US3817451A - Air conditioner condensing system control - Google Patents
Air conditioner condensing system control Download PDFInfo
- Publication number
- US3817451A US3817451A US00323436A US32343672A US3817451A US 3817451 A US3817451 A US 3817451A US 00323436 A US00323436 A US 00323436A US 32343672 A US32343672 A US 32343672A US 3817451 A US3817451 A US 3817451A
- Authority
- US
- United States
- Prior art keywords
- motor
- heat exchange
- control
- exchange element
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/027—Condenser control arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S388/00—Electricity: motor control systems
- Y10S388/907—Specific control circuit element or device
- Y10S388/917—Thyristor or scr
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S388/00—Electricity: motor control systems
- Y10S388/923—Specific feedback condition or device
- Y10S388/934—Thermal condition
Definitions
- Cl F24f 7/00 means in series therewith and disposed in heat transfer Field Of Search 62/180, 181, 183, 184, association with the air flowed by the air flowing 62/507; 165/39; 236/49; 31 345 means.
- the control means further includes means for providing an adjustable additional voltage to the References Cited motor for modulating the speed thereof.
- the addi- UNITED STATES PATENTS tional voltage supply means may comprise an inexpen- 1,779,116 10/1930 Davenport 62/184 Sive gated Control element adapted to Control only 3 2,342,657 2/1944 Grabau 318/331 POYIiQII the total maximum Power p y voltage to 2,705,404 4/1955 Malutich .l 62/ 184 the motor. Means are provided for sensing the temper- 2,952,991 9/1960 St.
- This invention relates to air conditioning apparatus and in particular to means for controlling the operation of a condenser fan in such an air conditioning apparatus.
- ' fan is provided for cooling the hot compressed refrigerant by heat exchange relationship therewith in the condenser. It is desirable to adjust the speed of the fan to vary the cooling effect, such as in accordance with the variations in temperature of the refrigerant fluid and/or in accordance with the variations in the ambient temperature conditions. It has been found that in conventional refrigeration systems of this type, a liquid-gas interface level appears in the condenser at a point intermediate the top and bottom of the condenser during normal operation of the system. It is desirable to vary the cooling effect of the air for regulation of the refrigeration as by varying the speed of the motor driving the air moving means.
- temperature sensing devices have been placed in thermal transfer contact with the condenser for sensing the temperature of the condenser and controlling the speed of the air moving means motor.
- the known control systems for this purpose have the serious disadvantage of requiring that the electrical control gated devices used therein handle the full motor current as well as switch the full supply voltage.
- Another disadvantage of the known control devices is the relatively high noise level produced thereby as a result of the chopped wave characteristics of the electrical output provided for controlling the motor speed. Such chopped wave controls further cause radio frequency interference and disturbances and provide substantial losses in the operation of the motor.
- a further disadvantage of the conventional systems is the inability thereof to respond directly to variations in ambient air temperatures which would effect the required control of the motor speed to produce the desired cooling effect. Still further, the conventional systems are relatively complicated and expensive. Illustratively, where gated control devices are utilized for regulating the full load current and supply voltage of the motor, the cost of the control may be $25.00 or more.
- the present invention comprehends an improved control for a condenser fan motor eliminating the disadvantages of the above-discussed prior art devices in a novel and simple manner.
- the invention comprehends the provision of a motor speed control system for such use having a voltage reducing resistor in parallel with a gated device for cooperatively delivering desired operating voltage to the condenser fan motor.
- the resistor may be placed in the path of flow of the air moved by the condenser fan so as to provide improved efficiency in the operation of the system.
- the gated device may comprise a relatively inexpensive electronic gated device such as a silicon controlled rectifier adapted to switch only a portion of the full supply voltage, thereby permitting the use of a relatively inexpensive device while yet providing accurate modulation of the fan motor to provide accurate control of the condenser cooling effect.
- the invention further comprehends the provision of the temperature sensing means in spaced relationship to the condenser adjacent the level of the liquid-gas interface of the refrigerant fluid within the condenser.
- the temperature sensing device is able to respond to variations in the liquid-gas interface level quickly and accurately to provide improved control of the fan induced cooling effect.
- the sensing means may be disposed in thermal transfer association with the airstream drawn by the fan so as to be responsive to the ambient temperature conditions as well as the refrigerant temperature conditions in the condenser providing further improved accuracy in the control of the cooling effect to maintain the desired head pressure of the refrigerant fluid in the refrigerant system.
