US3816705A - Device for heating thermoplastic eyeglass frames - Google Patents

Device for heating thermoplastic eyeglass frames Download PDF

Info

Publication number
US3816705A
US3816705A US00207086A US20708671A US3816705A US 3816705 A US3816705 A US 3816705A US 00207086 A US00207086 A US 00207086A US 20708671 A US20708671 A US 20708671A US 3816705 A US3816705 A US 3816705A
Authority
US
United States
Prior art keywords
heat radiating
housing
eyeglass frame
block
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00207086A
Inventor
E Ebert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00207086A priority Critical patent/US3816705A/en
Priority to US05/475,431 priority patent/US3932114A/en
Application granted granted Critical
Publication of US3816705A publication Critical patent/US3816705A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Definitions

  • ABSTRACT A device for heating a thermoplastic eyeglass frame having a rim and bridge portion and a temple portion includes a housing having a pair of spaced infrared heat radiating surfaces mounted therein. The surfaces form an open-ended channel therebetween for receiving one of the eyeglass frame portions while permitting the other of said frame portions to remain out of range of the heat radiating surfaces.
  • the heat radiating surfaces comprise spaced external surfaces on a heating block having a heating element embedded therein.
  • the heating element is spaced remotely from the heat radiating surfaces so as not to subject the portion of the frame in the channel to direct heat from the element.
  • a fan in the housing provides for circulation'of ambient air through the housing for preventing overheating of the housing. Some of the circulated air is diverted through apertures in the radiating surfaces into the channel to prevent entrance of cold drafts to the channel.
  • a temperature control regulates the temperature of the radiating surfaces.
  • the present invention particularly relates to a machine used in the opthalmic profession for the fitting and/or glazing of lenses in eyeglass frames.
  • These frames made of thermoplastic materials must be properly warmed to soften them to allow insertion of the lenses or to bend and form them to fit the face and head of the user.
  • the warming of frames has been accomplished in many ways such as by hot plates, hot air blowers, and infra-red lamps, but none of. these were satisfactory since the operator in all cases would never know when the plastic material was warm enough to bend without cracking and when too hot it would blow or sponge and then scorch.
  • the infrared ray radiation sources were of very high temperature and of concentrated origin or from a very small high temperature radiator.
  • radiation refers to the continual emission of energy from the surface of all bodies. This energy is called radiant energy and is in the form of electromagnetic waves. These waves travel with the velocity of light. When they fall on a body which is not transparent to them they are absorbed and their energy Converted to heat.
  • Theradiant energy emitted by a surface depends upon the nature of the surface and on its temperature. At low temperatures the rate of radiation is small and the radiant energy is chiefly of relatively long wavelength. As the temperature is increased, the rate of radiation increases very rapidly, in proportion to the fourth power of the absolute temperature, also the wavelength shifts toward shorter wavelengths. At each temperature aradiator might be radiating at, its radiant energy emitted is a mixture of waves of different wavelengths.
  • One general object of this invention is to provide a new and improved infrared radiation type of machine for warming eyeglass frames or the like of thermoplastic material. More specifically, it is an object of this invention to provide a machine of the character indicated which will emit temperature controlled heat rays to warm eyeglass frames to a temperature not exceeding the scorch temperature of the particular plastic being heated.
  • Another object of the invention is to provide radiation of heat rays to more than one side of the object to be heated.
  • Another object of this invention is to provide lenticulated surface radiators for focusing heat rays from locations on the radiators where not needed, to where more heating is needed on the article.
  • a further object of the invention is to provide thermostatically controlled radiators having integral heating elements.
  • a still further object of the invention is to provide an infrared radiator having the temperature of its radiation controlled by an increase or decrease in the frequency or wavelength source.
  • Another object of this invention is to provide for quick disassembly of the case from the parts that might require service by having these parts all on one base, thus making servicing as simple as possible and providing a single location for electrical connections to the power cord.
  • a further object is to eliminate the need of acquiring the skill to know how far away the unit to be heated must be held from the heat source to prevent burning.
  • Another object is to prevent the danger of exposing the operators eyes to high intensity infrared rays.
  • the present invention relates to a device for softening a plastic opthalmic frame comprising a housing, an
  • the present invention includes additional means on-said housing for permitting part of said opthalmic frame to extend outside of the range of said heat radiating surface.
  • the heat radiating surface comprises spaced surfaces defining a channel therebetween so that the infrared radiation may be applied to opposite sides of said frame.
  • the heat radiating surface forms a portion of a block having an electrical heating element embedded therein which is sufficiently remote from the heat radiating surface so that the block shields the portion of the frame being heated from direct high temperature exposure to the heating element.
  • FIG. 1 is a top plan view of a machine in the form of an eyeglass frame warmer embodiment of the invention
  • FIG. 2 is a side elevation of FIG. 1;
  • FIG. 3 is a vertical central sectional view of the machine taken along line 3-3, FIG. 1, showing the heat radiators, the heating element thereof, the blower and its motor and the enclosure therefor;
  • FIG. 4 is a horizontal sectional view taken along line 44 of FIG. 3, showing the radiators, blower wheel and scroll casing therefor;
  • FIG. 5 is a bottom view of the machine shown in FIG. 1, having a portion of the bottom plate removed to show the heating element, its thermostat control and enclosure, and the blower motor;
  • FIG. 6 is fragmentary front elevation of one of the radiators, showing in detail its lensed face and a carpeted floor of the heating element;
  • FIG. 7 is a bottom plan view of the machine showing I the thermostatic control knob for adjusting the heat of the machine;
  • FIG. 8 is a fragmentary greatly enlarged section showing the lens facets for focusing the heat rays and is taken along the line 8-8 of FIG. 6.
  • the machine housing 10 comprises an open bottom enclosure having continuous side walls 11 and a top wall 12.
  • An opening 14 across the top wall 12 from side wall 11 to side wall 11 provides a recess for insertion of glass frames F for exposure to radiant heat from a pair of radiators l and 16.
  • a top opening 18 provides a louvered air inlet for a blower 20 and another top lou-' vered opening 22 provides a jet exhaust 23 for cooling air.
  • a bottom base plate 24 closes off the open bottom of the housing and serves to mount the radiators and 16 and the blower 20.
  • plastic eyeglass frames F are placed in the opening 14 and exposed to radiation from the radiators l5 and 16, whereupon they are heated by the infrared rays, radiating from the radiators 15 and 16.
  • the frames F are removed, the lenses L snapped in place and then the frames are cooled in the cooling jet 23 of air from the exhaust opening 22 to freeze or harden them.
  • these parts may be properly exposed to the infrared rays by holding them in the opening 14 until they are softened to a proper degree, formed to shape and then hardened in the air jet 23 from the exhaust opening 22.
  • the housing 10 preferably may be of molded construction such as Fiber glass or any other suitable reinforced plastic able to meet the strength and temperature requirements of the machine.
  • Vertical ribs 25 of which there are eight shown provide anchorage for screws 26 which are used to retain the bottom plate 24 in place over the bottom opening of the housing 10 against a shoulder 27 around the lower periphery of inside walls 11.
  • This bottom plate 24 forms not only an air tight closure for the housing 10 but a support base for a motor 32 of the blower and for the stove 34.
  • the motor 32 is fastened to the plate 24 by means of the screw 35 and spacer 36 arrangement shown and carries above its upper bearing a thin resilient panel 37 which closes off a spiral shaped blower casing 38 from the lower area of the housing 10, by contact with a ledge 39.
  • the vertical walls 40 form the spiral casing 38 and are molded integral with the upper top wall 12 and side walls 11in such a way as to define a discharge opening 42 for the blower.
  • a motor shaft 33 above the panel 37 mounts a blower wheel 43 which upon counterclockwise rotation as seen in FIG. 4 draws air into its blades through the louvered air inlet 18.
  • louvers are set at a 45 angleto the horizontal as seen in FIG. 3.
  • the panel 37 is cutaway at 45 which allows the rest of the air, a smaller volume, to be circulated down and around both the blower motor 32 to cool it and the aforementioned stove 34. This pressurizes the entire interior of the closed housing 10 to above atmospheric pressure so that air can only pass out of the housing 10, or into the stove 34.
