axis by suitable means not shown in FIGS. 3 and 4, but illustrated by way of example in FIGS. 1 and 2.
- the ring gear adjusting means illustrated in FIGS. 1 and 2 comprise a double armed rocker 46 (FIG. 2) which is keyed to the stub shaft 37 of the ring gear 34; and cables 47, 48 which are attached to the opposite ends of the rocker.
- the cables 47, 48 connected with the hand lever 7 in FIG. 1 in such a manner that forward adjustment of the lever 7 from an upright position in the direction of arrow A in FIG. 1 swings the rocker 46 in FIG. 2 from a vertical position in the direction of arrow A, and so that rearward adjustment of the lever 7 in FIG. 1 from its upright position in the direction of arrow B swings the rocker 46 in FIG. 2 from its vertical position in the direction of arrow B.
- the vibration generator 2 when driven by the engine 3 functions to produce a straight up and down vibratory thrust when the lever 7 and rocker 46 are positioned vertically. In that case the apparatus shown in FIG. 1 will vibrate up and down but will be subjected to no forward or rearward propelling force.
- the vibration generator 2 produces a downwardly and rearwardly directed vibratory force which in addition to its compacting ef fect tends to move the apparatus forwardly.
- the vibration generator 2 produces a downwardly and forwardly directed vibratory force which in addition to its compacting effect tends to move the apparatus rearwardly.
- FIGS. 5, 6 and 7 show the ring gear 34 in the rotatively adjusted position in which it is held when the lever 7 (FIG. 1) and the rocker 46 (FIG. 2) are positioned vertically.
- the pitch diameter PD of the ring gear 34 is twice as large as the pitch diameter pd of the pinion 23; and the radial spacing of the center of gravity CG (FIG. 4) of the weight member 13 from the axis of the crankpin 12 of the crankshaft 11 is equal to the pitch radius of the pinion 23.
- the gear ratio of the pinion 23 to the ring gear 34 is one to two.
- FIG. 8 shows the ring gear 34 rotated clockwise through an angle a from the position in which it is shown in FIG. 5.
- Such clockwise movement of the ring gear 34 through the angle a due to the meshing engagement of the ring gear teeth with the pinion teeth will put the center of gravity CG of the weight 13 on a line which extends through the crankshaft axis X at an angle of 90 0: relative to the horizontal.
- the center of gravity CG of the weight 13 moves back and forth on a straight line through the crankshaft axis X as explained hereinbefore with reference to FIGS. 5-7.
- that line is inclined downwardly and rearwardly relative to the horizontal, and the thrust vector V2 will, in addition to its compacting effect, subject the apparatus shown in FIG. 1 to a propelling force in a forward direction.
- FIG. 9 shows the ring gear 34 rotated anticlockwise through an angle [3 by adjustment of the lever 7 in FIG. 1 in the direction of arrow B.
- the vibratory thrust acts on a line which extends at an angle 90 ,8 relative to the horizontal.
- the thrust vector V2 is directed downwardly and forwardly and, in addition to its compacting effect, subjects the apparatus shown in FIG. 1 to a propelling force in a rearward direction.
- the direction of vibratory thrust should preferably be variable with a fairly broad angular range such as ll50 so that the apparatus may be operated most efficiently under all working conditions and be manipulated conveniently in close quarters.
- the herein disclosed vibration generator readily lends itself to angular adjustment of the line of vibratory thrust within the desired broad range simply by rotary adjustment of the ring 34.
- a vibratory apparatus comprising a tamping body, a vibration generator housing rigidly secured to said tamping body; a crankshaft having a journal and a crank pin within said housing, bearing means in said housing supporting said crankshaft journal for rotation on a horizontal axis; a weight member eccentrically connected with said crank pin in rotatable relation thereto; a pinion in axial alignment with said crank pin non-rotatably secured to said weight member; an internal ring gear in mesh with said pinion rotatably mounted within said housing coaxially with said crankshaft journal; and adjusting means for said ring gear operable to selectively secure said ring gear in different rotatively adjusted positions.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Structural Engineering (AREA)
- Agronomy & Crop Science (AREA)
- Environmental & Geological Engineering (AREA)
- Soil Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Road Paving Machines (AREA)
Abstract
Vibratory thrust is generated by a rotating crankshaft and controlled orbital movement of a single weight pivoted to the crankpin of the crankshaft. As the crankshaft rotates the center of gravity of the weight moves back and forth on a vector through the crankshaft axis. The direction of the vector is adjustable within a substantial angular range about the crankshaft axis.
