US3811237A - Raised floor panel and assembly - Google Patents

Raised floor panel and assembly Download PDF

Info

Publication number
US3811237A
US3811237A US00278465A US27846572A US3811237A US 3811237 A US3811237 A US 3811237A US 00278465 A US00278465 A US 00278465A US 27846572 A US27846572 A US 27846572A US 3811237 A US3811237 A US 3811237A
Authority
US
United States
Prior art keywords
core
edges
floor
panel
pedestals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00278465A
Inventor
J Bettinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNITED FABRICATING CO Inc
Mercantile Safe Deposit and Trust Co
Original Assignee
UNITED FABRICATING CO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNITED FABRICATING CO Inc filed Critical UNITED FABRICATING CO Inc
Priority to US00278465A priority Critical patent/US3811237A/en
Priority to GB3683773A priority patent/GB1425977A/en
Priority to ZA735290A priority patent/ZA735290B/en
Priority to FI2446/73A priority patent/FI53744C/en
Priority to BR5978/73A priority patent/BR7305978D0/en
Priority to IT27592/73A priority patent/IT992861B/en
Priority to CA178,197A priority patent/CA989133A/en
Priority to FR7328834A priority patent/FR2195744B1/fr
Priority to AU58984/73A priority patent/AU476930B2/en
Priority to JP48088761A priority patent/JPS4985821A/ja
Priority to DE19732339978 priority patent/DE2339978A1/en
Application granted granted Critical
Publication of US3811237A publication Critical patent/US3811237A/en
Anticipated expiration legal-status Critical
Assigned to MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY reassignment MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TATE ACCESS FLOORS, INC. (A CORP. OF MARYLAND)
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02447Supporting structures
    • E04F15/02452Details of junctions between the supporting structures and the panels or a panel-supporting framework
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02447Supporting structures