  • the stove 34 is essentially an enclosure, having, in this case four side walls 46, an open bottom and a top wall 47.
  • the bottom periphery of the side walls 46 are flanged either inwardly or outwardly and provided with threaded nuts 48 integral therewith.
  • Spacers 49 lift the stove and side wall 46 flanges from the bottom plate 24 to provide a space all around for entrance of air as indicated by the arrows in FIG. 3. Additional air entrance is available by means of vents 50 having bendable tabs 51, these deflecting the air downwardly and providing adjustment of the air volume entering the stove, besides its even distribution.
  • the top wall 47 of the stove supports a cast heating block 52 provided with a cast enbloc electrical heating element 54, having terminals 56 and 58. Screws 60 thread into base flanges 61 of the radiators l5 and 16 and clamp therebetween the inner edges of the top wall 47 of the stove 34.
  • a thermostat generally indicated at 62 controls the current to the heating element 54 and thus controls its temperature according to the setting of a thermostat control cam 63 fixed to rotate with a control connector 64.
  • a connecting shaft 66 communicates with a knobbed dial 68 through an opening 70 in the bottom plate 24.
  • Apertures 72 in the upper wall 47 provide passage for air into the spaces 74 between the radiators 15 and 16 and their covers 76 and.78. These covers provide the spaces 74 for the heating of air in the spaces and the provision of passages for heated air at abovev atmospheric pressure to flow to vents 80 in the radiators 15 and 16. The heating of this air is accomplished by convection and radiation of lost heat from the radiators 15 and 16.
  • vents 80 lead to the recess provided by the opening 14 across the top wall 12 of the housing 10 and the companion facing radiators 15 and 16.
  • the heated air flowing from the passages 80 into the recess area fill it with air of approximately the same temperature as the radiators l5 and 16 and the act of filling and flowing out of the recess area prevents the entrance of exterior cooler unheated air.
  • a heat insulating pad or carpet 84 cushions and prevents contact of eye glass frames F with the block 52 to prevent marring of these frames.
  • the carpet or pad 84 covers any bottom exposed surfaceof the block 52. Fiberglass fabric has been found to fill this need very satisfactorily.
  • Abutments 86 may also be formed on the top wall 12 to form a support for the temple T hinges of the frames F to rest upon.
  • Adjustable lifts 88 as seen in FIG. 2 may be used to support the eye glass frames F in proper position in the recess 14.
  • the radiating faces of the radiators l5 and 16 are textured and facetted or lenticulated.
  • radiators in this example are planar or have flat surfaces but of course could be concave or convex. Their faces are sand blasted to provide greatly increased radiation area and then are anodized a dull jet black for more efficient thermal radiation of the infrared.
  • the surface of the radiators l5 and 16 may be developed to act as a lensed surface for concentration of th radiated waves to certain areas.
  • FIGS. 6 and 8 Details of this feature are shown in FIGS. 6 and 8. As shown in FIG. 6 circular facets 90 have been formed into the faces of the radiators 15 and 16 to concentrate radiation into circular focal patterns 91 approximately where the eye glass frame rims F are located. In most cases lens frame rims F are generally circular but other focal patterns other than circular could be developed into the surfaces 15 and 16.
  • facets 90 As shown in FIG. 8 are in step form, each step at an angle to focus or radiate rays to the focal point or line 91.
  • Air passages 95 around the periphery of the radiators 15 and 16, where they come in close proximity to the machine housing 10 may be provided, to ventilate these areas with cooling air from the pressurized interior of the housing l0'and thus keep them cool to the touch of the operator.
  • Power may be supplied by the electrical supply cord 100 and turned on or off by the switch 101.
  • the frames F cannot get higher temperature radiation than the temperature of radiators themselves. Further since radiation varies to the square of the distance, the fixed distance used here eliminates the problem of gaging distance, just by placing the frames F in the machine rests. They are radiated from two sides and with concentrations of the infrared rays to places needed.
  • the frames F may be bent for fitting to a patient and then rapidly cooled in the air jet 23.
  • bridge area B If only the bridge area B is to be softened it may be placed diagonally across and between the corners of radiators 15 and 16, while being held by the fingers of the operator.
  • any portion or the whole of a temple may be held between the radiators 15 and 16 for warming.
  • the apparatus just described is fully capable of providing fast and efficient heating and cooling of an article such as plastic eyeglass frames for example, and may be used or varied in its design to do similar work on other thermally r'esponsive materials and/or articles.
  • a device for heating a thermoplastic eyeglass frame including a rim and bridge portion and temple portion comprising a housing, infrared heat radiating means on said housing, means on said housing for supporting one of said eyeglass frame portions in a stationary manner in spaced relationship to said radiating means at the optimum positionto receive radiant heat therefrom and supporting the other of said eyeglass frame portions out of the range of said radiating means, and control means for preventing said heat radiating means from exceeding a predetermined temperature which could heat said eyeglass frame portion being heated beyond a predetermined degree, said infrared heat radiating means comprising a pair of spaced infrared heat radiating surfaces defining a channel therebetween for receiving one of said eyeglass frame portions, whereby said one of said eyeglass frame portions is subjected to radiated heat from opposite sides thereof, said channel being further open at opposite ends thereof,
  • said infrared heat radiating means comprising a heating block, an electrical heating element embedded in said block for heating said block uniformly throughout, and wherein said spaced infrared heat radiating surfaces are formed on said block in spaced relationship to the portion thereof in which said heating element is embedded, whereby said portion of said eyeglass frame in said channel is not subjected to direct heat from said heating element.
  • a device as set forth in claim 1 including aperture means in said block extending through said heat radiating surfaces, and air moving means in said housing for forcing air through said aperture means in said heat radiating surfaces toward said portion of said eyeglass frame spaced therefrom.
  • thermoplastic eyeglass frame including a rim and bridge portion and temple portion comprising a housing, infrared heat radiating means on said housing, means for supporting one of said eyeglass frame portions on said housing in spaced relationship to said radiating means to receive radiant heat therefrom while permitting the other of said eyeglass frame portions to remain out of the range of said radiating means, and control means for preventing said heat radiating means from exceeding a predetermined temperature which could heat said eyeglass frame portion being heated beyond a predetermined degree, said infrared heat radiating means comprising a pair of spaced infrared heat radiating surfaces with a channel therebetween for receiving one of said eyeglass frame portions, whereby said one of said eyeglass frame portions is subjected to radiated heat from opposite sides thereof, said infrared heat radiating means comprising a heating block, an electrical heating element embedded in said block for heating said block, and wherein said spaced infrared heat radiating surfaces are formed on said block in spaced relationship to the portion thereof in which said heating element is embedded,
  • a device for heating a thermoplastic eyeglass frame including a rim and bridge portion and temple portion comprising a housing, infrared heat radiating means on said housing, means for supporting one of said eyeglass frame portions on said housing in spaced relationship to said radiating means to receive radiant heat therefrom while permitting the other of said eyeglass frame portions to remain out of the range of said radiating means, and control means for preventing said heat radiating means from exceeding a predetermined temperature which could heat said eyeglass frame portion being heated beyond a predetermined degree, said infrared heat radiating means comprising a heating block, an electrical heating element for heating said block, heat radiating surface means on said block in spaced relationship to said heating element, whereby said portion of said eyeglass frame is not subjected to direct heat from said heating element, aperture means in said block extending through said heat radiating surface means, and air moving means in said housing for forcing air through said aperture means in said heat radiating surface means toward said portion of said eyeglass frame spaced therefrom.
  • a device as set forth in claim 5 including a space between said block and said housing, and wherein said air moving means passes cool air through said space to limit the amount said block heats said housing adjacent thereto.
  • said heat radiating surface means includes a radiating surface having a configuration adapted to concentrate radiation from said surface in a pattern approximating the proximately the shape of certain portions of said frame.