Description
[ June 18, 1974 United States Patent [191 ()pderbeck 404/102 X Waschulewski................. 404/117 X k S w h C s [5 VIBRATION GENERATOR 3,274,907 9/1966 Haage 75 Inventor: Rudolph G. Opderbeck, New Berlin, 7/968 Wis. 3,616,703 Assignee: Wacker Corporation, Milwaukee,
Wis.
Primary Examiner-Nile C. Byers, Jr. Attorney, Agent, or Firm-James E. Nilles [22] Filed: Apr. 30, 1973 ABSTRACT 211 Appl. No.: 355,580
Vibratory thrust is generated by a rotating crankshaft and controlled orbital movement of a single weight pivoted to the crankpin of the crankshaft. As the crankshaft rotates the center of gravity of the weight moves back and forth on a vector through the crankshaft axis. The direction of the vector is adjustable M 2 4mmm M ZM u m m m u 4 :M7 m M m0 6 m Mm m &7 "m M L316, mm s m UhF within a substantial angular range about the crankshaft axis.
References Cited UNITED STATES PATENTS 1,894,408 MacKenzie 404/117 2 Claims, 9 Drawing Figures PATENTEBJun 18 1974 saw 1 or 4 PATENTEDJIINIBIHH 3.817546 SHEEI 2 (IF 4 1 VIBRATION GENERATOR BACKGROUND OF THE INVENTION The invention has to do with vibratory equipment such as ground tampers, rammers, concrete vibrators, screens and other apparatus of that general category. More specifically, the invention is concerned with a mechanism for generating the working vibrations of the equipment.
In vibratory apparatus of various kinds it has heretofore been common practice to use excentric weights on rotating shafts to produce the desired vibrations. In some of such previously known apparatus two or more rotating excentric weights were arranged to rotate in a predetermined phase relation to each other in order to develop a dominant reciprocating thrust force in a predetermined direction. Also, attempts have been made to obtain the same result with only one rotating excentric weight, but such one-weight vibration generators as heretofore constructed have not been entirely satisfactory in several respects, particularly in the matter of minimizing undesirable thrust components and utilizing driving power at maximum efficiency.
SUMMARY OF THE INVENTION The invention provides an improved one-weight vibration generator wherein an orbiting weight member is arranged in such a manner that it will produce a vibratory thrust force in the direction of a vector which extends through the central orbit axis of the weight member.
The improved vibration generator embodying the invention further includes provisions for adjusting the vector of the thrust force within a substantial angular range about the central orbit axis of the weight memher.
The invention further provides an improved vibration generator of the above mentioned character which involves relatively few and simple structural components, and whose overall weight may be kept low without sacrifice of strength and reliability. This is especially important with some of the hand held tools.
A further feature of the improved vibration generator embodying the invention is the provision of a driving mechanism for the orbiting weight member which is readily adjustable so as to progressively change the position the thrust vectors from a forwardly inclined position through a vertical position into a rearwardly inclined position, and vice versa.
A further feature of the improved vibration generator embodying the invention is the absence of thrust forces other than those acting in the direction of the angularly adjustable thrust vector, and the consequent optimization of the machine performance and overall efficiency.
A further feature of the vibration generator embodying the invention is a reduction of operating noise and a decreased transmission of vibratory forces to the engine due to the absence of side forces.
A further feature of the improved vibrating mechanism embodying the invention is the provision of a housing which completely seals the orbiting weight member and its associated drive mechanism against the ingress of dust and other environmental foreign matter.
When used on some apparatus such as rammers, the vibration generator embodying the invention may be directly connected to the exterior working part, and no seals will be needed for the connections.
The foregoing features and advantages of the invention will become more fully apparent from the following description of a preferred embodiment with reference to the accompanying drawings.
DRAWINGS FIG. 1 is a perspective view of a compactor having a vibration generator incorporating the invention;
FIG. 2 is a perspective detail view of an adjusting mechanism for the vibration generator shown in FIG.