Definitions

  • This invention relates to raised floor panels and to raised floor panel assemblies, and more particularly to apparatus of this type of simplified and inexpensive construction which reduces the cost of manufacturing and assembling raised or elevated floors.
  • floors generally take the form of removablerectangular floor panels or tiles supported in spaced relation above a suitable subfloor by a metal lattice of criss-crossing grids and supporting columns.
  • Conduits such as electrical cabling, air conditioning equipment, and the like, pass between the subfloor and the .floorfto the computer circuits and associated. equipment.
  • the space between the two floors may be used as a plenum to supply conditioning air to various parts of the room.
  • the removability of the panels provides great flexibility in making it possible. to add additional cabling or to service the computer equipment as the need arises.
  • the present invention is directed to an improved panel and panel assembly for raised floors of this general type and is particularly directed to a construction which substantially lessens the cost of manufacturing and installing the floor.
  • the customary floor tile covering for the panels and the accompanying lateral trim edge is replaced by a flexible and preferably at least slightly resilient floor coveringmaterial which not only extends over the top surface of the floor. panels, but also along the edgesand, in one form hereof. for a short distance along the underside of each panel.
  • the floor covering takes the form of a carpet with sufficient resiliency that the abutting edges of adjacent panels form an air seal to define a plenum beneath the raised floor.
  • wrap-around floor covering material is in contact with the metal understructure which is conventionally connected at spaced points to a central grounding system, all static electricity is conducted to ground.
  • a sheet metal pan underlies the panel and has upturned flanges overlying the floor covering material along the edges of the panel.
  • Adjacent panels are electrically coupled by electrically conductive pedestals or portions thereof or metal grids which interconnect and support the adjacent panels. Additionally, the plate flanges of adjacent panels lie in electrical contact further ensuring wide dissipation of the static electricity buildup in the floor covering material.
  • the cores and attached pan and floor covering are supported by post blocks or pedestals which may be provided in wood, metal, plastic, concrete or other materials and in various configurations.
  • Another object of the present invention is to provide an improved raised floor system of simplified and less expensive construction.
  • Another object of the present invention is to provide an improved panel and raised floor system which substantially reduces the cost of manufacturing and installing the floor.
  • Another object of the present invention is to provide an improved panel and floor panel assembly permitting the use of a wide variety of panel cores which need not be manufactured to close tolerances.
  • Another object of the present invention is to provide a raised floor panel and panel assembly in which the top surface and side edges of the panels are each covered by an integral layer of floor carpeting.
  • Another object of the present invention is to provide a raised floor panel in which a conventional pile carpet extends over the top, along each side edge, and for a short distance along the bottom and round the entire periphery of each panel. 7
  • Another object of the present invention is to provide an elevated'or raised floor panel system in which each panel comprises a concrete core .covered on at least all but one side by a flexible and resilient floor covering material, such as carpeting or the like.
  • a further object of the present invention is to provide a raised floor panel system in which each panel has an underlying sheet metal plane with upturned flanges providing improved electrical contact between the floor panels and the underlying support structure as well as between adjacent panels.
  • FIG. 2 is a partial cross section through the raised floor assembly or system of FIG. 1;
  • FIG. 3 is an enlarged view of a support pedestal, grid,
  • FIG. 5 is a perspective view of a modified floor panel with parts cut away to show the carpet attached directly' to the core;
  • FIG. 6 is a partial elevational view corresponding to that of FIG. 3 showing a portion of a raised floor assembly in which the metal 'gridwork is omitted;
  • FIG. 7 is a' partial cross section through a modified floor panel constructed in accordance with the present invention.
  • FIG. 8 is a partial cross'section through a further modified floor panel constructed in accordance with this invention.
  • FIG. 9 is a view similar to FIGS. 3 and 6 showing a I still further modified elevated floor assembly
  • FIG. 10 is a view similar to FIG. 1 and illustrates a further form of raised floor assembly constructed in accordance with the present invention
  • FIG. I l is an enlargedvertical cross-sectional view of a support pedestal. and abutting panel junction in the system illustrated in FIG. 10;
  • FIGS. 12, I6 and 17 are exploded perspective views of various forms of support posts or pedestals for use with the system illustrated in FIG. 10; i 7
  • FIGS. 13. and 14 are elongated exploded crosssectional views illustrating the manner .of fabricating a panel for use in the system illustrating in FIG. 10;
  • FIG. 15 is a vertical cross-sectional view of a completed panel for use in the system illustrated in FIG. 10.
  • FIG. 1 a portion of a raised floor system constructed in accordance with the present invention is generally indicated at 10 in FIG. 1.
  • the system is illustrated as underconstruction in a room including walls 12 and 14 and a subfloor 16.
  • Adhesively secured or otherwisesuitably.attached to the subfloor are a plurality of pedestals 18in the form of adjustable metal column supports for a plurality of identical rectangular floor panels 20.
  • Some of the panels 20 in FIG. 1 are omitted to jshow'the underlying support pedestals l8 and thelove'rall metal grid generally indicated at 22.
  • the grid 22 comprises longitudinal and transverse grid members or stringers24 and 26 supported by and preferably attached to the heads or caps of each of the pedestals 18.
  • pedestals 18 each comprise a base 28 welded, brazed, or otherwise suitably secured as indicated at 30in FIG. 3 to one end of a threaded metal stud 32.
  • the upper end of stud 32 is received in the hollow lower end of metal tube 34.
  • the upper end of this tube is again welded, brazed, or otherwise suitably attached as at 36 to the underside of a pedestal cap or head 38.
  • the telescoping relationship between stud 32 and tube 34 may be adjusted by a pair Y span more than two adjacent pedestals, i.e., may be 4 I of metal leveling nuts 40 and 42 to vary and adjust the height of the pedestal 18.
  • Base 28.0f the pedestal is preferably attached to subfloor 16 withv adhesive but must be secured in any desired manner.
  • cap 34 of the pedestal may be attached to the stringers 24 and 26 in any conventional manner. In some systems,
  • the pedestal head includes projections over which the stringers are slidably received to secure and lock the stringers to the pedestal.
  • stringers are attached by bolts and nuts to the head of feet or more in length.
  • each panel is identical in construction and preferably each is 24inches on a side to have a square configuration on the order of l to 2 inches thick.
  • each of the panels comprises a core approximately 1 inch thick and made of suitable ma terial, such as a high density particle board, i.e., compressed wood particles.
  • suitable ma terial such as a high density particle board, i.e., compressed wood particles.
  • Overlying the upper and'lower surfaces of core 50 are flat rectangular sheets 52 and 54 preferably made of galvanized steel. Steel sheets52 and 54 are preferably secured to the opposite surfaces of panel 50 by a suitable adhesive layer (not shown).
  • the top orwalking surface of the panel 20 is formed by a layer 56 of flexible and preferably somewhat resilient material, which by way of example only may take the form of a conventional all wool looped pile floor carpeting.
  • the carpet extends integrally with the layer 56 over, the edg'eof the panel as indicated at 58 and for a short distance along the panel bottom as indicated at 60. It is understood that the carpet 56 extends integrally over all four edges of the'panel and includes a bottom portion 60 along each of these four edges, in all instances integral as illustrated in'FlGS. 4A
  • the carpet is preferably secured to the metal steel sheets to the cores and to bond the carpet or other floor covering materialto the remainder of the panels include conventional two-part epoxy adhesive and conventional rubber-base, two surface adhesives with contact bondingat both surfaces.
  • the steel sheets 52 and 54 maybe omitted and the carpet 56 bonded directly to the core 50.
  • covering material is preferably conventional floor carpet, it is apparent that other flexible and at least slightly resilient materials may be used, such as certain tiles and at least partially resilient vinyl materials possessing sufficient flexibility to be wrapped around the sideedges and the bottom of the panels.
  • An important feature of the present invention includes the fact that the resiliency of the covering material 56 wrapped around the edges and the underside of the panels makes it possible to utilize a variety of core materials which were unsuited to prior raised floor panels due to the close panel tolerances which had to be maintained. That is, the resiliency of the covering material at .the abutting edges of adjacent panels 58 automatically compensates for variations in core sections from panel to panel such that a variety of core materials may be used, some of which while having exceptional strength are difficult to manufacture in quantity within the tolerances previously necessitated by the metal'edge and vinyl trim strip constructions of previous raised floor panels. For example, FIG.
  • the floor panels are of identical construction to the panels 20 previously described but with the exception that the cores 72 are made of lightweight and preferably expanded concrete. Because of the increased strength afforded by the concretecores and where loading requirements permit, the grid assembly 22 can be omitted and the pedestals 18, which in this case are provided with a flat cap or head 74, directly support abutting panels 70'. The result is a substantial savings in the cost of manufacturing and assembling the raised or elevated floor.
  • FIG. 7 shows a modified panel in partial cross section in all respects identical to the panel 70 of FIG. 6 with the exception that the concrete core 82 has embedded in it interconnected longitudinal and transverse strands 84 and 86 of metal reinforcing rods to provide added strength to the core and overall panel.
  • FIG. 8 shows a still further modification and illustrates in partial cross section a panel 90 identical to the panels previously described but in which the core 92 is formed of several interconnected wood plies to form a plywood core of increased strength.
  • FIG. 9 shows a further modified panel and panel as sembly with like parts again bearing like reference numerals.
  • the panels 20' are in all respects identical to the panels 20 previously described with the exception that each of the edges has a very noticeable taper, as indicated at 94, from the top to the bottom surface of the panel.
  • the panels previously described are all preferably made with a slight taper from top to bottom to reduce the friction encountered when the panels are inserted and particularly when they are removed from adjacent panels. This taper has, not been described in connection with the previous embodiments since it is fairly slightand in any event is obscured by the resilient nature of the floor covering material when the edges of two panels are'in abutment.