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

A device for heating a thermoplastic eyeglass frame having a rim and bridge portion and a temple portion includes a housing having a pair of spaced infrared heat radiating surfaces mounted therein. The surfaces form an open-ended channel therebetween for receiving one of the eyeglass frame portions while permitting the other of said frame portions to remain out of range of the heat radiating surfaces. The heat radiating surfaces comprise spaced external surfaces on a heating block having a heating element embedded therein. The heating element is spaced remotely from the heat radiating surfaces so as not to subject the portion of the frame in the channel to direct heat from the element. A fan in the housing provides for circulation of ambient air through the housing for preventing overheating of the housing. Some of the circulated air is diverted through apertures in the radiating surfaces into the channel to prevent entrance of cold drafts to the channel. A temperature control regulates the temperature of the radiating surfaces.

Description

United States Patent [191 Ebert DEVICE FOR HEATING THERMOPLASTIC EYEGLASS FRAMES [76] Inventor: Edward A. Ebert, 203 Huxley Dr.,
Snyder, NY. 14226 [22] Filed: Dec. 13, 1971 [21] Appl. No.: 207,086
[52] US. Cl 219/521, 81/3.5, 219/343, 219/354, 219/358, 219/386, 219/531, 219/553 [51] Int. Cl. H05b 1/00 [58] Field of Search 219/200, 201, 342, 343, 219/345, 354, 358, 377, 385, 386, 406, 407, 405,411,400, 520, 521,531, 553; 99/389-392, 331; 81/35 [56] References Cited UNITED STATES PATENTS 1,550,386 8/1926 Neuwirth 219/228 X 1,903,324 4/1933 Codling 9 /392 2,152,934 4/1939 Trent 219/345 UX 2,535,731 12/1950 Goodenrath 219/521 X 2,544,514 3/1951 Tasker 219/385 X 2,562,821 7/1951 Rothweiler 219/521 2,604,032 7/1952 Dooley... 99/389 2,661,645 12/1953 Heath 81/35 2,682,829 7/1954 Kouvallis 99/389 2,710,331 6/1955 Stegeman ill/3.5 X 2,831,096 4/1958 Signore 219/521 X 2,836,696 5/1958 Ratchford 219/390 3,003,409 10/1961 Mills 99/331 3,313,917 4/1967 Ditzler et al. 219/405 X June 11, 1974 3,327,093 6/1967 Hager et al. 219/345 X 3,329,801 7/1967 Shannon et a1.
3,564,202 2/1971 Oppenheim 219/390 X 2.476,l42 7/1949 Goddard 99/389 X FQREIGN PATENTS OR APPLICATIONS 288,782 1/1967 Australia 219/521 Primary ExaminerA. Bartis [57] ABSTRACT A device for heating a thermoplastic eyeglass frame having a rim and bridge portion and a temple portion includes a housing having a pair of spaced infrared heat radiating surfaces mounted therein. The surfaces form an open-ended channel therebetween for receiving one of the eyeglass frame portions while permitting the other of said frame portions to remain out of range of the heat radiating surfaces. The heat radiating surfaces comprise spaced external surfaces on a heating block having a heating element embedded therein. The heating element is spaced remotely from the heat radiating surfaces so as not to subject the portion of the frame in the channel to direct heat from the element. A fan in the housing provides for circulation'of ambient air through the housing for preventing overheating of the housing. Some of the circulated air is diverted through apertures in the radiating surfaces into the channel to prevent entrance of cold drafts to the channel. A temperature control regulates the temperature of the radiating surfaces.
10 Claims, 8 Drawing Figures PATENTEDJuu 11 I974 BQBXBLFQS sum 3 U? 5 I NVEN TOR.
1 maw PATENTEDJUH 1 1 I974 SHLET BF 5 U) {h I NVENTOR.
DEVICE FOR HEATING THERMOPLASTIC EYEGLASS FRAMES BACKGROUND OF THE INVENTION The present invention particularly relates to a machine used in the opthalmic profession for the fitting and/or glazing of lenses in eyeglass frames. These frames made of thermoplastic materials must be properly warmed to soften them to allow insertion of the lenses or to bend and form them to fit the face and head of the user. The warming of frames has been accomplished in many ways such as by hot plates, hot air blowers, and infra-red lamps, but none of. these were satisfactory since the operator in all cases would never know when the plastic material was warm enough to bend without cracking and when too hot it would blow or sponge and then scorch.
My Air Tempering Device US. Pat. No. 2,789,200 issued April 16, 1957 was created to eliminate these difficulties and faults. In this patent air is tempered or warmed to a precise temperature for use in warming the thermoplastic, thus warming it in a short period of time and yet never allowing overheating of the air stream to cause scorching.
In all previous warmers that used infrared rays for heating, the warming and scorching problems were aggravated since the color of the thermoplastic or its transparency to the rays affected its response to heat absorption, and by the necessity for critical distance gaging, due to the fact that the temperature varied by the'square of the distance from the source.
In all of these examples the infrared ray radiation sources were of very high temperature and of concentrated origin or from a very small high temperature radiator.
The term radiation refers to the continual emission of energy from the surface of all bodies. This energy is called radiant energy and is in the form of electromagnetic waves. These waves travel with the velocity of light. When they fall on a body which is not transparent to them they are absorbed and their energy Converted to heat.
Theradiant energy emitted by a surface, per unit of time and per unit area, depends upon the nature of the surface and on its temperature. At low temperatures the rate of radiation is small and the radiant energy is chiefly of relatively long wavelength. As the temperature is increased, the rate of radiation increases very rapidly, in proportion to the fourth power of the absolute temperature, also the wavelength shifts toward shorter wavelengths. At each temperature aradiator might be radiating at, its radiant energy emitted is a mixture of waves of different wavelengths.
One general object of this invention, therefore, is to provide a new and improved infrared radiation type of machine for warming eyeglass frames or the like of thermoplastic material. More specifically, it is an object of this invention to provide a machine of the character indicated which will emit temperature controlled heat rays to warm eyeglass frames to a temperature not exceeding the scorch temperature of the particular plastic being heated.
Another object of the invention is to provide radiation of heat rays to more than one side of the object to be heated.
Another object of this invention is to provide lenticulated surface radiators for focusing heat rays from locations on the radiators where not needed, to where more heating is needed on the article.
A further object of the invention is to provide thermostatically controlled radiators having integral heating elements.
A still further object of the invention is to provide an infrared radiator having the temperature of its radiation controlled by an increase or decrease in the frequency or wavelength source.
Another object of this invention is to provide for quick disassembly of the case from the parts that might require service by having these parts all on one base, thus making servicing as simple as possible and providing a single location for electrical connections to the power cord.
A further object is to eliminate the need of acquiring the skill to know how far away the unit to be heated must be held from the heat source to prevent burning.
Another object is to prevent the danger of exposing the operators eyes to high intensity infrared rays.
SUMMARY The present invention relates to a device for softening a plastic opthalmic frame comprising a housing, an
' infrared heat radiating surface on said housing, electrical heating means for exciting said infrared heat radiating surface, means on said housing for supporting said opthalmic frame in spaced relationship to said infrared heat radiating surface, and control means for maintaining the infrared radiation from said surface at a predetermined value. In its more specific aspects the present invention includes additional means on-said housing for permitting part of said opthalmic frame to extend outside of the range of said heat radiating surface. In its still more specific aspect, the heat radiating surface comprises spaced surfaces defining a channel therebetween so that the infrared radiation may be applied to opposite sides of said frame. Furthermore, the heat radiating surface forms a portion of a block having an electrical heating element embedded therein which is sufficiently remote from the heat radiating surface so that the block shields the portion of the frame being heated from direct high temperature exposure to the heating element.
BRIEF DESCRIPTION OF THE DRAWINGS The present invention, as well as further objects and features thereof, will be understood more clearly and fullyfrom the following detailed description of the preferred embodiment, when read in conjunction with the accompanying drawings, in which;