- the sensing element may be positioned accurately at the factory avoiding the necessity for adjustment of the system in the field upon installation.
- control of the present invention is extremely simple and economical of construction while yet providing highly desirable advantages over the known condenser fan control devices.
- FIG. 4 is an enlarged top plan view of the resistor and sensing element means of the control with a portion thereof broken away for facilitated illustration of the arrangement;
- FIG. 5 is a fragmentary side elevation taken substantially along the line 5-5 of FIG. 4;
- FIG. 6 is a schematic wiring diagram of the electrical control.
- a refrigeration unit generally designated is shown to comprise a condensing unit of a separate condenser-evaporator air conditioning system wherein the condensing unit and compressor are mounted externally of the space to be cooled.
- a condensing unit may be installed exteriorly of a residence on a suitable pad (not shown).
- the condensing unit includes a condenser 11 adapted to be cooled by a suitable air moving means herein comprising a fan 12 driven by an electric motor 13 for flowing coolant air in heat exchange relationship with the fins 14 of the condenser.
- a compressor 15 may be mounted on the base 16 of the apparatus 10 in .a separate space 17 defined by-an upright baffle wall 18 at one end of the condenser.
- a suitable control 19 may be provided having a capacitor 20 for controlling the operation of the motor compressor 15 and the fan motor 13.
- a speed control package generally designated 22 includes means for adjustably regulating the speed of fan motor 13 in responseto the temperature conditions sensed by a probe 21 carried on baffle wall 18 adjacent condenser 11.
- Speed control package 22 further includes a resistor 23 disposed in the path of flow of the air drawn by fan 12 through the condenser.
- fan 12 is mounted in a suitable shroud 24 for drawing a stream of air inwardly through condenser 11 for discharge through outlet grill 25 to theambient atmosphere.
- Unit 10 further includes suitable refrigerant lines 27 extending between compressor 15 and condenser 11 and suitable electrical wiring harnesses 28 and 29 for electrically interconnecting control 19,-control package 22, condenser fan motor 13, motor compressor l5, and the capacitor 20.
- Speed control package 22 includes a circuit board 30 mounted in a suitable housing 31 electrically connected to prove 21 and resistor 23, as shown in FIG. 4.
- Probe 21 includes at the distal end thereof a sensing element, herein a thermistor 32'which, as shown in FIGS. 2 and 3, is juxtaposed tothe rear face of the condenser adjacent the normal liquid-gas interface 33 of the refrigerant fluid in the system.
- resistor 23 and thermistor 32 are disposed in the path of air flow from condenser 11 to fan 12
- resistor 23 is effectively cooled by the air flow and thermistor 32 is made effectivelyresponsive to variations in the refrigerant liquid-gas interface temperature and the ambient temperature in providing a temperature-responsive.signal to the control 30 of the speed control package 22.
- control 30 includes a parallel arrangement of resistor 23, a variable voltage control portion 34, a capacitor 35 and a RF choke 51 provided for eliminating radio frequency interference.
- a minimum voltage for fan motor 13 is provided through resistor 23 and variable voltage control 34 provides additional voltage to the fan motor to modulate the speed thereof in response to the temperature conditions sensed by thermistor 32 thereby to regulate the operating conditions of the refrigerant system. More specifically, the regulation of the fan motor 13 is a function of the ambient temperature and the load on the refrigeration system represented by the load on the condensing unit.
- the control is, therefore, a closed loop control regulating the head pressure of the refrigeration system over the desired range.
- control 34 includes two pairs of diodes 36, 37, 38 and 39, a 16 volt avalanche diode 40, a 2.5 kilohm variable resistor 41, a 0.1 kilohm fixed resistor 42, a diode 43, a programmable, unijunction, or PUT, transistor 44, a 0.10 microfarad capacitor 45, a 470 kilohm fixed resistor 46, I6 kilohm resistors 47 and 48, 47 ohm resistors 49 and 52, a gated device, herein comprising a conventional silicon controlled rectifier, or SCR, 50 anda 150 microhenry RF choke 51. It is to be'appreciated that the values of the circuit components can be varied to suit specific applications or conditions.