  • the slight taper is-indicated generally at 88 in FIGS.
  • the taper 94 is much more pronounced to provide clearance for a rib 96 formed along the top edge of the stringers. such as the stringer 26' illustrated.
  • the pedestal 18 is also modified to include an outwardly flaring head 98 suitably apertured to pass,
  • a ground wire 104 is provided with a conductive eyelet 106 electrically connected to the metal stringer 26' by a second screw 108 and nut 110, screw 108 passing through a suitable apertureprovided in vthe stringer.
  • the other end of ground wire 104 is connected to the central building ground system and one such wire 104 is preferably provided for each 1,000 square feet of elevated floor area.
  • An important feature of the foregoing described embodiment resides in the resilient nature of the covering which makes it possible to readily insert and remove a panel in spite of small variations in size from panel to panel since the cushioning outer cover material along the panel edges tends to give as the panel is inserted and removed.
  • the cushioning action of the covering material extending along the four edges at 60 on the underside of the panel provides a cushioning effect when the panel rests on the head 74 of FIG. 6 or on the stringers, such as the stringer 26 of FIG. 3, so that there is no direct metal-to-metal contact between the stringer or head and the metal sheet 54.
  • the resilient engagement of this lower edge 60 of the panel with the support member and the similar engagement of the side edge 58 with an adjacent panel provides ,a multiple seal acting to seal the air space between the panels forming the elevated floor and the subfloor 16 so that this space, which may vary from a few to several inches in height, may be used as a plenum for supplying air to various locations in the room.
  • the integral nature of the wrap-around .floor material provides a natural path to ground through the floor carpet itself to eliminate static electricity buildup in the walking surface of each panel.
  • the carpet material may be of the well known anti-static type so as to further reduce the likelihood of static buildup and discharge which might otherwise result from the motion of people, carts, furniture, etc., in contact with the floor covering material. Abrupt discharges of the static charges to metallic surfaces of otherpeople can cause discomfort to personnel and may cause malfunction of the low voltage electronic equipment.
  • FIG. 10 another form of raised floor system generally indicated and, as in FIG. 1, is illustrated as under construction in a room including walls 122 and 124 and a subfloor 126. Disposed on floor 126 are a plurality of support posts'or pedestals 128 for supporting a plurality of identical rectangular floor panels 130 at their corner junctures.
  • the support posts or pedestals 128 are in the form of'wooden blocks with each being provided with four outstanding pins 132 for engagement in openings or apertures 134 formed on the underside of the cores 136 of panels 130.
  • the pedestals 128 are placed on 24 inch centers and the panels 130 are preferably square and approximately 2 feet on each side.
  • each core 136 is provided with an aperture 134 adjacent each corner for receiving an upstanding pin 132 of a support pedestal 128.
  • the top or walking surface of panels 130 is provided with a layer 138 of flexible resilient material which may take the form of floor carpeting as in the previous embodiments. In the illustrated form, the carpeting extends integrally with the layer 138 and is 'secured alongthe top surface of core 136 and along its side edges by a suitable adhesive, i.e., the type of adhesive previously described.
  • the carpet termina tes short of the bottom surface of cores 136 along its side edges and a sheet metal plate "or pan 140 is adhesively or otherwise secured along the bottom surface I of core 136.
  • Pan 140 has lateral flanges projecting outwardly beyond the edges of core l36 and which flanges 142, in the finished form of panel 130, project upwardly to overlie the carpet edges secured along the edges of the core 136. That is, the flanges 142 lie in engagement with the pile of the carpet and as noted hereinafter form an electrical contact therewith.
  • FIGS. 12-15 the manner of forming panels 130 is illustrated.
  • the top surface of core 136 and the undersurface of layer 138 are provided with suitable adhesive and laminated one to the other with the edges of the carpet folded down and laminated to the edges of the core.
  • the pan which has been previously cut and formed such that the flanges 142 extend laterally at a shallow angle, i.e., about 45, is similarly secured to the.
  • openings 144 are provided throughthe metal pan 140 adjacent each corner thereof, either in conjunction with the formation of apertures 134 in cores 136 after assembly of the core and metal pan, or prior to assembly thereof with the openings 144 lying in a registry with previously formed apertures 134.
  • the pedestals 128 are spotted along the subfloor 126 at appropriate locations and the cores are set over the pedestals.
  • the apertures 144 and 134 at the corners of each panel 130 receive a'corner pin 132 on pedestal 138 and it will be appreciated that each pedestal supports the four-corner juncture of the panels 130 thereby interlocking the panels one to the other.
  • An important'feature of this embodiment resides in the electrical contact between the carpet edges of adjacent panels when interlocked one to the other by the pedestals. Static electricity buildupis thereby avoided as the charge dissipates over this wider area.
  • flanges 142 of adjacent panels lie in-electrical contact one with the othenthus increasing the effecserves to provide a resilientsupport for the panels 130.
  • FIGS. 16 and 17 there are disclosed two additional forms of support pedestals for supporting the raised flooring system illustrated in FIG. 10.
  • FIG. 16 In FIG. 16
  • a pedestal 12812 which is preferably formed of extruded aluminum and in a cruciform.
  • the walls 158 of the cruciform 12812 terminate in sleeve portions 160, which at their upper ends, are adapted to receive pins 13217.
  • Pins 132! may be formed of metal thus providing electrical contact between the metal pan 140 and the aluminum pedestal 12812.
  • the panels described .in connection with the raised floor system illustrated in FIG. 10 may also be utilized in the prior system and supported on the disclosed grids or other supporting systems.
  • the entire system, the embodiment of FIG; 10, is preferably grounded.
  • the use of pins in this lattersystem interlocks the panel one to the other forcing them into electrical contact one with the other'and with the pedestal block itself thereby maintaining electrical contact throughoutthe entire raised floor systemand also forming a substantial air seal whereby the area between the subflooringand the panels can be utilized as an air plenum.
  • raised floor system hereof includes the provision of elevated floor panels in which a flexible and at least partially resilient floor covering material extends over the top of the panel, over the side edges, and in one form hereof, around the outer portion of the panel bottom.
  • a flexible and at least partially resilient floor covering material extends over the top of the panel, over the side edges, and in one form hereof, around the outer portion of the panel bottom.
  • the present invention makes possible the use of other core material, such as gypsum board core, lightweight and preferably expanded concrete, either reinforced or not reinforced, and laminated wood paneling cores or plywood cores may also be used.
  • the panel covering material takes the form of a conventional pile carpet made of wool, nylon, or any of the other conventional carpet materials. Since stronger core materials, such as the newer lightweight concrete, may be employed, the floor panels of the present invention may be provided with increased strength in certain instances permitting the elimination of the conventional metal gridwork so that the panels are directly supported on pedestals as illustrated in FIGS. 6 and 10.
  • the panels are preferably of square configuration approximately 24 inches on a side and may vary in thickness from approximately 1 to 2 inches or more, depending upon the panel size, panel material, and the loads to be supported.
  • the covering material may be applied directly to the cores as in the embodiment illustrated in FIG. 11 but where additional strength is required, the panels may be provided with the upper and lower preferably galvanized metal sheets 52 and 54 as illustrated in FIG. 3.
  • An elevated floor assembly comprising a subfloor, I
  • each panel comprising a core having top and bottom surfaces joined by at least three edges, a flexible floor covering integrally overlying said top surface and having portions overlying the edges of said core, a sheet metal plate underlying each of said cores and having upturned flanges overlying both the covering portions overlying the core edges and the edges of said core, said flanges lying in electrical contact with the outer faces of said overlying covering portions, means for electrically coupling adjacent plates, said panel having a thickness providing sufficient strength for use as flooring in said elevated floor assembly, and static electricity discharge means coupled to at least one of said adjacent sheet metal plates for discharging static electricity in the floor covering through both said discharge means and the electrically coupled adjacent plates.
  • said support structure comprises a plurality of spaced pedestals, at least portions of one of said pedestals being electrically conductive and lying in electrical contact 10 with the adjacent pair of plates.
  • said support structure comprises a plurality of spaced pedestals each carrying upstanding pins, said core and said plate having registering openings for receiving the upper ends of said pins.
  • each of said pedestals is substantially cruciform in horizontal section.
  • said support structure includes a plurality of spaced pedestals and a grid of metal stringers spacing said panels from said pedestals.
  • a floor panel according to claim 1 wherein said core is made from material selected from the group consisting of wood particle board, chips and board, plywood,lightweightconcrete, and lightweight concrete including metal reinforcing.
  • An elevated floor assembly comprising a subfloor, a plurality of pedestals spaced about said subfloor, and a plurality of floor panels supported by said pedestals in spaced relation above said subfloor, each panel comprising a core having top and bottom surfaces joined by at least three edges, and a flexible onepiece continuous floor covering material overlying said top surface and said edges of said core, said material extending along said bottom surface of said core adjacent each of said edges and being permanently adhesively secured to said core along said edges and bottom surfaces thereof, said panel having a thickness on the order of 1-2 inches with sufficient strength for use as raised flooring.
  • each of said panels comprising a core having top and bottom surfaces joined by at least three edges, aflexible one-piece continuous floor covering material overlying said top surface and having portions overlying the edges of said core, said floor covering material being permanently adhesively secured to the core along said edges and said top surface thereof, a sheet metal plate underlying said core and having upturned flanges overlying both the carpet portions overlying the core edges and the edges of the core, and means for securing said core and said plate one to the other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Floor Finish (AREA)