FIG. 1 is a top plan view of a machine in the form of an eyeglass frame warmer embodiment of the invention;
FIG. 2 is a side elevation of FIG. 1;
FIG. 3 is a vertical central sectional view of the machine taken along line 3-3, FIG. 1, showing the heat radiators, the heating element thereof, the blower and its motor and the enclosure therefor;
FIG. 4 is a horizontal sectional view taken along line 44 of FIG. 3, showing the radiators, blower wheel and scroll casing therefor;
FIG. 5 is a bottom view of the machine shown in FIG. 1, having a portion of the bottom plate removed to show the heating element, its thermostat control and enclosure, and the blower motor;
. 3 FIG. 6 is fragmentary front elevation of one of the radiators, showing in detail its lensed face and a carpeted floor of the heating element;
FIG. 7 is a bottom plan view of the machine showing I the thermostatic control knob for adjusting the heat of the machine;
FIG. 8 is a fragmentary greatly enlarged section showing the lens facets for focusing the heat rays and is taken along the line 8-8 of FIG. 6.
In order to facilitate the detailed description of the machine illustrated in the drawings, there will first be given a discussion of the operation of the machine.
GENERAL OPERATION The machine housing 10 comprises an open bottom enclosure having continuous side walls 11 and a top wall 12. An opening 14 across the top wall 12 from side wall 11 to side wall 11 provides a recess for insertion of glass frames F for exposure to radiant heat from a pair of radiators l and 16. A top opening 18 provides a louvered air inlet for a blower 20 and another top lou-' vered opening 22 provides a jet exhaust 23 for cooling air.
A bottom base plate 24 closes off the open bottom of the housing and serves to mount the radiators and 16 and the blower 20.
After the device has been turned on and warmed to the temperature set at, if glazing is being done, plastic eyeglass frames F are placed in the opening 14 and exposed to radiation from the radiators l5 and 16, whereupon they are heated by the infrared rays, radiating from the radiators 15 and 16.
When sufficient softening has taken place the frames F are removed, the lenses L snapped in place and then the frames are cooled in the cooling jet 23 of air from the exhaust opening 22 to freeze or harden them.
If other portions of the eye glass frames such as the temples T require shaping, these parts may be properly exposed to the infrared rays by holding them in the opening 14 until they are softened to a proper degree, formed to shape and then hardened in the air jet 23 from the exhaust opening 22.
DETAILED DESCRIPTION The housing 10 preferably may be of molded construction such as Fiber glass or any other suitable reinforced plastic able to meet the strength and temperature requirements of the machine. Vertical ribs 25 of which there are eight shown provide anchorage for screws 26 which are used to retain the bottom plate 24 in place over the bottom opening of the housing 10 against a shoulder 27 around the lower periphery of inside walls 11.
Four of the screws 26 also retain four feet 30, located as shown in FIG. 5, onto the housing 10 to form a suit-- able cushioned non-scratch footing for the machine.
This bottom plate 24 forms not only an air tight closure for the housing 10 but a support base for a motor 32 of the blower and for the stove 34.
The motor 32 is fastened to the plate 24 by means of the screw 35 and spacer 36 arrangement shown and carries above its upper bearing a thin resilient panel 37 which closes off a spiral shaped blower casing 38 from the lower area of the housing 10, by contact with a ledge 39. The vertical walls 40 form the spiral casing 38 and are molded integral with the upper top wall 12 and side walls 11in such a way as to define a discharge opening 42 for the blower.
The largest volume of air flows upward through the louvered jet opening 22, where it is directed at about a'60 angle to the horizontal away from the opening 14.
A motor shaft 33 above the panel 37 mounts a blower wheel 43 which upon counterclockwise rotation as seen in FIG. 4 draws air into its blades through the louvered air inlet 18.
These louvers are set at a 45 angleto the horizontal as seen in FIG. 3.
Looking now at FIG. 4 it will be seen that the panel 37 is cutaway at 45 which allows the rest of the air, a smaller volume, to be circulated down and around both the blower motor 32 to cool it and the aforementioned stove 34. This pressurizes the entire interior of the closed housing 10 to above atmospheric pressure so that air can only pass out of the housing 10, or into the stove 34.
' The stove 34 is essentially an enclosure, having, in this case four side walls 46, an open bottom and a top wall 47. The bottom periphery of the side walls 46 are flanged either inwardly or outwardly and provided with threaded nuts 48 integral therewith. Spacers 49 lift the stove and side wall 46 flanges from the bottom plate 24 to provide a space all around for entrance of air as indicated by the arrows in FIG. 3. Additional air entrance is available by means of vents 50 having bendable tabs 51, these deflecting the air downwardly and providing adjustment of the air volume entering the stove, besides its even distribution.
The top wall 47 of the stove supports a cast heating block 52 provided with a cast enbloc electrical heating element 54, having terminals 56 and 58. Screws 60 thread into base flanges 61 of the radiators l5 and 16 and clamp therebetween the inner edges of the top wall 47 of the stove 34. A thermostat generally indicated at 62 controls the current to the heating element 54 and thus controls its temperature according to the setting of a thermostat control cam 63 fixed to rotate with a control connector 64. A connecting shaft 66 communicates with a knobbed dial 68 through an opening 70 in the bottom plate 24.
Apertures 72 in the upper wall 47 provide passage for air into the spaces 74 between the radiators 15 and 16 and their covers 76 and.78. These covers provide the spaces 74 for the heating of air in the spaces and the provision of passages for heated air at abovev atmospheric pressure to flow to vents 80 in the radiators 15 and 16. The heating of this air is accomplished by convection and radiation of lost heat from the radiators 15 and 16.
As will be seen in FIGS. 3 and 4 these vents 80 lead to the recess provided by the opening 14 across the top wall 12 of the housing 10 and the companion facing radiators 15 and 16.
When the machine is in operation the heated air flowing from the passages 80 into the recess area fill it with air of approximately the same temperature as the radiators l5 and 16 and the act of filling and flowing out of the recess area prevents the entrance of exterior cooler unheated air.
As mentioned before air enters the stove along its bottom edge by means of the space provided by the spacers 49 and the adjustable vents 50. The area of the edge space and vents is large for the entering air in relation to the small area of the radiator exiting vents 80.
This causes the air to enter the stove slowly and smoothly with out turbulence and surrounds the thermostat 62 with a quiescent blanket of warmed air allowing it to control the temperature of the radiators more accurately, by being more responsive to the temperature of the heating block 52 and by not being trapped in a blanket of hot stagnant air.
A heat insulating pad or carpet 84 cushions and prevents contact of eye glass frames F with the block 52 to prevent marring of these frames. The carpet or pad 84 covers any bottom exposed surfaceof the block 52. Fiberglass fabric has been found to fill this need very satisfactorily.
Abutments 86 may also be formed on the top wall 12 to form a support for the temple T hinges of the frames F to rest upon.
Adjustable lifts 88 as seen in FIG. 2 may be used to support the eye glass frames F in proper position in the recess 14.
As will more clearly be seen in FIGS. 3, 4 6 and 8 the radiating faces of the radiators l5 and 16 are textured and facetted or lenticulated.
These radiators in this example are planar or have flat surfaces but of course could be concave or convex. Their faces are sand blasted to provide greatly increased radiation area and then are anodized a dull jet black for more efficient thermal radiation of the infrared.
Since the instant example of the invention illustrated and described is shown for use with eye glass frames, the surface of the radiators l5 and 16 may be developed to act as a lensed surface for concentration of th radiated waves to certain areas.
Details of this feature are shown in FIGS. 6 and 8. As shown in FIG. 6 circular facets 90 have been formed into the faces of the radiators 15 and 16 to concentrate radiation into circular focal patterns 91 approximately where the eye glass frame rims F are located. In most cases lens frame rims F are generally circular but other focal patterns other than circular could be developed into the surfaces 15 and 16.
For concentration of radiation on other parts of the eye glass frames such as the bridge B, other facetted or lenticulated areas 92 may be provided' These facets 90 as shown in FIG. 8 are in step form, each step at an angle to focus or radiate rays to the focal point or line 91.