FIG. 3 is an enlarged perspective view, partly in section, of the vibration generator shown in FIG. 1;
FIG. 4 is a vertical longitudinal section of the vibration generator shown in FIGS. 1 and 3, parts shown in FIG. 4 being shown in a rotatively displaced position with reference to FIG. 3;
FIGS. 5-9 are diagrammatic views illustrating various operating phases of the vibration generator shown in FIGS. 1, 3 and 4, the views of FIGS. 5-9 being taken in the direction of the arrows E-E in FIG. 4.
DETAILED DESCRIPTION The compactor shown in FIG. 1 comprises a rigid, unitary tamping body 1; a vibration generator 2 mounted on top of and rigidly secured to the tamping body 1; an internal combustion engine 3 and accessories supported by the body 1; a belt drive 4 transmitting driving power from the engine 3 to the vibration generator 2; a U-shaped handle bar 6 for manipulation by an operator walking behind the compactor; and an adjusting lever 7 on the handle bar for controlling the direction in which vibratory thrust is exerted by the vibration generator 2 upon the tamping body 1, as will be explained more fully hereinbelow.
Referring to FIGS. 3 and 4, a generally cup shaped housing section 8 is closed by an end cover 9, and the journal 10 of a crankshaft 11 is rotatably supported in a bearing opening of the cover 9 by means of axially spaced antifriction bearings 15 and 13. The crankshaft 11 has a crankpin 12 which extends partway into the housing space between the closed end of the cut section 8 and the end cover 9. An orbiting weight 13 within the cup section 8 comprises a sector shaped body portion 14 (FIG. 3), a central radial prong l6, and two radial prongs l7 and 18 at the axially opposite sides of the mounting prong l6 and spaced therefrom by recesses 19 and 21, respectively. The radial prongs l6 and 17 are axially apertured to accommodate the crankpin 12 of the crankshaft 11, and a needle bearing 22 is seated on the end of the crankpin 12 and fitted into the axial aperture of the mounting prong 16 so as to pivotally connect the weight member 13 with the crankpin 12.
At the side of the weight member 13 next to the bottom of the cup shaped housing member 8 a pinion 23 is rigidly secured to the radial prong 18 in axial alignment with the crankpin 12 of the crankshaft 11. A stub shaft 24 of the prong 18 extends into a central axial bore of the pinion 23, and a key 26 and a cap screw 27 secure the pinion 23 in axially and rotatively fixed position to the weight member 13. The pinion 23 comprises a smooth cylindrical collar 28 adjacent to prong 18 of the weight 13, and a circumferential series of external gear teeth 29 at its axially outer end. The purpose of the collar 28 is to provide for the transmission of centrifugal force from the weight member 13 to an annular guide track 30 within the housing section 8. A similar collar 31 is secured to the radial prong 17 of the weight member 13 for cooperative engagement with an annular guidetrack 32 within the housing cover 9. The cylindrical inner surfaces of the guidetrack 30 and 32, and the cylindrical outer surfaces of the collars 28 and 31 are diametrically so proportioned that the collars will roll along the guide tracks as the crankshaft 11 is rotated in its bearings and 13. To that end the effective diameters of the guide tracks 30 and 32 are made twice as large as the effective diameters of the collars 28 and 31, respectively.
The gear teeth 29 of the pinion 23 mesh with gear teeth 33 of an internal ring gear 34 which is rotatably seated in a cylindrical recess 36 of the housing section 8. A cylindrical outer surface and a radial end face of the ring gear 34 bear against cylindrical and radial inner surfaces, respectively, of the recess 36, and a stub shaft 37 integrally formed with the ring gear 34 extends through a central axial aperture 38 of the housing section 8. A seal 39 surrounding the stub shaft 37 is retained in the aperture 38 by a snap ring 41, and a similar seal 42 surrounding the crankshaft journal 10 is retained in an axial aperture 43 of the end cover 9 by a snap ring 44.
In the assembled condition of the mechanism as shown in FIG. 4, the ring gear 34 is axially aligned with the crankshaft journal 10. Also, the ring gear 34 is prevented from rotating about its axis by suitable means not shown in FIGS. 3 and 4, but illustrated by way of example in FIGS. 1 and 2.