Abstract

Disclosed is a raised floor panel and panel assembly for computer and similar installations. The panels are supported above a subfloor on pedestals and are easily installed and removed for later access to the space beneath the floor. Each panel comprises a core with or without strengthening metal sheets about which is wrapped a flexible and at least partially resilient floor covering, such as carpet or flexible tile material. In one form, the floor covering extends over the edges and for a short distance beneath each panel. In another form, a sheet metal pan underlies the core and has upturned flanges in contact with the outer face of the floor covering extending over the edges of the core.

Description

United States Patent 1191 Bettinger 1*May 21, 1974 RAISED FLOOR PANEL AND ASSEMBLY 3,065,506 ll/l962 Tremer 52/126 18,057 i967 N h [75] Inventor: James H. Bettinger, Elkridge, Md. .33 Z1968 llllll 2 5 [73] Assigneez United Fabricating cnmpany, Inc. 3 ,681,882 8ll9 'l2 Bettlnger 52/126 Elkridge, Md. g P C F 1 Primary Examinerrice aw, Jr. 1 Nome 32532332 3333: g i 989 Attorney, Agent, or Firm-LeBlanc & Shur has been disclaimed. 7 ABSTRACT [22] Filed: Aug. 7,1972 v Disclosed is a raised floor panel and panel assembly [21] Appl' 278,465 for computer and similar installations. The panels are Related Application Data supported above a subfloor on pedestalsand are easily [63] Continuatiomim an of Ser NO 23 531 March' 30 installed and removed for later access to the space be- 1970 Pat 3p681 neath the floor. Each panel comprises a core with or without strengthening metal sheets about which is' 52 us. 01. 52/126, 52/263 Wrapped a flexible least Partially resilient floor [51] Int. Cl E04b 5/43 CQVering' Such as carpet or flexible tile materialj 5s 1 Field of Search 2/122 126 263 483 fOYm' the wring extends the edges 2 and for a short distance beneath each panel. In an- 3 other form, a sheet metal pan underlies the core and References Cited has upturned flanges in contact with the outer face of UNITED STATES PATENTS the floor covering extending over the edges of the core. 3012.919 l2/l96l Janney 52/273 3,025,934
3/I962 Spiselman et al 5 2 /l26 13 Claims, l8 Drawing Figures PATENTi-inmzl m4 SHLEI 1 0F 5 FIGS mm 3 [IF 5 PATENTEDMAYZI I974 saw u (if 5 Hell 1 RAISED FLOOR PANEL AND ASSEMBLY This application is a continuation-in-part of copending application, Ser. No. 23,531 filed Mar. 30, 1970, now US. Pat. No. 3,681,882. I
This invention relates to raised floor panels and to raised floor panel assemblies, and more particularly to apparatus of this type of simplified and inexpensive construction which reduces the cost of manufacturing and assembling raised or elevated floors.
Modern computer installations employing advanced computer equipment require a carefully planned and completely coordinated environment. Todays sophisticated equipment must be provided with temperature and humidity control, air filtration, traffic and noise restrictions, and a wide variety of other flexible facilities for the machines and their operators. Provision must be made for future expansion, in the form of new or modifled equipment.
For these and other reasons, many modern computer installations are provided with what are commonly referred to as raised or elevated floors. These floors generally take the form of removablerectangular floor panels or tiles supported in spaced relation above a suitable subfloor by a metal lattice of criss-crossing grids and supporting columns. Conduits, such as electrical cabling, air conditioning equipment, and the like, pass between the subfloor and the .floorfto the computer circuits and associated. equipment. In some instances. the space between the two floors may be used as a plenum to supply conditioning air to various parts of the room. In all cases the removability of the panels provides great flexibility in making it possible. to add additional cabling or to service the computer equipment as the need arises.
The present invention is directed to an improved panel and panel assembly for raised floors of this general type and is particularly directed to a construction which substantially lessens the cost of manufacturing and installing the floor. In the present invention, the customary floor tile covering for the panels and the accompanying lateral trim edge is replaced by a flexible and preferably at least slightly resilient floor coveringmaterial which not only extends over the top surface of the floor. panels, but also along the edgesand, in one form hereof. for a short distance along the underside of each panel. In the preferred embodiment, the floor covering takes the form of a carpet with sufficient resiliency that the abutting edges of adjacent panels form an air seal to define a plenum beneath the raised floor. An important feature resulting from the use of a flexible floor covering material extending over the top and side edges of the panels is that the panel cores need not be held to close tolerances and materials such as lightweight concrete may be used as the core. At the same time. the resiliency of the carpet material permits slight adjustment for variations in panel size from panel to panel and further provides for easy installation and removal of the panels due to the resiliency with which they abut. Additional advantages include the fact that the flexible and resilient nature of the carpeting material achieves a sound dampening and cushioning feature for the floor system by eliminating any metal-tmetal contact and the utilization of a continuous cover material eliminates static electricity buildup in the walking surface of each panel by allowing the static electricity buildup to follow a natural path to ground.
Since the wrap-around floor covering material is in contact with the metal understructure which is conventionally connected at spaced points to a central grounding system, all static electricity is conducted to ground.
In another form hereof, a sheet metal pan underlies the panel and has upturned flanges overlying the floor covering material along the edges of the panel. Adjacent panels are electrically coupled by electrically conductive pedestals or portions thereof or metal grids which interconnect and support the adjacent panels. Additionally, the plate flanges of adjacent panels lie in electrical contact further ensuring wide dissipation of the static electricity buildup in the floor covering material. The cores and attached pan and floor covering are supported by post blocks or pedestals which may be provided in wood, metal, plastic, concrete or other materials and in various configurations.
it is therefore one object of the present invention to provide an improved panel for raised floors.
Another object of the present invention is to provide an improved raised floor system of simplified and less expensive construction. 1
Another object of the present invention is to provide an improved panel and raised floor system which substantially reduces the cost of manufacturing and installing the floor.
Another object of the present invention is to provide an improved panel and floor panel assembly permitting the use of a wide variety of panel cores which need not be manufactured to close tolerances.
Another object of the present invention is to provide a raised floor panel and panel assembly in which the top surface and side edges of the panels are each covered by an integral layer of floor carpeting.
Another object of the present invention is to provide a raised floor panel in which a conventional pile carpet extends over the top, along each side edge, and for a short distance along the bottom and round the entire periphery of each panel. 7
Another object of the present invention is to provide an elevated'or raised floor panel system in which each panel comprises a concrete core .covered on at least all but one side by a flexible and resilient floor covering material, such as carpeting or the like.
A further object of the present invention is to provide a raised floor panel system in which each panel has an underlying sheet metal plane with upturned flanges providing improved electrical contact between the floor panels and the underlying support structure as well as between adjacent panels.
It is a related object hereof to provide a raised floor panel system wherein the panels are supported by 'post blocks or pedestals which are readily, easily and inexpensively manufactured and which readily interlock with the panels.
FIG. 2 is a partial cross section through the raised floor assembly or system of FIG. 1;
FIG. 3 is an enlarged view of a support pedestal, grid,
and abutting panel junction in the system of FIGS. 1
the top and FIG. 5 is a perspective view of a modified floor panel with parts cut away to show the carpet attached directly' to the core;
FIG. 6 is a partial elevational view corresponding to that of FIG. 3 showing a portion of a raised floor assembly in which the metal 'gridwork is omitted;
FIG. 7 is a' partial cross section through a modified floor panel constructed in accordance with the present invention;
FIG. 8 is a partial cross'section through a further modified floor panel constructed in accordance with this invention; 7
FIG. 9 is a view similar to FIGS. 3 and 6 showing a I still further modified elevated floor assembly;
FIG. 10 is a view similar to FIG. 1 and illustrates a further form of raised floor assembly constructed in accordance with the present invention;
FIG. I l is an enlargedvertical cross-sectional view of a support pedestal. and abutting panel junction in the system illustrated in FIG. 10;
FIGS. 12, I6 and 17 are exploded perspective views of various forms of support posts or pedestals for use with the system illustrated in FIG. 10; i 7
FIGS. 13. and 14 are elongated exploded crosssectional views illustrating the manner .of fabricating a panel for use in the system illustrating in FIG. 10; and,
FIG. 15 is a vertical cross-sectional view of a completed panel for use in the system illustrated in FIG. 10.
Referring to the drawings, a portion of a raised floor system constructed in accordance with the present invention is generally indicated at 10 in FIG. 1. The system is illustrated as underconstruction in a room including walls 12 and 14 and a subfloor 16. Adhesively secured or otherwisesuitably.attached to the subfloor are a plurality of pedestals 18in the form of adjustable metal column supports for a plurality of identical rectangular floor panels 20. Some of the panels 20 in FIG. 1 are omitted to jshow'the underlying support pedestals l8 and thelove'rall metal grid generally indicated at 22. The grid 22 comprises longitudinal and transverse grid members or stringers24 and 26 supported by and preferably attached to the heads or caps of each of the pedestals 18. Various pedestal and grid constructions are presently available and any of the well known structures may be used in the present invention. In the preferred embodiment. pedestals 18'are placed on 24 inch centers and the panels 20 are preferably square and approximately 2 feet on each side..
Referring in particular to .FIGS. 2 and 3, pedestals 18 each comprise a base 28 welded, brazed, or otherwise suitably secured as indicated at 30in FIG. 3 to one end of a threaded metal stud 32. The upper end of stud 32 is received in the hollow lower end of metal tube 34. The upper end of this tube is again welded, brazed, or otherwise suitably attached as at 36 to the underside of a pedestal cap or head 38. The telescoping relationship between stud 32 and tube 34 may be adjusted by a pair Y span more than two adjacent pedestals, i.e., may be 4 I of metal leveling nuts 40 and 42 to vary and adjust the height of the pedestal 18. Base 28.0f the pedestal is preferably attached to subfloor 16 withv adhesive but must be secured in any desired manner. Likewise, cap 34 of the pedestal may be attached to the stringers 24 and 26 in any conventional manner. In some systems,
the pedestal head includes projections over which the stringers are slidably received to secure and lock the stringers to the pedestal. In other constructions, the
stringers are attached by bolts and nuts to the head of feet or more in length.
Resting on the stringers 24 and 26 and forming an important part of the present invention are the novel floor panels 20. Each panel is identical in construction and preferably each is 24inches on a side to have a square configuration on the order of l to 2 inches thick. As best seen in FIG. 3, each of the panels comprises a core approximately 1 inch thick and made of suitable ma terial, such as a high density particle board, i.e., compressed wood particles. Overlying the upper and'lower surfaces of core 50 are flat rectangular sheets 52 and 54 preferably made of galvanized steel. Steel sheets52 and 54 are preferably secured to the opposite surfaces of panel 50 by a suitable adhesive layer (not shown). Finally, the top orwalking surface of the panel 20 is formed by a layer 56 of flexible and preferably somewhat resilient material, which by way of example only may take the form of a conventional all wool looped pile floor carpeting. The carpet extends integrally with the layer 56 over, the edg'eof the panel as indicated at 58 and for a short distance along the panel bottom as indicated at 60. It is understood that the carpet 56 extends integrally over all four edges of the'panel and includes a bottom portion 60 along each of these four edges, in all instances integral as illustrated in'FlGS. 4A
' and 4B. The carpet is preferably secured to the metal steel sheets to the cores and to bond the carpet or other floor covering materialto the remainder of the panels include conventional two-part epoxy adhesive and conventional rubber-base, two surface adhesives with contact bondingat both surfaces. In certain instances, where load requirements permit, the steel sheets 52 and 54 maybe omitted and the carpet 56 bonded directly to the core 50., I
While the covering material is preferably conventional floor carpet, it is apparent that other flexible and at least slightly resilient materials may be used, such as certain tiles and at least partially resilient vinyl materials possessing sufficient flexibility to be wrapped around the sideedges and the bottom of the panels.
An important feature of the present invention includes the fact that the resiliency of the covering material 56 wrapped around the edges and the underside of the panels makes it possible to utilize a variety of core materials which were unsuited to prior raised floor panels due to the close panel tolerances which had to be maintained. That is, the resiliency of the covering material at .the abutting edges of adjacent panels 58 automatically compensates for variations in core sections from panel to panel such that a variety of core materials may be used, some of which while having exceptional strength are difficult to manufacture in quantity within the tolerances previously necessitated by the metal'edge and vinyl trim strip constructions of previous raised floor panels. For example, FIG. 6 shows a construction in which the floor panels are of identical construction to the panels 20 previously described but with the exception that the cores 72 are made of lightweight and preferably expanded concrete. Because of the increased strength afforded by the concretecores and where loading requirements permit, the grid assembly 22 can be omitted and the pedestals 18, which in this case are provided with a flat cap or head 74, directly support abutting panels 70'. The result is a substantial savings in the cost of manufacturing and assembling the raised or elevated floor.
FIG. 7 shows a modified panel in partial cross section in all respects identical to the panel 70 of FIG. 6 with the exception that the concrete core 82 has embedded in it interconnected longitudinal and transverse strands 84 and 86 of metal reinforcing rods to provide added strength to the core and overall panel. FIG. 8 shows a still further modification and illustrates in partial cross section a panel 90 identical to the panels previously described but in which the core 92 is formed of several interconnected wood plies to form a plywood core of increased strength.