Thus radiation is directed from areas such as the lens L, where it is not needed, to the lens frame rims F where it is wanted. 7
Air passages 95 around the periphery of the radiators 15 and 16, where they come in close proximity to the machine housing 10 may be provided, to ventilate these areas with cooling air from the pressurized interior of the housing l0'and thus keep them cool to the touch of the operator.
Power may be supplied by the electrical supply cord 100 and turned on or off by the switch 101.
OPERATION As previously described when the machine is used for glazing eyeglass frames they are positioned in the opening 14 between the radiators 15 and 16. The frame F with the hinges of the frame temples T rest on the abutments 86 or the carpet 84 while the main portions of the temples rest on the adjustable lifts 88. As they are heated by the radiation they are surrounded by hot air from the vents 80 and this outward flow from the space 14 prevents the entrance of cold drafts.
Since the amount of radiation is controlled by the thermostat 62, burning of the frames F will not take place, with proper adjustment, no matter how long exposed to the infrared rays.
Also since we are using large area and low temperature controlled radiators the frames F cannot get higher temperature radiation than the temperature of radiators themselves. Further since radiation varies to the square of the distance, the fixed distance used here eliminates the problem of gaging distance, just by placing the frames F in the machine rests. They are radiated from two sides and with concentrations of the infrared rays to places needed.
After softening, the frames F may be bent for fitting to a patient and then rapidly cooled in the air jet 23.
If only the bridge area B is to be softened it may be placed diagonally across and between the corners of radiators 15 and 16, while being held by the fingers of the operator.
Also any portion or the whole of a temple may be held between the radiators 15 and 16 for warming.
It should be mentioned here that it is not sufficient to have, only, the means to readily heat and soften the eyeglass frames or any other article, for what accomplishment does it avail if a bent or formed part does not keep its bend or form. Hence the provision of a large and heavy blower motor 32 driving a large blower wheel 20 to motivate a vigorous air jet 23 for fast cooling of the bent object.
If the frames F are formed to fit and not fully cooled or frozen they will feel hot to the patient and also will relax and unbend, thus defeating a good fit.
From the foregoing it may be seen that the apparatus just described is fully capable of providing fast and efficient heating and cooling of an article such as plastic eyeglass frames for example, and may be used or varied in its design to do similar work on other thermally r'esponsive materials and/or articles.
The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described, or portions thereof, it being recognized that various modifications are possible within the scope of the invention claimed.
What is claimed is:
l. A device for heating a thermoplastic eyeglass frame including a rim and bridge portion and temple portion comprising a housing, infrared heat radiating means on said housing, means on said housing for supporting one of said eyeglass frame portions in a stationary manner in spaced relationship to said radiating means at the optimum positionto receive radiant heat therefrom and supporting the other of said eyeglass frame portions out of the range of said radiating means, and control means for preventing said heat radiating means from exceeding a predetermined temperature which could heat said eyeglass frame portion being heated beyond a predetermined degree, said infrared heat radiating means comprising a pair of spaced infrared heat radiating surfaces defining a channel therebetween for receiving one of said eyeglass frame portions, whereby said one of said eyeglass frame portions is subjected to radiated heat from opposite sides thereof, said channel being further open at opposite ends thereof,
said infrared heat radiating means comprising a heating block, an electrical heating element embedded in said block for heating said block uniformly throughout, and wherein said spaced infrared heat radiating surfaces are formed on said block in spaced relationship to the portion thereof in which said heating element is embedded, whereby said portion of said eyeglass frame in said channel is not subjected to direct heat from said heating element.
2. A device as set forth in claim 1 wherein said radiating surfaces have a configuration adapted to concentrate radiation from said surfaces in a pattern approximating the shape of certain portions of said frame.
3. A device as set forth in claim 1 including aperture means in said block extending through said heat radiating surfaces, and air moving means in said housing for forcing air through said aperture means in said heat radiating surfaces toward said portion of said eyeglass frame spaced therefrom.
4. A device for heating a thermoplastic eyeglass frame including a rim and bridge portion and temple portion comprising a housing, infrared heat radiating means on said housing, means for supporting one of said eyeglass frame portions on said housing in spaced relationship to said radiating means to receive radiant heat therefrom while permitting the other of said eyeglass frame portions to remain out of the range of said radiating means, and control means for preventing said heat radiating means from exceeding a predetermined temperature which could heat said eyeglass frame portion being heated beyond a predetermined degree, said infrared heat radiating means comprising a pair of spaced infrared heat radiating surfaces with a channel therebetween for receiving one of said eyeglass frame portions, whereby said one of said eyeglass frame portions is subjected to radiated heat from opposite sides thereof, said infrared heat radiating means comprising a heating block, an electrical heating element embedded in said block for heating said block, and wherein said spaced infrared heat radiating surfaces are formed on said block in spaced relationship to the portion thereof in which said heating element is embedded, whereby said portion of said eyeglass frame in said channel is not subjected to direct heat from said heating element, aperture means in said block extending through said heat radiating surfaces, and air moving means in said housing for forcing air through said aperture means in said heat radiating surface toward said portion of said eyeglass frame spaced therefrom.
5. A device for heating a thermoplastic eyeglass frame including a rim and bridge portion and temple portion comprising a housing, infrared heat radiating means on said housing, means for supporting one of said eyeglass frame portions on said housing in spaced relationship to said radiating means to receive radiant heat therefrom while permitting the other of said eyeglass frame portions to remain out of the range of said radiating means, and control means for preventing said heat radiating means from exceeding a predetermined temperature which could heat said eyeglass frame portion being heated beyond a predetermined degree, said infrared heat radiating means comprising a heating block, an electrical heating element for heating said block, heat radiating surface means on said block in spaced relationship to said heating element, whereby said portion of said eyeglass frame is not subjected to direct heat from said heating element, aperture means in said block extending through said heat radiating surface means, and air moving means in said housing for forcing air through said aperture means in said heat radiating surface means toward said portion of said eyeglass frame spaced therefrom.
6. A device as set forth in claim 5 wherein said housing includes a stove within said housing and wherein said block is mounted within said stove, and wherein said air moving means is mounted outside of said stove within said housing, second aperture means in said stove for receiving air which is moved by said air moving means whereby said stove conducts said air through said aperture means in said block, and third aperture means in said housing for conducting air moved by said fan out of said housing without causing it to pass through said stove, whereby said air emanating from said third aperture means can be used to cool a portion of said eyeglass frame held adjacent thereto.
7. A device as set forth in claim 5 including a space between said block and said housing, and wherein said air moving means passes cool air through said space to limit the amount said block heats said housing adjacent thereto.
8. A device as set forth in claim 5 wherein said heat radiating surface means includes a radiating surface having a configuration adapted to concentrate radiation from said surface in a pattern approximating the proximately the shape of certain portions of said frame. l