- modulating control 34 is extremely simple. Current to the control is'provided between power supply leads L and Li, through the fan motor 13. When L, is positive with respect to L current flows through diode 36, SCR 50, diode 38, .choke 51 and fan motor 13. During the negative half wave, i.e., when L is positive with respect to L current flows through fan motor 13, choke 51, diode 39, SCR 50, and diode 37.
- PUT 44 and resistor 49 are coupled to the gate of SCR50 and when the voltage at this gate reaches the breakdown voltage of SCR 50, SCR 50 assumes a low impedance state to conduct current in parallel with resistor 23 thereby shunting resistor 23.
- thermistor 32 As the temperature sensed by thermistor 32 increases, the resistance value of thermistor 32 decreases to conduit current through diode 43 to charge capacitor 45. This reduces the effective RC time constant determined by capacitor 45 and, thus, the saturation voltage or PUT 44 is reached earlier in the half cycle.
- the turning on earlier in the half cycle .;of PUT 44 causes SCR 50, in turn, to also turn on earlier in the half cycle which provides increased shunt current thereby raising the voltage to the fan motor 13 andcauses fan motor 13 to increase in speed.
- Variable resistor 41 is provided to vary the conduction angle of SCR 50(Resistor 42, in series with variable resistor 41, is provided to insure that this conduction angle can never be decreased below a preselected value.
- Resistor 52 coupled between diode 36 and avalanche diode 40 isolates the AC voltage applied to the motor from the limited breakdown voltage of avalanche diode 40.
- control 34 and thermistor 32 may be built and calibrated as a unit independently of condensing unit 11 effectively eliminating the need for calibration after assembly to condenser 11 or field calibration. As the thermistor is spaced from the condenser, electrical insulation problems are effectively eliminated and the need for maintained characteristics of the surfaces of the condenser and probe is eliminated.
- the thermistor operation is controlled by variable resistor 41 so as to provide a desired set point temperature to maintain the head pressure of the refrigeration system within a desired operating range notwithstanding a wide variation in load and ambient temperature conditions.
- Control of the speed of fan motor 13 is substantially instantaneous in response to load or ambient temperature conditions so as to provide an accurate closed loop control of the refrigeration system and maintaining the desired head pressure and back pressure conditions in the system at substantially all times.
- the thermistor may be caused to have a relatively long time constant by utilization of a relatively large size thermistor to effectivelypreclude instability while yet providing efiective following accurate fast response to variations in conditions of the system.
- Control 30 is simple and economical of construction while yet providing the highly desirable features discussed above.
- radio frequency interference is effectively reduced and acoustic noise in the fan motor and fan blades is reduced as a result of the reduction of audio frequency energy.
- Transient effects on the solid state control 34 are reduced by virtue of absorption of energy by resistor 23 thus effectively reducing vulnerability of control 30 to failure.
- the power factor relative to control 34 is increased by virtue of the resistor 23 connected in series with the fan motor inductance to provide improved operation of the control and speed variations of motor 13 which might be caused by nonsymmetrical firing of the gated control device 50 are effectively minimized by resistor 23.
- failure of control 34 does not cause discontinuation of the operation of fan motor 13 as reduced volt age may continue to be supplied to the fan motor 13 by resistor 23.
- the waveform applied to fan motor 13 has low harmonic content and improved symmetry,
- means for controlling the operation of the fan motor from a power supply comprising: resistance means in series with said motor directly across said powersupply for reducing the voltage to the motor to reduce the speed thereof, said resistance means being disposed to dissipate heat to said system; and control means responsive to a temperature condition of the system in parallel with said resistance means for providing an adjustable additional voltage to said motor for modulating the speed thereof, said resistance means having a value preselected to permit operation of the fan motor solely by current flow therethrough.
- control means includes a temperature sensing element disposed adjacent a preselected portion of said heat exchange element for response to temperature conditions in said heat exchange element at the preselected portion thereof, and means for modulating said additional voltage to the motor to control said level.
- sensing element comprises a thermistor
- sensing element is disposed in the air flow path downstream of said heat exchange element whereby said sensing ele ment responds to ambient air temperature as well as temperature conditions in said heat exchange element.
- control means is arranged to shunt said resistance means to provide a full speed operation of said fan.