FIG. 9 shows a further modified panel and panel as sembly with like parts again bearing like reference numerals. In the embodiment of FIG. 9, the panels 20' are in all respects identical to the panels 20 previously described with the exception that each of the edges has a very noticeable taper, as indicated at 94, from the top to the bottom surface of the panel. The panels previously described are all preferably made with a slight taper from top to bottom to reduce the friction encountered when the panels are inserted and particularly when they are removed from adjacent panels. This taper has, not been described in connection with the previous embodiments since it is fairly slightand in any event is obscured by the resilient nature of the floor covering material when the edges of two panels are'in abutment. The slight taper is-indicated generally at 88 in FIGS. 7 and8. Inthe embodiment of FIG. 9, the taper 94 is much more pronounced to provide clearance for a rib 96 formed along the top edge of the stringers. such as the stringer 26' illustrated. In this embodiment. the pedestal 18 is also modified to include an outwardly flaring head 98 suitably apertured to pass,
four screws (only one of which is indicated at 100) for securing a bracket or nut 102 to the end of the stringer 26. To attach the stringer to the head, the stringer is slipped into position with its lower flanges resting on head 98 but beneath nut 102. Screw 100 is then tightened to clamp the stringer by the nut to the top of the pedestal head. It is understood that the other three stringers forming a corner junction for the assembly of FIG. 9 are similarly secured to the pedestal 18. A ground wire 104 is provided with a conductive eyelet 106 electrically connected to the metal stringer 26' by a second screw 108 and nut 110, screw 108 passing through a suitable apertureprovided in vthe stringer. The other end of ground wire 104 is connected to the central building ground system and one such wire 104 is preferably provided for each 1,000 square feet of elevated floor area.
An important feature of the foregoing described embodiment resides in the resilient nature of the covering which makes it possible to readily insert and remove a panel in spite of small variations in size from panel to panel since the cushioning outer cover material along the panel edges tends to give as the panel is inserted and removed. In addition,,the cushioning action of the covering material extending along the four edges at 60 on the underside of the panel provides a cushioning effect when the panel rests on the head 74 of FIG. 6 or on the stringers, such as the stringer 26 of FIG. 3, so that there is no direct metal-to-metal contact between the stringer or head and the metal sheet 54. At the same time, the resilient engagement of this lower edge 60 of the panel with the support member and the similar engagement of the side edge 58 with an adjacent panel provides ,a multiple seal acting to seal the air space between the panels forming the elevated floor and the subfloor 16 so that this space, which may vary from a few to several inches in height, may be used as a plenum for supplying air to various locations in the room. Also, the integral nature of the wrap-around .floor material provides a natural path to ground through the floor carpet itself to eliminate static electricity buildup in the walking surface of each panel. By virtue of the wrap-around floor covering in contact with the metal under-structure, through lower edge 60 and the metal under-structure being connected at appropriate points to a central grounding system as illustrated at 104 in FIG. 9, all'static electricity tends to go to ground. This is an important consideration formany computer installations since static discharge is considered harmful to the low voltage equipment employed in these installations. If desired, the carpet material may be of the well known anti-static type so as to further reduce the likelihood of static buildup and discharge which might otherwise result from the motion of people, carts, furniture, etc., in contact with the floor covering material. Abrupt discharges of the static charges to metallic surfaces of otherpeople can cause discomfort to personnel and may cause malfunction of the low voltage electronic equipment.
Referring now to the embodiment illustrated in FIGS. 10-15, there is illustrated in FIG. 10 another form of raised floor system generally indicated and, as in FIG. 1, is illustrated as under construction in a room including walls 122 and 124 and a subfloor 126. Disposed on floor 126 are a plurality of support posts'or pedestals 128 for supporting a plurality of identical rectangular floor panels 130 at their corner junctures.
In the simpliest form of support for the panels 130 in this system, the support posts or pedestals 128 are in the form of'wooden blocks with each being provided with four outstanding pins 132 for engagement in openings or apertures 134 formed on the underside of the cores 136 of panels 130. As in the previous embodiment, the pedestals 128 are placed on 24 inch centers and the panels 130 are preferably square and approximately 2 feet on each side.
Supported by pedestals 128 is another form of floor panel 130 having a core 136 approximately 1 inch thick and made of like materials as the core 50 of the previous embodiment. As noted previously, each core 136 is provided with an aperture 134 adjacent each corner for receiving an upstanding pin 132 of a support pedestal 128. The top or walking surface of panels 130 is provided with a layer 138 of flexible resilient material which may take the form of floor carpeting as in the previous embodiments. In the illustrated form, the carpeting extends integrally with the layer 138 and is 'secured alongthe top surface of core 136 and along its side edges by a suitable adhesive, i.e., the type of adhesive previously described. In this form, the carpet termina tes short of the bottom surface of cores 136 along its side edges and a sheet metal plate "or pan 140 is adhesively or otherwise secured along the bottom surface I of core 136. Pan 140 has lateral flanges projecting outwardly beyond the edges of core l36 and which flanges 142, in the finished form of panel 130, project upwardly to overlie the carpet edges secured along the edges of the core 136. That is, the flanges 142 lie in engagement with the pile of the carpet and as noted hereinafter form an electrical contact therewith.
Referring to FIGS. 12-15, the manner of forming panels 130 is illustrated. Referring particularly to FIG. 13, the top surface of core 136 and the undersurface of layer 138 are provided with suitable adhesive and laminated one to the other with the edges of the carpet folded down and laminated to the edges of the core. Thereafter, the pan, which has been previously cut and formed such that the flanges 142 extend laterally at a shallow angle, i.e., about 45, is similarly secured to the.
undersurface of core 136. Adhesive is not, however, applied tothe inside faces of upturned flanges 142. Once the core 136 and pan 140 are laminated, the assembly is rolled or formed to bendv theflanges 142 upwardly into overlying and engaged relation with the carpet edges overlying the edges of core 136. Thus, the carpet edges are compressed bringing the 'rnetal pan into electrical contact with the conductive faces of the carpet yarns. Openings 144 are provided throughthe metal pan 140 adjacent each corner thereof, either in conjunction with the formation of apertures 134 in cores 136 after assembly of the core and metal pan, or prior to assembly thereof with the openings 144 lying in a registry with previously formed apertures 134.
To install the raised floor system'of this embodiment, the pedestals 128 are spotted along the subfloor 126 at appropriate locations and the cores are set over the pedestals. Particularly, the apertures 144 and 134 at the corners of each panel 130 receive a'corner pin 132 on pedestal 138 and it will be appreciated that each pedestal supports the four-corner juncture of the panels 130 thereby interlocking the panels one to the other. An important'feature of this embodiment, resides in the electrical contact between the carpet edges of adjacent panels when interlocked one to the other by the pedestals. Static electricity buildupis thereby avoided as the charge dissipates over this wider area. Also, flanges 142 of adjacent panels lie in-electrical contact one with the othenthus increasing the effecserves to provide a resilientsupport for the panels 130.
' Referring to FIGS. 16 and 17, there are disclosed two additional forms of support pedestals for supporting the raised flooring system illustrated in FIG. 10. In FIG.
cal contact is maintained between the metal pan 140 and the metal pedestal 128a.
Referring now to FIG. 17, there is disclosed a pedestal 12812 which is preferably formed of extruded aluminum and in a cruciform. The walls 158 of the cruciform 12812 terminate in sleeve portions 160, which at their upper ends, are adapted to receive pins 13217. Pins 132!) may be formed of metal thus providing electrical contact between the metal pan 140 and the aluminum pedestal 12812. i 1
It will be appreciated that the panels described .in connection with the raised floor system illustrated in FIG. 10 may also be utilized in the prior system and supported on the disclosed grids or other supporting systems. Also, the entire system, the embodiment of FIG; 10, is preferably grounded. Furthermore, the use of pins in this lattersystem interlocks the panel one to the other forcing them into electrical contact one with the other'and with the pedestal block itself thereby maintaining electrical contact throughoutthe entire raised floor systemand also forming a substantial air seal whereby the area between the subflooringand the panels can be utilized as an air plenum.
Important features of the raised floor system hereof include the provision of elevated floor panels in which a flexible and at least partially resilient floor covering material extends over the top of the panel, over the side edges, and in one form hereof, around the outer portion of the panel bottom. This makes possible the use of a variety of panel core materials since the resiliency and flexibility of the covering material, particularly about the abutting edges of adjacent floor panels, automatically compensates for variation in size of the core and makes possible the useof core materials which could not previously be economically manufactured to the required tolerances. In additionto the more 'conventional fiberboard and pressed wood particle board panels, the present invention makes possible the use of other core material, such as gypsum board core, lightweight and preferably expanded concrete, either reinforced or not reinforced, and laminated wood paneling cores or plywood cores may also be used. In the preferred embodiment, the panel covering material takes the form of a conventional pile carpet made of wool, nylon, or any of the other conventional carpet materials. Since stronger core materials, such as the newer lightweight concrete, may be employed, the floor panels of the present invention may be provided with increased strength in certain instances permitting the elimination of the conventional metal gridwork so that the panels are directly supported on pedestals as illustrated in FIGS. 6 and 10. The panels are preferably of square configuration approximately 24 inches on a side and may vary in thickness from approximately 1 to 2 inches or more, depending upon the panel size, panel material, and the loads to be supported. In certain instances, the covering material may be applied directly to the cores as in the embodiment illustrated in FIG. 11 but where additional strength is required, the panels may be provided with the upper and lower preferably galvanized metal sheets 52 and 54 as illustrated in FIG. 3.
This invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description,.and all changes which come within the meaning and range of equivalency of the claims ar therefore intended to be embraced therein,
What is claimed and desired to be secured by United States letters patent is:
1. An elevated floor assembly comprising a subfloor, I
a support structure spaced about said subfloor, a plurality of floor panels supported by said'support structure in spaced relation above said subfloor, each panel comprising a core having top and bottom surfaces joined by at least three edges, a flexible floor covering integrally overlying said top surface and having portions overlying the edges of said core, a sheet metal plate underlying each of said cores and having upturned flanges overlying both the covering portions overlying the core edges and the edges of said core, said flanges lying in electrical contact with the outer faces of said overlying covering portions, means for electrically coupling adjacent plates, said panel having a thickness providing sufficient strength for use as flooring in said elevated floor assembly, and static electricity discharge means coupled to at least one of said adjacent sheet metal plates for discharging static electricity in the floor covering through both said discharge means and the electrically coupled adjacent plates.
2. An assembly according to claim 1 wherein the flanges of adjacent plates lie in electrical contact one with the other.
3. An assembly accordingto claim 1 wherein "each of a pair of said adjacent sheet metal plates lies in electrical contact with a part of said support structure whereby electrical contactbetween the covering be tween said pair of plates is established through said support structure.
4. An assembly according to claim 3 wherein said support structure comprises a plurality of spaced pedestals, at least portions of one of said pedestals being electrically conductive and lying in electrical contact 10 with the adjacent pair of plates.
5. An assembly'according to claim 1 wherein said support structure comprises a plurality of spaced pedestals each carrying upstanding pins, said core and said plate having registering openings for receiving the upper ends of said pins.- 7
6. An assembly according to claim 5 wherein said pedestals comprise wooden blocks.
7. An assembly according to claim 5 wherein said pedestals comprise inverted U-shaped members.
8. An assembly according to claim 5 wherein each of said pedestals is substantially cruciform in horizontal section.
9. An assembly according to claim 1 wherein said support structure includes a plurality of spaced pedestals and a grid of metal stringers spacing said panels from said pedestals.
10. An assembly according to claim 1 wherein said covering comprises a carpet.
11. A floor panel according to claim 1 wherein said core is made from material selected from the group consisting of wood particle board, chips and board, plywood,lightweightconcrete, and lightweight concrete including metal reinforcing. I
12. An elevated floor assembly comprising a subfloor, a plurality of pedestals spaced about said subfloor, and a plurality of floor panels supported by said pedestals in spaced relation above said subfloor, each panel comprising a core having top and bottom surfaces joined by at least three edges, and a flexible onepiece continuous floor covering material overlying said top surface and said edges of said core, said material extending along said bottom surface of said core adjacent each of said edges and being permanently adhesively secured to said core along said edges and bottom surfaces thereof, said panel having a thickness on the order of 1-2 inches with sufficient strength for use as raised flooring.
13. In an elevated floor assembly, a plurality of floor panels, a pluralityof support pedestals for said panels and a plurality of pins interconnecting said pedestals and said panels, each of said panels comprising a core having top and bottom surfaces joined by at least three edges, aflexible one-piece continuous floor covering material overlying said top surface and having portions overlying the edges of said core, said floor covering material being permanently adhesively secured to the core along said edges and said top surface thereof, a sheet metal plate underlying said core and having upturned flanges overlying both the carpet portions overlying the core edges and the edges of the core, and means for securing said core and said plate one to the other. =l
(Ll/iii l i J L? CUM ii EC. 1 l U13? Patent l-io 3 ,8ll,237 Dated May 21, 1974 In entr(s) James H, Bettinger It is certified that rror appears in the above-identifiedpatent and that said Letters P1T.'Q1lt are hereby corrected as shown below:
In Column 2-, line 50-, "plane" should read --plate--. In Column 3 line- 32, "elongated" should read -enlarged--; line 34, "illustrating" should read --illustrated--. In Column 4, line 4, "must" should read --may--; line 33,
"panel 20" should read --panels 20--.
In Column 6, line 42, 'of other people" should read --or other people--.'
Signed and sealed this 8th day of October 1974.
(SEAL) Attest:
MCCOY M. GIBSON JR. 0. MARSHALL DANN Commissioner of Patents Attesting Officer