Claims (10)

1. A device for heating a thermoplastic eyeglass frame including a rim and bridge portion and temple portion comprising a housing, infrared heat radiating means on said housing, means on said housing for supporting one of said eyeglass frame portions in a stationary manner in spaced relationship to said radiating means at the optimum position to receive radiant heat therefrom and supporting the other of said eyeglass frame portions out of the range of said radiating means, and control means for preventing said heat radiating means from exceeding a predetermined temperature which could heat said eyeglass frame portion being heated beyond a predetermined degree, said infrared heat radiating means comprising a pair of spaced infrared heat radiating surfaces defining a channel therebetween for receiving one of said eyeglass frame portions, whereby said one of said eyeglass frame portions is subjected to radiated heat from opposite sides thereof, said channel being further open at opposite ends thereof, said infrared heat radiating means comprising a heating block, an electrical heating element embedded in said block for heating said block uniformly throughout, and wherein said spaced infrared heat radiating surfaces are formed on said block in spaced relationship to the portion thereof in which said heating element is embedded, whereby said portion of said eyeglass frame in said channel is not subjected to direct heat from said heating element.
2. A device as set forth in claim 1 wherein said radiating surfaces have a configuration adapted to concentrate radiation from said surfaces in a pattern approximating the shape of certain portions of said frame.
3. A device as set forth in claim 1 including aperture means in said block extending through said heat radiating surfaces, and air moving means in said housing for forcing air through said aperture means in said heat radiating surfaces toward said portion of said eyeglass frame spaced therefrom.
4. A device for heating a thermoplastic eyeglass frame including a rim and bridge portion and temple portion comprising a housing, infrared heat radiating means on said housing, means for supporting one of said eyeglass frame portions on said housing in spaced relationship to said radiating means to receive radiant heat therefrom while permitting the other of said eyeglass frame portions to remain out of the range of said radiating means, and control means for preventing said heat radiating means from exceeding a predetermined temperature which could heat said eyeglass frame portion being heated beyond a predetermined degree, said infrared heat radiating means comprising a pair of spaced infrared heat radiating surfaces with a channel therebetween for receiving one of said eyeglass frame portions, whereby said one of said eyeglass frame portions is subjected to radiated heat from opposite sides thereof, said infrared heat radiating means comprising a heating block, an electrical heating element embedded in said block for heating said block, and wherein said spaced infrared heat radiating surfaces are formed on said block in spaced relationship to the portion thereof in which said heating element is embedded, whereby said Portion of said eyeglass frame in said channel is not subjected to direct heat from said heating element, aperture means in said block extending through said heat radiating surfaces, and air moving means in said housing for forcing air through said aperture means in said heat radiating surface toward said portion of said eyeglass frame spaced therefrom.
5. A device for heating a thermoplastic eyeglass frame including a rim and bridge portion and temple portion comprising a housing, infrared heat radiating means on said housing, means for supporting one of said eyeglass frame portions on said housing in spaced relationship to said radiating means to receive radiant heat therefrom while permitting the other of said eyeglass frame portions to remain out of the range of said radiating means, and control means for preventing said heat radiating means from exceeding a predetermined temperature which could heat said eyeglass frame portion being heated beyond a predetermined degree, said infrared heat radiating means comprising a heating block, an electrical heating element for heating said block, heat radiating surface means on said block in spaced relationship to said heating element, whereby said portion of said eyeglass frame is not subjected to direct heat from said heating element, aperture means in said block extending through said heat radiating surface means, and air moving means in said housing for forcing air through said aperture means in said heat radiating surface means toward said portion of said eyeglass frame spaced therefrom.
6. A device as set forth in claim 5 wherein said housing includes a stove within said housing and wherein said block is mounted within said stove, and wherein said air moving means is mounted outside of said stove within said housing, second aperture means in said stove for receiving air which is moved by said air moving means whereby said stove conducts said air through said aperture means in said block, and third aperture means in said housing for conducting air moved by said fan out of said housing without causing it to pass through said stove, whereby said air emanating from said third aperture means can be used to cool a portion of said eyeglass frame held adjacent thereto.
7. A device as set forth in claim 5 including a space between said block and said housing, and wherein said air moving means passes cool air through said space to limit the amount said block heats said housing adjacent thereto.
8. A device as set forth in claim 5 wherein said heat radiating surface means includes a radiating surface having a configuration adapted to concentrate radiation from said surface in a pattern approximating the shape of certain portions of said frame.
9. A device as set forth in claim 5 wherein said infrared heat radiating surface means comprises a pair of spaced infrared heat radiating surfaces defining a channel therebetween for receiving one of said eyeglass frame portions, whereby said one of said eyeglass frame portions is subjected to radiated heat from opposite sides thereof.
10. A device as set forth in claim 9 wherein said heat radiating surfaces have configuration adapted to concentrate radiation from said surfaces in a pattern approximately the shape of certain portions of said frame.
US00207086A 1971-12-13 1971-12-13 Device for heating thermoplastic eyeglass frames Expired - Lifetime US3816705A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00207086A US3816705A (en) 1971-12-13 1971-12-13 Device for heating thermoplastic eyeglass frames
US05/475,431 US3932114A (en) 1971-12-13 1974-06-03 Device for heating thermoplastic eyeglass frames