The ring gear adjusting means illustrated in FIGS. 1 and 2 comprise a double armed rocker 46 (FIG. 2) which is keyed to the stub shaft 37 of the ring gear 34; and cables 47, 48 which are attached to the opposite ends of the rocker. The cables 47, 48 connected with the hand lever 7 in FIG. 1 in such a manner that forward adjustment of the lever 7 from an upright position in the direction of arrow A in FIG. 1 swings the rocker 46 in FIG. 2 from a vertical position in the direction of arrow A, and so that rearward adjustment of the lever 7 in FIG. 1 from its upright position in the direction of arrow B swings the rocker 46 in FIG. 2 from its vertical position in the direction of arrow B.
As will presently be explained with reference to FIGS. 5 to 9, the vibration generator 2 when driven by the engine 3 functions to produce a straight up and down vibratory thrust when the lever 7 and rocker 46 are positioned vertically. In that case the apparatus shown in FIG. 1 will vibrate up and down but will be subjected to no forward or rearward propelling force.
Alternately, when the lever 7 and rocker 46 are moved to forwardly adjusted positions in the directions of arrows A and A, respectively, the vibration generator 2 produces a downwardly and rearwardly directed vibratory force which in addition to its compacting ef fect tends to move the apparatus forwardly.
On the other hand, when the lever 7 and rocker 46 are moved to rearwardly adjusted positions in the direction of arrows B and B, respectively, the vibration generator 2 produces a downwardly and forwardly directed vibratory force which in addition to its compacting effect tends to move the apparatus rearwardly.
FIGS. 5, 6 and 7 show the ring gear 34 in the rotatively adjusted position in which it is held when the lever 7 (FIG. 1) and the rocker 46 (FIG. 2) are positioned vertically. The pitch diameter PD of the ring gear 34 is twice as large as the pitch diameter pd of the pinion 23; and the radial spacing of the center of gravity CG (FIG. 4) of the weight member 13 from the axis of the crankpin 12 of the crankshaft 11 is equal to the pitch radius of the pinion 23. The gear ratio of the pinion 23 to the ring gear 34 is one to two.
In FIG. 5 the point of mesh of the pinion 23 with the ring gear 34, and also the center of gravity CG of the weight 13 are located on a vertical line through the crankshaft axis X. Centrifugal force of the weight 13 in this condition of the mechanism is a maximum and effective in the direction of the vertical vector V1.
In FIG. 6 the crankpin 12 has moved anticlockwise degrees from its FIG. 5 position, and the center of gravity CG of the weight 13 has moved straight down upon the crankshaft axis X. In this condition of the mechanism the weight 13 exerts no vibratory centrifugal force in any direction.
In FIG. 7 the crankpin 12 has moved anticlockwise degrees from its FIG. 5 position, and the center of gravity CG of the weight 13 has moved straight down from the crankshaft axis X to the point of mesh with the pinion 23 with the ring gear 34. In this condition of the mechanism centrifugal force of the weight 13 is again a maximum but now effective in the direction of the vertical vector V2 which is reversed with respect to the vector V1 in FIG. 5.
Continued anticlockwise rotation of the crankpin 12 from the FIG. 7 position through the remaining 180 of a full revolution, returns the center of gravity CG of the weight 13 straight upward through the crankshaft axis X into the FIG. 5 position, and during such return movement of the center of gravity the centrifugal force of the weight 13 progressively decreases from maximum (FIG. 7) to zero (FIG. 6) and then increases from zero (FIG. 6) to maximum (FIG. 5). It is thus evident that when the lever 7 (FIG. 1) and the rocker 46 are positioned vertically rotation of the crankshaft 11 at high speed either clockwise or anticlockwise generated a strong vibratory straight up and down thrust upon the tamper body 1 without undesirable side components which would impair the operating efficiency of the apparatus and unnecessarily increase its power consump tion. The vibratory thrust forces of the orbiting weight 13 are transmitted to the vibrator housing 8, 9 by the collars 28 and 31 rolling on the guide tracks 30, 32, thus insuring smooth and quiet operation of the vibration generator. Lubricant within the housing 8, 9 will reach not only the guide tracks and gear teeth, but will also be supplied to the needle bearing 16 through the recesses 19 and 21 between the prongs 16, 17 and 18 of the weight 13.