Claims (13)

1. An elevated floor assembly comprising a subfloor, a support structure spaced about said subfloor, a plurality of floor panels supported by said support structure in spaced relation above said subfloor, each panel comprising a core having top and bottom surfaces joined by at least three edges, a flexible floor covering integrally overlying said top surface and having portions overlying the edges of said core, a sheet metal plate underlying each of said cores and having upturned flanges overlying both the covering portions overlying the core edges and the edges of said core, said flanges lying in electrical contact with the outer faces of said overlying covering portions, means for electrically coupling adjacent plates, said panel having a thickness providing sufficient strength for use as flooring in said elevated floor assembly, and static electricity discharge means coupled to at least one of said adjacent sheet metal plates for discharging static electricity in the floor covering through both said discharge means and the electrically coupled adjacent plates.
2. An assembly according to claim 1 wherein the flanges of adjacent plates lie in electrical contact one with the other.
3. An assembly according to claim 1 wherein each of a pair of said adjacent sheet metal plates lies in electrical contact with a part of said support structure whereby electrical contact between the covering between said pair of plates is established through said support structure.
4. An assembly according to claim 3 wherein said support structure comprises a plurality of spaced pedestals, at least portions of one of said pedestals being electrically conductive and lying in electrical contact with the adjacent pair of plAtes.
5. An assembly according to claim 1 wherein said support structure comprises a plurality of spaced pedestals each carrying upstanding pins, said core and said plate having registering openings for receiving the upper ends of said pins.
6. An assembly according to claim 5 wherein said pedestals comprise wooden blocks.
7. An assembly according to claim 5 wherein said pedestals comprise inverted U-shaped members.
8. An assembly according to claim 5 wherein each of said pedestals is substantially cruciform in horizontal section.
9. An assembly according to claim 1 wherein said support structure includes a plurality of spaced pedestals and a grid of metal stringers spacing said panels from said pedestals.
10. An assembly according to claim 1 wherein said covering comprises a carpet.
11. A floor panel according to claim 1 wherein said core is made from material selected from the group consisting of wood particle board, chips and board, plywood, lightweight concrete, and lightweight concrete including metal reinforcing.
12. An elevated floor assembly comprising a subfloor, a plurality of pedestals spaced about said subfloor, and a plurality of floor panels supported by said pedestals in spaced relation above said subfloor, each panel comprising a core having top and bottom surfaces joined by at least three edges, and a flexible one-piece continuous floor covering material overlying said top surface and said edges of said core, said material extending along said bottom surface of said core adjacent each of said edges and being permanently adhesively secured to said core along said edges and bottom surfaces thereof, said panel having a thickness on the order of 1-2 inches with sufficient strength for use as raised flooring.
13. In an elevated floor assembly, a plurality of floor panels, a plurality of support pedestals for said panels and a plurality of pins interconnecting said pedestals and said panels, each of said panels comprising a core having top and bottom surfaces joined by at least three edges, a flexible one-piece continuous floor covering material overlying said top surface and having portions overlying the edges of said core, said floor covering material being permanently adhesively secured to the core along said edges and said top surface thereof, a sheet metal plate underlying said core and having upturned flanges overlying both the carpet portions overlying the core edges and the edges of the core, and means for securing said core and said plate one to the other.
US00278465A 1970-03-30 1972-08-07 Raised floor panel and assembly Expired - Lifetime US3811237A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US00278465A US3811237A (en) 1970-03-30 1972-08-07 Raised floor panel and assembly
GB3683773A GB1425977A (en) 1972-08-07 1973-08-02 Floor panel and elevated floor assembly using same
ZA735290A ZA735290B (en) 1972-08-07 1973-08-03 Floor panel and elevated floor assembly using same
FI2446/73A FI53744C (en) 1972-08-07 1973-08-03 GOLVPANEL OCH AV ETT FLERTAL PANELER BESTAOENDE DUBBELGOLVKONSTRUKTION
IT27592/73A IT992861B (en) 1972-08-07 1973-08-06 PANEL FOR FLOORS AND RAISED FLOOR COMPLEX USING THE ABOVE PANEL
BR5978/73A BR7305978D0 (en) 1972-08-07 1973-08-06 FLOOR PANEL AND HIGH FLOOR SET
CA178,197A CA989133A (en) 1972-08-07 1973-08-07 Raised floor panel and assembly
FR7328834A FR2195744B1 (en) 1972-08-07 1973-08-07
AU58984/73A AU476930B2 (en) 1972-08-07 1973-08-07 Floor panel and elevated floor assembly using same
JP48088761A JPS4985821A (en) 1972-08-07 1973-08-07
DE19732339978 DE2339978A1 (en) 1972-08-07 1973-08-07 BASE PLATE ARRANGEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2353170A 1970-03-30 1970-03-30
US00278465A US3811237A (en) 1970-03-30 1972-08-07 Raised floor panel and assembly

Publications (1)

Publication Number Publication Date
US3811237A true US3811237A (en) 1974-05-21

Family

ID=26697283

Family Applications (1)

Application Number Title Priority Date Filing Date
US00278465A Expired - Lifetime US3811237A (en) 1970-03-30 1972-08-07 Raised floor panel and assembly

Country Status (1)