- control means provides an additional voltage as a variably chopped lected portion thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00323436A US3817451A (en) | 1971-04-12 | 1972-01-15 | Air conditioner condensing system control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13327671A | 1971-04-12 | 1971-04-12 | |
US00323436A US3817451A (en) | 1971-04-12 | 1972-01-15 | Air conditioner condensing system control |
Publications (1)
Publication Number | Publication Date |
---|---|
US3817451A true US3817451A (en) | 1974-06-18 |
Family
ID=26831224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00323436A Expired - Lifetime US3817451A (en) | 1971-04-12 | 1972-01-15 | Air conditioner condensing system control |
Country Status (1)
Country | Link |
---|---|
US (1) | US3817451A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4543891A (en) * | 1984-04-12 | 1985-10-01 | Westinghouse Electric Corp. | Apparatus and process for heat treatment |
US4936107A (en) * | 1987-11-13 | 1990-06-26 | Kabushiki Kaisha Toshiba | External heat exchange unit with plurality of heat exchanger elements and fan devices and method for controlling fan devices |
US6055819A (en) * | 1997-06-28 | 2000-05-02 | Daewoo Electrics Co., Ltd. | Apparatus and method for preventing an evaporating for an air conditioning system form freezing |
US6318098B1 (en) * | 1997-12-05 | 2001-11-20 | Dometic Corporation | Ambient temperature control for absorption refrigerator |
US20070012055A1 (en) * | 2005-03-17 | 2007-01-18 | Electrolux Home Products, Inc. | Electronic referigeration control system including a variable speed compressor |
US20070012054A1 (en) * | 2005-03-17 | 2007-01-18 | Electrolux Home Products, Inc. | Electronic refrigeration control system |
US20080000879A1 (en) * | 2004-12-20 | 2008-01-03 | Abb Research Ltd | Vacuum circuit breaker having a high current-carrying capacity |
US10054580B2 (en) * | 2014-11-04 | 2018-08-21 | Alcotek, Inc. | Systems and methods for an equilibrium wet bath |
US11231211B2 (en) * | 2019-04-02 | 2022-01-25 | Johnson Controls Technology Company | Return air recycling system for an HVAC system |
US11713896B1 (en) * | 2020-04-20 | 2023-08-01 | Tippmann Engineering, Llc | Modular heat transfer system |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1779116A (en) * | 1928-05-19 | 1930-10-21 | Chicago Pneumatic Tool Co | Condensing process and apparatus |
US2342657A (en) * | 1942-05-06 | 1944-02-29 | Submarine Signal Co | Motor speed regulator |
US2705404A (en) * | 1952-05-08 | 1955-04-05 | Gen Electric | Cooling arrangement for condenser of refrigerating system |
US2952991A (en) * | 1959-02-20 | 1960-09-20 | Carrier Corp | High side pressure control for refrigeration systems |
US3122895A (en) * | 1962-01-08 | 1964-03-03 | Keeprite Products Ltd | Condenser fan control for refrigeration system |
US3196629A (en) * | 1964-06-01 | 1965-07-27 | Carrier Corp | Refrigeration head pressure control systems |
US3359751A (en) * | 1966-10-14 | 1967-12-26 | Admiral Corp | Two temperature refrigerator |
US3402565A (en) * | 1966-07-26 | 1968-09-24 | Smith Corp A O | Pressure responsive refrigeration motor control |
US3403314A (en) * | 1965-10-22 | 1968-09-24 | Smith Corp A O | Condition responsive motor control having unijunction firing circuit for a triggeredswitch |
US3415071A (en) * | 1966-04-04 | 1968-12-10 | Honeywell Inc | Refrigeration condenser fan speed control system |
US3461370A (en) * | 1967-01-06 | 1969-08-12 | Gen Motors Corp | Variable speed control circuit for single phase alternating current induction type motors |
US3478532A (en) * | 1964-08-05 | 1969-11-18 | Friedrich Refrigerators Inc | Electronic head pressure control for condensing units |
-
1972
- 1972-01-15 US US00323436A patent/US3817451A/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1779116A (en) * | 1928-05-19 | 1930-10-21 | Chicago Pneumatic Tool Co | Condensing process and apparatus |