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00207086A US3816705A (en) 1971-12-13 1971-12-13 Device for heating thermoplastic eyeglass frames

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/475,431 Division US3932114A (en) 1971-12-13 1974-06-03 Device for heating thermoplastic eyeglass frames

Publications (1)

Publication Number Publication Date
US3816705A true US3816705A (en) 1974-06-11

Family

ID=22769153

Family Applications (1)

Application Number Title Priority Date Filing Date
US00207086A Expired - Lifetime US3816705A (en) 1971-12-13 1971-12-13 Device for heating thermoplastic eyeglass frames

Country Status (1)

Country Link
US (1) US3816705A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007370A (en) * 1974-06-03 1977-02-08 Ebert Edward A Device for heating thermoplastic eyeglass frames
US4052593A (en) * 1975-06-23 1977-10-04 Ebert Edward A Electric heating apparatus for heating thermoplastic articles
US4052592A (en) * 1976-11-19 1977-10-04 Ebert Edward A Device for heating thermoplastic eyeglass frames
US4054376A (en) * 1975-03-05 1977-10-18 Wareham Richard C Method and apparatus for heating eyeglass frames
US4104508A (en) * 1976-12-20 1978-08-01 Ebert Edward A Support for deformable articles and method of making the same
US4121091A (en) * 1976-03-08 1978-10-17 Wareham Richard C Apparatus for heating eyeglass frames
US4189630A (en) * 1976-12-20 1980-02-19 Ebert Edward A Method of heating deformable articles on a support of verticle fibers
US4190480A (en) * 1976-12-20 1980-02-26 Ebert Edward A Support for deformable articles and method of making the same
US4241290A (en) * 1978-10-06 1980-12-23 Folland Roy E Clinical mirror heating device
US4385225A (en) * 1981-08-10 1983-05-24 Giulie Joe D Heater unit for heat activated binding and filing systems
DE3333809A1 (en) * 1982-10-29 1984-05-03 Gianfranco 20135 Milano Conti DOUBLE-ACTING HOT AIR GENERATOR FOR GLASSES
US4554434A (en) * 1983-04-15 1985-11-19 U.S. Philips Corporation Heating plate for printing apparatus
US5058196A (en) * 1987-02-17 1991-10-15 Senju Metal Industry Co., Ltd. Electric infrared heater having a gas permeable electroformed porous metallic panel coated with a porous ceramic far-infrared radiating layer
US5286951A (en) * 1992-11-09 1994-02-15 Jones Mark A Acetate spectacle frame bridge adjuster
US5758017A (en) * 1996-02-22 1998-05-26 Western Optical Supply, Inc. Apparatus and method for heating eyeglass frames
US6127663A (en) * 1998-10-09 2000-10-03 Ericsson Inc. Electronics cabinet cooling system
US20030221783A1 (en) * 2000-05-10 2003-12-04 Swagelok Company Ir welding of fluoropolymers
US20100155387A1 (en) * 2005-08-02 2010-06-24 Eurokera S.N.C. Hotplate cooker cover for said cooker and method for production of the hotplate and cover
US8463115B1 (en) * 2005-05-18 2013-06-11 Judco Manufacturing, Inc. Handheld heater
US20130209076A1 (en) * 2005-05-18 2013-08-15 Judco Manufacturing, Inc. Handheld heater
WO2017016621A1 (en) * 2015-07-25 2017-02-02 Deyle GmbH Hot air device
US9635713B2 (en) 2005-05-18 2017-04-25 Judco Manufacturing, Inc. Cordless handheld heater
USD1034122S1 (en) * 2022-11-27 2024-07-09 Joshua Freilich Eyewear frame heater

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1550386A (en) * 1923-12-13 1925-08-18 Neuwirth Herman Heater for shaping eyeglass frames
US1903324A (en) * 1931-06-06 1933-04-04 Codling Allen Byron Electric broiler
US2152934A (en) * 1934-06-21 1939-04-04 Harold E Trent Heat transmitting surface
US2476142A (en) * 1948-04-07 1949-07-12 Toast O Lator Co Inc Nonmetallic cover for bread toasters
US2535731A (en) * 1949-03-17 1950-12-26 Lyonel L Goodenrath Electrician's solder dipper heater
US2544514A (en) * 1947-06-21 1951-03-06 James D Tasker Electrically heated apparatus for fitting lens into frames
US2562821A (en) * 1950-04-21 1951-07-31 David White Company Heating device
US2604032A (en) * 1945-12-11 1952-07-22 Bendix Aviat Corp Electric toaster
US2661645A (en) * 1949-07-06 1953-12-08 Device for heating and shaping or
US2682829A (en) * 1951-02-21 1954-07-06 Theodore P Kouvallis Frankfurter cooking appliance
US2710331A (en) * 1952-05-08 1955-06-07 Bausch & Lomb Heating apparatus for thermoplastic articles
US2831096A (en) * 1955-05-20 1958-04-15 Jr James C Signore Apparatus for rendering floor tile pliant
US2836696A (en) * 1955-10-03 1958-05-27 Ottwell W Ratchford Warming oven for plastic eye glass frames
US3003409A (en) * 1959-05-01 1961-10-10 Reflectotherm Inc Ultra-long wavelength infrared radiant heating oven
US3313917A (en) * 1963-11-21 1967-04-11 Litton Prec Products Inc Doorless infrared oven
US3327093A (en) * 1964-08-21 1967-06-20 Armstrong Cork Co Directional electric heating panel
US3329801A (en) * 1964-06-22 1967-07-04 Robert K Shannon Ophthalmic frame warmer
US3564202A (en) * 1969-04-07 1971-02-16 Gerd M Oppenheim Spectacle frame heating apparatus