Country Link
US (1) US3811237A (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2700619A1 (en) * 1976-01-12 1977-07-21 Donn Prod Inc PRINCIPALLY RECTANGULAR FLOOR PLATE FOR DOUBLE FLOORS AND HIGH-RIDING FLOOR MADE FROM THEM
US4085557A (en) * 1976-06-01 1978-04-25 James A. Tharp Raised access floor system
US4279109A (en) * 1977-05-12 1981-07-21 Madl Jr Joseph Access floor mounting assembly
EP0102211A2 (en) 1982-08-26 1984-03-07 Tate Architectural Products, Inc. Modular tile with positioning means for use with an access floor panel system
US4447998A (en) * 1982-03-05 1984-05-15 Griffin Kary A Floor panel
WO1985004685A1 (en) * 1984-04-05 1985-10-24 Beco Produktutveckling Method and means to provide elevated floors with an improved electrical screening
US4598510A (en) * 1984-08-01 1986-07-08 Wagner Iii Fred A Modular and expandable platform system
US4736555A (en) * 1985-05-22 1988-04-12 Sekisui Kagaku Kogyo Kabushiki Kaisha Free access type floor
US4748789A (en) * 1986-07-21 1988-06-07 Hedley Gilbert P Access floor panel
WO1988005105A1 (en) * 1987-01-12 1988-07-14 Ole Frederiksen A floor covering of electrically conducting type
US4759162A (en) * 1987-04-16 1988-07-26 Wyse Steven J Modular platform assembly
US4790110A (en) * 1987-06-01 1988-12-13 Buchtal Gesellschaft Mit Beschrankter Haftung Tile-like ceramic element having an electrically conductive surface glaze on the visible side
US4835924A (en) * 1986-12-17 1989-06-06 Tate Acess Floors Self-gridding flooring system
US4843781A (en) * 1986-07-18 1989-07-04 Chase Iii Francis H Composite access floor panel
US4850163A (en) * 1987-01-21 1989-07-25 O M Kiki Co., Ltd. Free-access floor
US4856256A (en) * 1986-09-10 1989-08-15 O M Kiki Co., Ltd. Free access floor panel
US4893441A (en) * 1985-06-05 1990-01-16 Iceco S.P.A. Load-bearing structure for raised floors
US4901490A (en) * 1984-12-17 1990-02-20 Gabalan Corporation Raised flooring panel and raised flooring assemblies
US4987708A (en) * 1989-09-21 1991-01-29 Herman Miller, Inc. Seismic anchor
US5016408A (en) * 1987-07-18 1991-05-21 Mero-Werke Dr. Ing. Max Mengeringhausen Gmbh & Co. Sealed wall connection to raised floor for use in germ-free chambers or the like
US5398466A (en) * 1990-11-19 1995-03-21 Sumitomo Rubber Industries, Ltd. Stanchion unit assembly for floor boards
AT88U3 (en) * 1994-10-05 1995-05-26 Klippon Handelsgesellschaft M DOUBLE FLOOR CONSTRUCTION
US5465534A (en) * 1994-05-26 1995-11-14 Equipto Flooring substructure
US5475953A (en) * 1994-09-29 1995-12-19 Powerflor, Inc. 2-shaped edge molding strip
US5752357A (en) * 1991-11-11 1998-05-19 Piller; Helmut Method for the reversibly fixing a covering to a supporting surface, and parts and materials suitable for carrying out the method
US6202374B1 (en) 1998-06-09 2001-03-20 Steelcase Development Inc. Floor system
US20030051420A1 (en) * 2001-07-11 2003-03-20 Leon Richard Joseph Unitized, pre-fabricated raised access floor arrangement, installation and leveling method, and automatized leveling tool
ES2189669A1 (en) * 2001-10-01 2003-07-01 Sales Eugenio Belles Laying of pavements and replaceable skirtings.
US6612084B2 (en) * 1999-09-07 2003-09-02 Speedfam-Ipec Corporation Clean room and method
US6637161B1 (en) 2000-11-28 2003-10-28 Steelcase Development Corporation Floor system
US6669163B2 (en) * 2000-01-20 2003-12-30 Universal Support Systems Llc Support apparatus and grounded equipment frame
US20040055232A1 (en) * 1997-09-11 2004-03-25 Roger Jette Raised floor system and support apparatus
US6748707B1 (en) 2001-07-24 2004-06-15 Steelcase Development Corporation Utility interface system
US20040154240A1 (en) * 2003-02-06 2004-08-12 Hiroaki Hiraguri Sound insulating floor structure
US6797219B1 (en) 2000-11-28 2004-09-28 Steelcase Development Corporation Method for manufacture of floor panels
US20050028463A1 (en) * 2001-10-29 2005-02-10 Georgi Pantev Raised flooring system
US20050069079A1 (en) * 2003-09-12 2005-03-31 Boardman Charles Edward Modular reactor containment system
FR2861772A1 (en) * 2003-10-31 2005-05-06 Etanco L R Device for fastening a top cover on support structure covered with compressible packing, has support with locking mechanism that fastens a connection unit on a column, and panels with lateral edges fixed on girder
US6918217B2 (en) 2002-02-25 2005-07-19 Haworth, Ltd. Raised access floor system
US20050246984A1 (en) * 2004-04-13 2005-11-10 Sam Colosimo Modular access floor system with airseal gasket
US20070017173A1 (en) * 2005-07-22 2007-01-25 Jun-Yup Kim Supporting bolt and supporting system for raised access floor with the same
US20070059543A1 (en) * 2003-12-11 2007-03-15 Sven Kornfalt Flooring system with a plurality of different decorative upper surfaces
DE202007017242U1 (en) 2007-12-10 2009-04-16 Lindner Ag Element set and base plate for a floor construction
DE202007017234U1 (en) 2007-12-10 2009-04-16 Lindner Ag Element set and base plate for a floor construction
ES2326056A1 (en) * 2006-09-01 2009-09-29 Simon Connect, S.L Designed floor assembly installation system for installation of e.g. voice, data and image transmission conduit, has anti-noise supports serving as hinges between sections during assembly installation and joint supporting load of assembly
US20100154323A1 (en) * 2008-12-22 2010-06-24 Fci Americas Technology, Inc. Raised floor system grounding
US20100281795A1 (en) * 2008-03-04 2010-11-11 Jose Leon Garza assembly system for insulating floors
US20100281790A1 (en) * 2009-05-07 2010-11-11 Philip Burgess Adjustable Leveling Pedestal
US20120096655A1 (en) * 2010-10-22 2012-04-26 Rowell Joseph P Travel easy adjustable deck
US20120101635A1 (en) * 2009-02-13 2012-04-26 Koninklijke Philips Electronics N.V. Floor construction with variable grade of resilience
WO2012061538A1 (en) * 2010-11-05 2012-05-10 Salflex Polymers Limited Hollow article with covering
US20130186014A1 (en) * 2012-01-25 2013-07-25 Steven James Wall Raised flooring apparatus and system
US20140130427A1 (en) * 2011-03-08 2014-05-15 Hexzgo Deck Limited Temporary platform
US20140220874A1 (en) * 2013-02-06 2014-08-07 Gary Meyer Radiant heat raised access floor panel
GB2510611A (en) * 2013-02-08 2014-08-13 City Horse Racing Ltd Equine track
CN104005535A (en) * 2014-06-05 2014-08-27 魏其训 Beam column and supporting leg of anti-electrostatic floor support and connecting structure of beam columns and supporting legs
US9441378B1 (en) * 2015-08-28 2016-09-13 Wayne Conklin Pedestal paver and skylight walkway
US20170051526A1 (en) * 2015-08-19 2017-02-23 biljax inc. Engineered Floor and Scaffold Systems
US9683375B2 (en) 2015-11-13 2017-06-20 United Construction Products, Inc. Support plate system for elevated flooring tiles
US9874029B2 (en) * 2015-11-13 2018-01-23 United Construction Products, Inc. Support plate system for elevated flooring tiles
USD857239S1 (en) * 2017-07-11 2019-08-20 Fxcollaborative Architects Llp Modular public space structure
USD867621S1 (en) * 2017-11-30 2019-11-19 Fxcollaborative Architects Llp Modular public space structure
USD868999S1 (en) * 2017-07-11 2019-12-03 Fxcollaborative Architects Llp Modular public space structure
US20240018800A1 (en) * 2020-07-17 2024-01-18 Granite Industries, Inc. Elevated flooring system for clearspan tent
US11959300B2 (en) 2020-09-02 2024-04-16 Bil-Jax, Inc. Floor structure system and method of use
EP4438833A1 (en) 2023-03-31 2024-10-02 Fritz Egger GmbH & Co. OG Edge strip, in particular double-floor edge strip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3012919A (en) * 1958-05-05 1961-12-12 Jr Arthur B Janney Sectional fabric floor covering
US3025934A (en) * 1958-01-30 1962-03-20 Joseph W Spiselman Sectional flooring
US3065506A (en) * 1956-08-13 1962-11-27 John H O Neill Pedestal panel floor
US3318057A (en) * 1964-03-24 1967-05-09 Robertson Co H H Pedestal floor construction
US3396501A (en) * 1966-02-21 1968-08-13 Tate Architectural Products Elevated floor system of grounded metal panels
US3681882A (en) * 1970-03-30 1972-08-08 United Fabricating Co Inc Raised floor panel and assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065506A (en) * 1956-08-13 1962-11-27 John H O Neill Pedestal panel floor
US3025934A (en) * 1958-01-30 1962-03-20 Joseph W Spiselman Sectional flooring
US3012919A (en) * 1958-05-05 1961-12-12 Jr Arthur B Janney Sectional fabric floor covering
US3318057A (en) * 1964-03-24 1967-05-09 Robertson Co H H Pedestal floor construction
US3396501A (en) * 1966-02-21 1968-08-13 Tate Architectural Products Elevated floor system of grounded metal panels
US3681882A (en) * 1970-03-30 1972-08-08 United Fabricating Co Inc Raised floor panel and assembly