US2342657A (en) * | 1942-05-06 | 1944-02-29 | Submarine Signal Co | Motor speed regulator |
US2705404A (en) * | 1952-05-08 | 1955-04-05 | Gen Electric | Cooling arrangement for condenser of refrigerating system |
US2952991A (en) * | 1959-02-20 | 1960-09-20 | Carrier Corp | High side pressure control for refrigeration systems |
US3122895A (en) * | 1962-01-08 | 1964-03-03 | Keeprite Products Ltd | Condenser fan control for refrigeration system |
US3196629A (en) * | 1964-06-01 | 1965-07-27 | Carrier Corp | Refrigeration head pressure control systems |
US3478532A (en) * | 1964-08-05 | 1969-11-18 | Friedrich Refrigerators Inc | Electronic head pressure control for condensing units |
US3403314A (en) * | 1965-10-22 | 1968-09-24 | Smith Corp A O | Condition responsive motor control having unijunction firing circuit for a triggeredswitch |
US3415071A (en) * | 1966-04-04 | 1968-12-10 | Honeywell Inc | Refrigeration condenser fan speed control system |
US3402565A (en) * | 1966-07-26 | 1968-09-24 | Smith Corp A O | Pressure responsive refrigeration motor control |
US3359751A (en) * | 1966-10-14 | 1967-12-26 | Admiral Corp | Two temperature refrigerator |
US3461370A (en) * | 1967-01-06 | 1969-08-12 | Gen Motors Corp | Variable speed control circuit for single phase alternating current induction type motors |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4543891A (en) * | 1984-04-12 | 1985-10-01 | Westinghouse Electric Corp. | Apparatus and process for heat treatment |
US4936107A (en) * | 1987-11-13 | 1990-06-26 | Kabushiki Kaisha Toshiba | External heat exchange unit with plurality of heat exchanger elements and fan devices and method for controlling fan devices |
US6055819A (en) * | 1997-06-28 | 2000-05-02 | Daewoo Electrics Co., Ltd. | Apparatus and method for preventing an evaporating for an air conditioning system form freezing |
US6318098B1 (en) * | 1997-12-05 | 2001-11-20 | Dometic Corporation | Ambient temperature control for absorption refrigerator |
US20080000879A1 (en) * | 2004-12-20 | 2008-01-03 | Abb Research Ltd | Vacuum circuit breaker having a high current-carrying capacity |
US7471495B2 (en) * | 2004-12-20 | 2008-12-30 | Abb Research Ltd | Vacuum circuit breaker having a high current-carrying capacity |
US20070012054A1 (en) * | 2005-03-17 | 2007-01-18 | Electrolux Home Products, Inc. | Electronic refrigeration control system |
US20070012055A1 (en) * | 2005-03-17 | 2007-01-18 | Electrolux Home Products, Inc. | Electronic referigeration control system including a variable speed compressor |
US7716937B2 (en) | 2005-03-17 | 2010-05-18 | Electrolux Home Products, Inc. | Electronic refrigeration control system including a variable speed compressor |
US20100175402A1 (en) * | 2005-03-17 | 2010-07-15 | Electrolux Home Products, Inc. | Electronic refrigeration control system including a variable speed compressor |
US8181472B2 (en) | 2005-03-17 | 2012-05-22 | Electrolux Home Products, Inc. | Electronic refrigeration control system |
US8726680B2 (en) | 2005-03-17 | 2014-05-20 | Electrolux Home Products, Inc. | Electronic refrigeration control system including a variable speed compressor |
US10054580B2 (en) * | 2014-11-04 | 2018-08-21 | Alcotek, Inc. | Systems and methods for an equilibrium wet bath |
US11231211B2 (en) * | 2019-04-02 | 2022-01-25 | Johnson Controls Technology Company | Return air recycling system for an HVAC system |
US11713896B1 (en) * | 2020-04-20 | 2023-08-01 | Tippmann Engineering, Llc | Modular heat transfer system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3817451A (en) | Air conditioner condensing system control | |
US4257238A (en) | Microcomputer control for an inverter-driven heat pump | |
US3735602A (en) | Air conditioner condensing system control | |
US3653590A (en) | Air conditioning apparatus | |