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1550386A (en) * 1923-12-13 1925-08-18 Neuwirth Herman Heater for shaping eyeglass frames
US1903324A (en) * 1931-06-06 1933-04-04 Codling Allen Byron Electric broiler
US2152934A (en) * 1934-06-21 1939-04-04 Harold E Trent Heat transmitting surface
US2604032A (en) * 1945-12-11 1952-07-22 Bendix Aviat Corp Electric toaster
US2544514A (en) * 1947-06-21 1951-03-06 James D Tasker Electrically heated apparatus for fitting lens into frames
US2476142A (en) * 1948-04-07 1949-07-12 Toast O Lator Co Inc Nonmetallic cover for bread toasters
US2535731A (en) * 1949-03-17 1950-12-26 Lyonel L Goodenrath Electrician's solder dipper heater
US2661645A (en) * 1949-07-06 1953-12-08 Device for heating and shaping or
US2562821A (en) * 1950-04-21 1951-07-31 David White Company Heating device
US2682829A (en) * 1951-02-21 1954-07-06 Theodore P Kouvallis Frankfurter cooking appliance
US2710331A (en) * 1952-05-08 1955-06-07 Bausch & Lomb Heating apparatus for thermoplastic articles
US2831096A (en) * 1955-05-20 1958-04-15 Jr James C Signore Apparatus for rendering floor tile pliant
US2836696A (en) * 1955-10-03 1958-05-27 Ottwell W Ratchford Warming oven for plastic eye glass frames
US3003409A (en) * 1959-05-01 1961-10-10 Reflectotherm Inc Ultra-long wavelength infrared radiant heating oven
US3313917A (en) * 1963-11-21 1967-04-11 Litton Prec Products Inc Doorless infrared oven
US3329801A (en) * 1964-06-22 1967-07-04 Robert K Shannon Ophthalmic frame warmer
US3327093A (en) * 1964-08-21 1967-06-20 Armstrong Cork Co Directional electric heating panel
US3564202A (en) * 1969-04-07 1971-02-16 Gerd M Oppenheim Spectacle frame heating apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007370A (en) * 1974-06-03 1977-02-08 Ebert Edward A Device for heating thermoplastic eyeglass frames
US4054376A (en) * 1975-03-05 1977-10-18 Wareham Richard C Method and apparatus for heating eyeglass frames
US4052593A (en) * 1975-06-23 1977-10-04 Ebert Edward A Electric heating apparatus for heating thermoplastic articles
US4121091A (en) * 1976-03-08 1978-10-17 Wareham Richard C Apparatus for heating eyeglass frames
US4052592A (en) * 1976-11-19 1977-10-04 Ebert Edward A Device for heating thermoplastic eyeglass frames
US4104508A (en) * 1976-12-20 1978-08-01 Ebert Edward A Support for deformable articles and method of making the same
US4189630A (en) * 1976-12-20 1980-02-19 Ebert Edward A Method of heating deformable articles on a support of verticle fibers
US4190480A (en) * 1976-12-20 1980-02-26 Ebert Edward A Support for deformable articles and method of making the same
US4241290A (en) * 1978-10-06 1980-12-23 Folland Roy E Clinical mirror heating device
US4385225A (en) * 1981-08-10 1983-05-24 Giulie Joe D Heater unit for heat activated binding and filing systems
DE3333809A1 (en) * 1982-10-29 1984-05-03 Gianfranco 20135 Milano Conti DOUBLE-ACTING HOT AIR GENERATOR FOR GLASSES
US4554434A (en) * 1983-04-15 1985-11-19 U.S. Philips Corporation Heating plate for printing apparatus
US5058196A (en) * 1987-02-17 1991-10-15 Senju Metal Industry Co., Ltd. Electric infrared heater having a gas permeable electroformed porous metallic panel coated with a porous ceramic far-infrared radiating layer
US5286951A (en) * 1992-11-09 1994-02-15 Jones Mark A Acetate spectacle frame bridge adjuster
US5758017A (en) * 1996-02-22 1998-05-26 Western Optical Supply, Inc. Apparatus and method for heating eyeglass frames
US6127663A (en) * 1998-10-09 2000-10-03 Ericsson Inc. Electronics cabinet cooling system
US20030221783A1 (en) * 2000-05-10 2003-12-04 Swagelok Company Ir welding of fluoropolymers
US8463115B1 (en) * 2005-05-18 2013-06-11 Judco Manufacturing, Inc. Handheld heater
US20130209076A1 (en) * 2005-05-18 2013-08-15 Judco Manufacturing, Inc. Handheld heater
US9635713B2 (en) 2005-05-18 2017-04-25 Judco Manufacturing, Inc. Cordless handheld heater
US20100155387A1 (en) * 2005-08-02 2010-06-24 Eurokera S.N.C. Hotplate cooker cover for said cooker and method for production of the hotplate and cover
WO2017016621A1 (en) * 2015-07-25 2017-02-02 Deyle GmbH Hot air device
USD1034122S1 (en) * 2022-11-27 2024-07-09 Joshua Freilich Eyewear frame heater

Similar Documents

Publication Publication Date Title
US3816705A (en) Device for heating thermoplastic eyeglass frames
US4164642A (en) Radiant-hot air heater
US5437001A (en) Upright radiant electric heating appliance
US6810205B2 (en) Space heater and light source
US3932114A (en) Device for heating thermoplastic eyeglass frames
US3098924A (en) Electrically heated covered warming tray
US2257232A (en) Light projector
CN215040299U (en) A cooling system and 3D printer for 3D printer
US4014500A (en) Temperature set back
JPH024419Y2 (en)
US4052592A (en) Device for heating thermoplastic eyeglass frames
JP2914920B2 (en) Far infrared irradiation device
JPH0124510Y2 (en)
CN218974757U (en) Ray apparatus of external heat radiation structure
CN219640450U (en) Electric heating fan heater
ES1020588U (en) Portable heating apparatus. (Machine-translation by Google Translate, not legally binding)
JPS6220181Y2 (en)
JPS6240277Y2 (en)
US4007370A (en) Device for heating thermoplastic eyeglass frames
KR870000539B1 (en) Apparatus for treatment,promotion and control of hair
KR100198835B1 (en) A combined cooker and heater
JPS5825220Y2 (en) Warm air kotatsu
JPS6143183Y2 (en)
KR20090107628A (en) A heating apparatus using radiation and convection heat transfer
JPH07139744A (en) Heat generating equipment of electric foot warmer