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067156A (en) * 1976-01-12 1978-01-10 Donn Products, Inc. Computer floor structure
DE2700619A1 (en) * 1976-01-12 1977-07-21 Donn Prod Inc PRINCIPALLY RECTANGULAR FLOOR PLATE FOR DOUBLE FLOORS AND HIGH-RIDING FLOOR MADE FROM THEM
US4085557A (en) * 1976-06-01 1978-04-25 James A. Tharp Raised access floor system
US4279109A (en) * 1977-05-12 1981-07-21 Madl Jr Joseph Access floor mounting assembly
US4447998A (en) * 1982-03-05 1984-05-15 Griffin Kary A Floor panel
EP0102211A2 (en) 1982-08-26 1984-03-07 Tate Architectural Products, Inc. Modular tile with positioning means for use with an access floor panel system
US4561232A (en) * 1982-08-26 1985-12-31 Tate Architectural Products, Inc. Modular tile with positioning means for use with an access floor panel system
WO1985004685A1 (en) * 1984-04-05 1985-10-24 Beco Produktutveckling Method and means to provide elevated floors with an improved electrical screening
US4598510A (en) * 1984-08-01 1986-07-08 Wagner Iii Fred A Modular and expandable platform system
US4901490A (en) * 1984-12-17 1990-02-20 Gabalan Corporation Raised flooring panel and raised flooring assemblies
US4736555A (en) * 1985-05-22 1988-04-12 Sekisui Kagaku Kogyo Kabushiki Kaisha Free access type floor
US4893441A (en) * 1985-06-05 1990-01-16 Iceco S.P.A. Load-bearing structure for raised floors
US4843781A (en) * 1986-07-18 1989-07-04 Chase Iii Francis H Composite access floor panel
US4748789A (en) * 1986-07-21 1988-06-07 Hedley Gilbert P Access floor panel
US4856256A (en) * 1986-09-10 1989-08-15 O M Kiki Co., Ltd. Free access floor panel
US4835924A (en) * 1986-12-17 1989-06-06 Tate Acess Floors Self-gridding flooring system
WO1988005105A1 (en) * 1987-01-12 1988-07-14 Ole Frederiksen A floor covering of electrically conducting type
US4850163A (en) * 1987-01-21 1989-07-25 O M Kiki Co., Ltd. Free-access floor
US4759162A (en) * 1987-04-16 1988-07-26 Wyse Steven J Modular platform assembly
US4790110A (en) * 1987-06-01 1988-12-13 Buchtal Gesellschaft Mit Beschrankter Haftung Tile-like ceramic element having an electrically conductive surface glaze on the visible side
US5016408A (en) * 1987-07-18 1991-05-21 Mero-Werke Dr. Ing. Max Mengeringhausen Gmbh & Co. Sealed wall connection to raised floor for use in germ-free chambers or the like
US4987708A (en) * 1989-09-21 1991-01-29 Herman Miller, Inc. Seismic anchor
US5398466A (en) * 1990-11-19 1995-03-21 Sumitomo Rubber Industries, Ltd. Stanchion unit assembly for floor boards
US5752357A (en) * 1991-11-11 1998-05-19 Piller; Helmut Method for the reversibly fixing a covering to a supporting surface, and parts and materials suitable for carrying out the method
US5465534A (en) * 1994-05-26 1995-11-14 Equipto Flooring substructure
US5475953A (en) * 1994-09-29 1995-12-19 Powerflor, Inc. 2-shaped edge molding strip
AT88U3 (en) * 1994-10-05 1995-05-26 Klippon Handelsgesellschaft M DOUBLE FLOOR CONSTRUCTION
US20040055232A1 (en) * 1997-09-11 2004-03-25 Roger Jette Raised floor system and support apparatus
US6550195B1 (en) 1998-06-09 2003-04-22 Steelcase Development Corporation Floor system
US6202374B1 (en) 1998-06-09 2001-03-20 Steelcase Development Inc. Floor system
US6612084B2 (en) * 1999-09-07 2003-09-02 Speedfam-Ipec Corporation Clean room and method
US6669163B2 (en) * 2000-01-20 2003-12-30 Universal Support Systems Llc Support apparatus and grounded equipment frame
US20040031902A1 (en) * 2000-01-20 2004-02-19 Universal Support Systems Llc Support apparatus
US6637161B1 (en) 2000-11-28 2003-10-28 Steelcase Development Corporation Floor system
US6797219B1 (en) 2000-11-28 2004-09-28 Steelcase Development Corporation Method for manufacture of floor panels
US20030051420A1 (en) * 2001-07-11 2003-03-20 Leon Richard Joseph Unitized, pre-fabricated raised access floor arrangement, installation and leveling method, and automatized leveling tool
US6772564B2 (en) * 2001-07-11 2004-08-10 Richard Joseph Leon Unitized, pre-fabricated raised access floor arrangement, installation and leveling method, and automatized leveling tool
US6748707B1 (en) 2001-07-24 2004-06-15 Steelcase Development Corporation Utility interface system
ES2189669A1 (en) * 2001-10-01 2003-07-01 Sales Eugenio Belles Laying of pavements and replaceable skirtings.
US20050028463A1 (en) * 2001-10-29 2005-02-10 Georgi Pantev Raised flooring system
US20050235589A1 (en) * 2002-02-25 2005-10-27 Haworth, Ltd. Raised access floor system
US6918217B2 (en) 2002-02-25 2005-07-19 Haworth, Ltd. Raised access floor system
US7650726B2 (en) * 2002-02-25 2010-01-26 Haworth, Ltd. Raised access floor system
US7520096B2 (en) * 2003-02-06 2009-04-21 Taisei Electronic Industries Co., Ltd. Sound insulating floor structure
US20040154240A1 (en) * 2003-02-06 2004-08-12 Hiroaki Hiraguri Sound insulating floor structure
US20050069079A1 (en) * 2003-09-12 2005-03-31 Boardman Charles Edward Modular reactor containment system
FR2861772A1 (en) * 2003-10-31 2005-05-06 Etanco L R Device for fastening a top cover on support structure covered with compressible packing, has support with locking mechanism that fastens a connection unit on a column, and panels with lateral edges fixed on girder
US8287979B2 (en) * 2003-12-11 2012-10-16 Pergo (Europe) Ab Flooring system with a plurality of different decorative upper surfaces
US20070059543A1 (en) * 2003-12-11 2007-03-15 Sven Kornfalt Flooring system with a plurality of different decorative upper surfaces
US20120085058A1 (en) * 2003-12-11 2012-04-12 Pergo (Europe) Ab Flooring system with a plurality of different decorative upper surfaces
US8071192B2 (en) * 2003-12-11 2011-12-06 Pergo AG Flooring system with a plurality of different decorative upper surfaces
US20050246984A1 (en) * 2004-04-13 2005-11-10 Sam Colosimo Modular access floor system with airseal gasket
US7509782B2 (en) * 2004-04-13 2009-03-31 Tate Asp Access Floors, Inc. Metal framed floor panel having flange outward of rib with u-shaped portion of gasket over top of rib, portion of gasket between rib and flange, and convex sealing portion of gasket below flange and outward of rib
US20070017173A1 (en) * 2005-07-22 2007-01-25 Jun-Yup Kim Supporting bolt and supporting system for raised access floor with the same
ES2326056B1 (en) * 2006-09-01 2010-04-07 Simon Connect, S.L IMPROVEMENTS INTRODUCED IN THE INSTALLATION SYSTEMS OF TECHNICAL FLOORS.
ES2326056A1 (en) * 2006-09-01 2009-09-29 Simon Connect, S.L Designed floor assembly installation system for installation of e.g. voice, data and image transmission conduit, has anti-noise supports serving as hinges between sections during assembly installation and joint supporting load of assembly
DE202007017234U1 (en) 2007-12-10 2009-04-16 Lindner Ag Element set and base plate for a floor construction
DE202007017242U1 (en) 2007-12-10 2009-04-16 Lindner Ag Element set and base plate for a floor construction
US8387316B2 (en) * 2008-03-04 2013-03-05 Jose Leon Garza Assembly system for insulating floors
US20100281795A1 (en) * 2008-03-04 2010-11-11 Jose Leon Garza assembly system for insulating floors
US20100154323A1 (en) * 2008-12-22 2010-06-24 Fci Americas Technology, Inc. Raised floor system grounding
US10227783B2 (en) * 2008-12-22 2019-03-12 Hubbell Incorporated Raised floor system grounding
US20150074972A1 (en) * 2008-12-22 2015-03-19 Hubbell Incorporated Raised floor system grounding
US8938918B2 (en) * 2008-12-22 2015-01-27 Hubbell Incorporated Raised floor system grounding
US9986863B2 (en) * 2009-02-13 2018-06-05 Koninklijke Philips N.V. Floor construction with variable grade of resilience
US20120101635A1 (en) * 2009-02-13 2012-04-26 Koninklijke Philips Electronics N.V. Floor construction with variable grade of resilience
US20100281790A1 (en) * 2009-05-07 2010-11-11 Philip Burgess Adjustable Leveling Pedestal
US8490234B2 (en) * 2010-10-22 2013-07-23 Joseph P. Rowell Travel easy adjustable deck
US20120096655A1 (en) * 2010-10-22 2012-04-26 Rowell Joseph P Travel easy adjustable deck
WO2012061538A1 (en) * 2010-11-05 2012-05-10 Salflex Polymers Limited Hollow article with covering
US8475904B2 (en) 2010-11-05 2013-07-02 Salflex Polymers Limited Hollow article with covering
US9598863B2 (en) * 2011-03-08 2017-03-21 Hexago Deck Limited Temporary platform
US20140130427A1 (en) * 2011-03-08 2014-05-15 Hexzgo Deck Limited Temporary platform
US20130186014A1 (en) * 2012-01-25 2013-07-25 Steven James Wall Raised flooring apparatus and system
US8955276B2 (en) * 2012-01-25 2015-02-17 Steven James Wall Raised flooring apparatus and system
US20140220874A1 (en) * 2013-02-06 2014-08-07 Gary Meyer Radiant heat raised access floor panel
GB2510611B (en) * 2013-02-08 2017-11-29 Chr Track Systems Ltd Modular equine track
GB2510611A (en) * 2013-02-08 2014-08-13 City Horse Racing Ltd Equine track
CN104005535A (en) * 2014-06-05 2014-08-27 魏其训 Beam column and supporting leg of anti-electrostatic floor support and connecting structure of beam columns and supporting legs
US10508467B2 (en) * 2015-08-19 2019-12-17 biljax, inc. Engineered floor and scaffold systems
US11142925B2 (en) 2015-08-19 2021-10-12 Bil-Jax, Inc. Engineered floor and scaffold system
US10781605B2 (en) 2015-08-19 2020-09-22 Bil-Jax, Inc. Engineered floor and scaffold system
US20170051526A1 (en) * 2015-08-19 2017-02-23 biljax inc. Engineered Floor and Scaffold Systems
US9441378B1 (en) * 2015-08-28 2016-09-13 Wayne Conklin Pedestal paver and skylight walkway
US9951529B2 (en) 2015-11-13 2018-04-24 United Construction Products, Inc. Support plate system for elevated flooring tiles
US9874029B2 (en) * 2015-11-13 2018-01-23 United Construction Products, Inc. Support plate system for elevated flooring tiles
US9683375B2 (en) 2015-11-13 2017-06-20 United Construction Products, Inc. Support plate system for elevated flooring tiles
USD868999S1 (en) * 2017-07-11 2019-12-03 Fxcollaborative Architects Llp Modular public space structure
USD857239S1 (en) * 2017-07-11 2019-08-20 Fxcollaborative Architects Llp Modular public space structure
USD867621S1 (en) * 2017-11-30 2019-11-19 Fxcollaborative Architects Llp Modular public space structure
US20240018800A1 (en) * 2020-07-17 2024-01-18 Granite Industries, Inc. Elevated flooring system for clearspan tent
US11959300B2 (en) 2020-09-02 2024-04-16 Bil-Jax, Inc. Floor structure system and method of use
EP4438833A1 (en) 2023-03-31 2024-10-02 Fritz Egger GmbH & Co. OG Edge strip, in particular double-floor edge strip
WO2024200668A1 (en) 2023-03-31 2024-10-03 Fritz Egger Gmbh & Co. Og Edging strip, in particular dual-base edging strip

Similar Documents

Publication Publication Date Title
US3811237A (en) Raised floor panel and assembly
US3681882A (en) Raised floor panel and assembly
US4901490A (en) Raised flooring panel and raised flooring assemblies
US3396501A (en) Elevated floor system of grounded metal panels
CA1151936A (en) Air flow floor panel
US5218803A (en) Method and means for reinforcing a steel stud wall
US2867301A (en) False flooring system
US3324614A (en) Elevated flooring system
EP0245375B2 (en) Flooring system
US6079177A (en) Removable ceiling panel assembly
US3380217A (en) Raised floor plate
US4615162A (en) Insulated wall construction
US2244343A (en) Joint and structure embodying the same
EP0199560A2 (en) Floor panel assembly
EP0168247B1 (en) An improved access floor structure
JPH0230566Y2 (en)
JP2661359B2 (en) Slope floor structure
JP3205769B2 (en) Floor panel for double floor construction
JPS6347242Y2 (en)
JPH0224836Y2 (en)
JPH0133701Y2 (en)
JPS5980859A (en) Floor panel
JP3756618B2 (en) Floor nose cover structure
GB2339581A (en) Raised floor panel support system
JPS59102036A (en) Building structure

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCANTILE-SAFE DEPOSIT AND TRUST COMPANY, MARYLAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TATE ACCESS FLOORS, INC. (A CORP. OF MARYLAND);REEL/FRAME:007329/0438

Effective date: 19941230