KR950007023B1 (en) | Outdoor fan control for variable speed heat pump | |
US4132086A (en) | Temperature control system for refrigeration apparatus | |
US3780532A (en) | Temperature control system for centrifugal liquid chilling machines | |
US3349840A (en) | Fluid flow control apparatus | |
GB1158799A (en) | Refrigeration Apparatus | |
US4007605A (en) | Refrigeration system and control circuit | |
US4075865A (en) | Apparatus for controlling condenser pressure in a refrigeration system | |
US3196629A (en) | Refrigeration head pressure control systems | |
CA1053331A (en) | Control system for controlling the operation of a three-phase load | |
US3353078A (en) | Dynamoelectric machine and control therefor | |
US3363429A (en) | Temperature control circuit for refrigeration system | |
US3384801A (en) | Condition responsive motor speed control circuits | |
GB1186120A (en) | Refrigeration Apparatus Control. | |
US3324672A (en) | Electrically controlled conditioning system | |
US3478532A (en) | Electronic head pressure control for condensing units | |
CN111885904A (en) | Data center cabinet cooling system and data center room | |
US3505828A (en) | Control for refrigeration apparatus | |
JPS6336436B2 (en) | ||
US3250084A (en) | Control systems | |
US4201061A (en) | Automatic chilled water setpoint temperature control | |
US3364692A (en) | Refrigeration systems having aircooled condenser coils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HEIL-QUAKER HOME SYSTEMS, INC., LAVERGNE, TENNESSE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE DEC. 27, 1985;ASSIGNOR:HEIL-QUAKER CORPORATION, A DE CORP.;REEL/FRAME:004610/0269 Effective date: 19860716 |
|
AS | Assignment |
Owner name: HEIL-QUAKER HOME SYSTEMS INC. A CORP. OF DE, DELAW Free format text: CHANGE OF NAME;ASSIGNOR:HEIL-QUAKER HOME SYSTEMS INC.;REEL/FRAME:005199/0860 Effective date: 19861219 |
|
AS | Assignment |
Owner name: INTER-CITY PRODUCTS CORPORATION (USA) Free format text: CHANGE OF NAME;ASSIGNOR:HEIL-QUAKER CORPORATION;REEL/FRAME:005338/0204 Effective date: 19900418 |
|
AS | Assignment |
Owner name: WHIRLPOOL FINANCIAL CORPORATION A DE CORPORATION, Free format text: SECURITY INTEREST;ASSIGNOR:INTER-CITY PRODUCTS CORPORATION (USA), A CORPORATION OF DE;REEL/FRAME:005845/0813 Effective date: 19910628 |
|
AS | Assignment |
Owner name: WHIRLPOOL FINANCIAL CORPORATION A DE CORPORATION, Free format text: AMENDMENT TO SECURITY AGREEMENT, TERMS AND CONDITIONS AMENEDED DATED 6/28/91.;ASSIGNOR:INTER-CITY PRODUCTS CORPORATION (USA), A CORPORATION OF DE;REEL/FRAME:006273/0421 Effective date: 19911119 Owner name: WHIRLPOOL FINANCIAL CORPORATION A DE CORPORATION, Free format text: AMENDMENT TO SECURITY AGREEMENT, WHEREBY THE TERMS AND CONDITIONS ARE AMENDED DATED 6/28/91.;ASSIGNOR:INTER-CITY PRODUCTS CORPORATION USA, A CORPORATION OF DE;REEL/FRAME:006273/0449 Effective date: 19911119 |
|
AS | Assignment |
Owner name: UNITED STATES TRUST COMPANY OF NEW YORK, NEW YORK Free format text: ASSIGNMENT AND RELEASE OF COLLATERAL PATENT AND TRADEMARK ASSIGNMENT AND SECURITY AGREEMENT;ASSIGNOR:INTER-CITY PRODUCTS CORPORATION (USA);REEL/FRAME:006472/0677 Effective date: 19930311 Owner name: UNITED STATES TRUST COMPANY OF NEW YORK, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:INTER-CITY PRODUCTS CORPORATION (USA);REEL/FRAME:006472/0708 Effective date: 19930311 Owner name: UNITED STATES TRUST COMPANY OF NEW YORK, NEW YORK Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:INTER-CITY PRODUCTS CORPORATION (USA);REEL/FRAME:006469/0767 Effective date: 19930311 |
|
AS | Assignment |
Owner name: INTERNATIONAL COMFORT PRODUCTS CORPORATION (USA), Free format text: TERMINATION, ASSIGNMENT AND RELEASE OF SECURITY INTERESTS IN INTELLECTUAL PROPERTY COLLATERAL;ASSIGNOR:UNITED STATES TRUST COMPANY OF NEW YORK;REEL/FRAME:009245/0468 Effective date: 19980612 |