FIG. 8 shows the ring gear 34 rotated clockwise through an angle a from the position in which it is shown in FIG. 5. Such clockwise movement of the ring gear 34 through the angle a due to the meshing engagement of the ring gear teeth with the pinion teeth will put the center of gravity CG of the weight 13 on a line which extends through the crankshaft axis X at an angle of 90 0: relative to the horizontal. In operation, when the crankshaft 11 is rotated at high speed in either' direction, the center of gravity CG of the weight 13 moves back and forth on a straight line through the crankshaft axis X as explained hereinbefore with reference to FIGS. 5-7. However, in the case of FIG. 8, that line is inclined downwardly and rearwardly relative to the horizontal, and the thrust vector V2 will, in addition to its compacting effect, subject the apparatus shown in FIG. 1 to a propelling force in a forward direction.
The foregoing explanations with reference to FIG. 8 analogously apply to FIG. 9 which shows the ring gear 34 rotated anticlockwise through an angle [3 by adjustment of the lever 7 in FIG. 1 in the direction of arrow B. In FIG. 9, the vibratory thrust acts on a line which extends at an angle 90 ,8 relative to the horizontal. The thrust vector V2 is directed downwardly and forwardly and, in addition to its compacting effect, subjects the apparatus shown in FIG. 1 to a propelling force in a rearward direction.
In a vibratory apparatus such as the compactor shown in FIG. 1, the direction of vibratory thrust should preferably be variable with a fairly broad angular range such as ll50 so that the apparatus may be operated most efficiently under all working conditions and be manipulated conveniently in close quarters. The herein disclosed vibration generator readily lends itself to angular adjustment of the line of vibratory thrust within the desired broad range simply by rotary adjustment of the ring 34.
I claim:
1. A vibratory apparatus comprising a tamping body, a vibration generator housing rigidly secured to said tamping body; a crankshaft having a journal and a crank pin within said housing, bearing means in said housing supporting said crankshaft journal for rotation on a horizontal axis; a weight member eccentrically connected with said crank pin in rotatable relation thereto; a pinion in axial alignment with said crank pin non-rotatably secured to said weight member; an internal ring gear in mesh with said pinion rotatably mounted within said housing coaxially with said crankshaft journal; and adjusting means for said ring gear operable to selectively secure said ring gear in different rotatively adjusted positions.
2. A vibratory apparatus as set forth in claim 1 wherein said adjustment means comprise a back and forth movable hand lever, and connecting means be tween said hand lever and said ring gear operable to rock said ring gear back and forth about its axis in response to back and forth movements, respectively, of
said hand lever.
Claims (2)
1. A vibratory apparatus comprising a tamping body, a vibration generator housing rigidly secured to said tamping body; a crankshaft having a journal and a crank pin within said housing, bearing means in said housing supporting said crankshaft journal for rotation on a horizontal axis; a weight member eccentrically connected with said crank pin in rotatable relation thereto; a pinion in axial alignment with said crank pin non-rotatably secured to said weight member; an internal ring gear in mesh with said pinion rotatably mounted within said housing coaxially with said crankshaft journal; and adjusting means for said ring gear operable to selectively secure said ring gear in different rotatively adjusted positions.
2. A vibratory apparatus as set forth in claim 1 wherein said adjustment means comprise a back and forth movable hand lever, and connecting means between said hand lever and said ring gear operable to rock said ring gear back and forth about its axis in response to back and forth movements, respectively, of said hand lever.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00355580A US3817646A (en) | 1973-04-30 | 1973-04-30 | Vibration generator |
US457590A US3913409A (en) | 1973-04-30 | 1974-04-03 | Vibration generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00355580A US3817646A (en) | 1973-04-30 | 1973-04-30 | Vibration generator |
Publications (1)
Publication Number | Publication Date |
---|---|
US3817646A true US3817646A (en) | 1974-06-18 |
Family
ID=23397969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00355580A Expired - Lifetime US3817646A (en) | 1973-04-30 | 1973-04-30 | Vibration generator |
Country Status (1)
Country | Link |
---|---|
US (1) | US3817646A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4014620A (en) * | 1974-08-28 | 1977-03-29 | Koehring Gmbh - Bomag Division | Vibratory tamper |
WO1981002593A1 (en) * | 1980-03-06 | 1981-09-17 | Dynapac Maskin Ab | Control for plate vibrators |
US4643611A (en) * | 1985-04-08 | 1987-02-17 | Wacker Corporation | Vibratory compactor having improved cast base |
US5934825A (en) * | 1997-01-28 | 1999-08-10 | Wacker Corporation | Vibratory plate machine |
US6139218A (en) * | 1998-07-31 | 2000-10-31 | Cochran; Gary | Vibrating mechanism |
US11420232B2 (en) * | 2017-02-03 | 2022-08-23 | Bauer Maschinen Gmbh | Vibration generator and method for generating vibrations |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1894408A (en) * | 1930-03-24 | 1933-01-17 | Leon R Mackenzie | Impacting machine |
US3274907A (en) * | 1962-08-16 | 1966-09-27 | Heusser Delmag A G | Vibrating and tamping devices |
US3393571A (en) * | 1967-01-09 | 1968-07-23 | Carl G. Matson | Eccentric roller vibrator |
US3505885A (en) * | 1968-03-12 | 1970-04-14 | Losenhausen Maschinenbau Ag | Vibration generators |
US3616703A (en) * | 1969-06-13 | 1971-11-02 | Losenhausen Maschinenbau Ag | Vibration generator |
-
1973
- 1973-04-30 US US00355580A patent/US3817646A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1894408A (en) * | 1930-03-24 | 1933-01-17 | Leon R Mackenzie | Impacting machine |
US3274907A (en) * | 1962-08-16 | 1966-09-27 | Heusser Delmag A G | Vibrating and tamping devices |
US3393571A (en) * | 1967-01-09 | 1968-07-23 | Carl G. Matson | Eccentric roller vibrator |
US3505885A (en) * | 1968-03-12 | 1970-04-14 | Losenhausen Maschinenbau Ag | Vibration generators |
US3616703A (en) * | 1969-06-13 | 1971-11-02 | Losenhausen Maschinenbau Ag | Vibration generator |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4014620A (en) * | 1974-08-28 | 1977-03-29 | Koehring Gmbh - Bomag Division | Vibratory tamper |
WO1981002593A1 (en) * | 1980-03-06 | 1981-09-17 | Dynapac Maskin Ab | Control for plate vibrators |
DE3137614C2 (en) * | 1980-03-06 | 1986-02-06 | Dynapac Maskin AB, Solna | Control device for plate vibrators |
US4643611A (en) * | 1985-04-08 | 1987-02-17 | Wacker Corporation | Vibratory compactor having improved cast base |
US5934825A (en) * | 1997-01-28 | 1999-08-10 | Wacker Corporation | Vibratory plate machine |
US6139218A (en) * | 1998-07-31 | 2000-10-31 | Cochran; Gary | Vibrating mechanism |
US11420232B2 (en) * | 2017-02-03 | 2022-08-23 | Bauer Maschinen Gmbh | Vibration generator and method for generating vibrations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3913409A (en) | Vibration generator | |
US4568218A (en) | Adjustably controllable centrifugal vibratory exciter | |
JP6487684B2 (en) | Vibration generator for vibration compaction machine and construction machine having the vibration generator | |
US3817646A (en) | Vibration generator | |
US3832080A (en) | Vibrator, especially a self propelled reversible tamper | |
US3972637A (en) | Reversible self-propelled plate compactor | |
US3896677A (en) | Dual amplitude vibration generator | |
GB1560564A (en) | Vibrator | |
US3626786A (en) | Piston-crank mechanisms | |
JP2013053513A (en) | Vibration exciter and construction machinery including the same | |
US3287983A (en) | Variable force oscillator | |
US4057222A (en) | Concrete vibrator | |
US1875180A (en) | Means for converting motion and the like | |
JPS60253602A (en) | Vibration apparatus for ground surface compacter | |
US2945970A (en) | Vibrators, more particularly an immersion vibrator | |
US3505886A (en) | Hammering vibrator | |
JPS58156376A (en) | Vibrator | |
US4172986A (en) | Vibrator | |
US2824454A (en) | Rotary to oscillatory mechanical movement | |
US3601368A (en) | Interior vibrator with rotating unbalance | |
US3719094A (en) | Vibration generator | |
SU90780A1 (en) | Surface self-propelled vibrator | |
JP2812816B2 (en) | How to compact the ground | |
US2956438A (en) | Vibrator | |
RU1794667C (en) | Well vibrator |