US3806274A - Gas turbine engine blades - Google Patents
Gas turbine engine blades Download PDFInfo
- Publication number
- US3806274A US3806274A US00282778A US28277872A US3806274A US 3806274 A US3806274 A US 3806274A US 00282778 A US00282778 A US 00282778A US 28277872 A US28277872 A US 28277872A US 3806274 A US3806274 A US 3806274A
- Authority
- US
- United States
- Prior art keywords
- blade
- insert
- walls
- flow passages
- fins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012809 cooling fluid Substances 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 10
- 206010000496 acne Diseases 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 5
- 238000005219 brazing Methods 0.000 claims description 4
- 239000002826 coolant Substances 0.000 abstract description 2
- 239000003570 air Substances 0.000 description 12
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 2
- PQMWYJDJHJQZDE-UHFFFAOYSA-M Methantheline bromide Chemical compound [Br-].C1=CC=C2C(C(=O)OCC[N+](C)(CC)CC)C3=CC=CC=C3OC2=C1 PQMWYJDJHJQZDE-UHFFFAOYSA-M 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
- F01D5/188—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
Definitions
- a gas turbme blade has a hollow Interim 1 9 which [58 Field 6: Search 416/96-97, is divided form flow Passages cooling medium- 416/92
- the flow passages are bounded by the sides of a sheetlike insert the two blade walls, and fins between the [56] References Cited insert and the blade walls; they commence at one end UNITED STATES PATENTS of the blade and extend in a spiral-like path around the opposite sides of the insert.
- the present invention aims to provide a rotor or stator blade construction which enables improved cooling to be obtained.
- An object of the invention is to provide an improved a gas-turbine blade with a hollow interior space which is divided to form flow passages bounded by the sides of a sheet-like insert, the two blade walls and fins between the insert and the blade walls, the flow passages commencing at one end of the blade and extending in a spiral-like path around and along the insert.
- the invention is applied to rotor blades which are fed from the root end.
- FIG. 1 shows a sectional elevation of a gas turbine rotor blade according to the invention, the section blade is hollow, and the space within it is effectively di-' vided into two by means of a sheet-metal insert 14 which extends substantially the full radial length of the blade being brazed to the blade at its root end but otherwise unattached to allow for differential expansion.
- the arrangement of the insert 14 within the blade is clearly seen in FIG. 2.
- the insert is located between a large number of pimples 15 (indicated in FIG. 1 by small crosses) and by a series of helical fins 16.
- blade is conveniently made with the pimples and fins cast onto the interior surfaces of the blade walls l7, 18.
- the insert 14 stops short of both the leading and trailing edges of they blade, thus leaving spaces around which air may pass in order to progress from,one side of the insert to the other.
- air suppliedto the interior of the blade from the root end 13 can enter any one of a series of flow passages extending obliquely up one side of the insert passing round the leading or trailing edge of the insert, and then continuing obliquely up the other side of the insert.
- An arrow traces one possible path. As it pro gresses radially outwards, a proportion of the air is allowed to escape through leading edge film cooling holes 20, and'through trailing edge slots 21. Since the volume of air flowing through the blade is thus diminished, the flow passages are designed to be of smaller cross section towards the outer shroud end 12 of the blade.
- the velocity of the air flow may be varied by altering the angle at which the fins 16 arecast onto the interior surfacesof the blade.
- holes 22 may be provided for the final escape of the cooling air in the angle formed by the blade proper wall 17 and the shroud 23.
- the air thus released can be used to cool the shroudby causing it to spread over the shroud 23 along channels 24 formed in the radially inner surface thereof.
- a blade constructed in the fashion described is relatively easy to produce, particularly since the insert is solid and therefore easy both to manufacture and to insert into the blade, while the blade itself can be conveniently cast, together with, fins and pimples, using only a single piece core.
- the holes 20 and/or the holes 21 and/or the pimples 15 may be omit ted, the cooling medium may be liquid or a gas other than air, and the fins 16 and'pimples (if provided) may be other than integral with the blade walls.
- At least some of the flow passages for cooling air are such that they individually serve either the leading edge of the blade or the trailing edge of the blade, but not both. This may be effected by suitable choice of the inclination of the fins 16. Such an arrangement may enable different supplies to be used for the leading and trailing edges of the blade to make allowance for the different ambient air pressures existing in those regions.
- a gas turbine blade having opposed walls defining therebetween a hollow interior space, an insert within said space, said insert being formed of a solid sheet curved to the chamberof the blade, and fins carried by said blade and extending between said insert and said blade walls, said walls, said-insert and said fins defining in combination a plurality of flow passages for cooling fluid, each said flow passage commencing at one end of the blade and extending in a spiral-like manner around and along the insert.
- a blade as claimed in claim 1 which includes a plurality of discrete pimples extending between the sides of the insert and the blade walls within the flow passages for providing location for the insert.
- a blade as claimed in claim 2 wherein the fins and pimples are formed integrally with. the blade walls. 4. A blade as claimed in claim 1, wherein holes are formed in the region of the leading edge of the blade for allowing cooling fluid to pass to the exterior of the blade from the flow passages.
- a gas turbine rotor having a plurality of blades as claimed in claim 1, arranged for supply with cooling fluid at their root ends.
- a gas turbine rotor according to claim 8 which includes a shroud connecting together the outer ends of 5 are terminated immediately adjacent said root end portion of said insert.
- a gas turbine blade having opposed walls defining therebetween a hollow interior space, and an insert within said space, said insert being formed of a solid sheet curved to the chamber of the blade and connected to said walls by brazing at the root end of the blade, being otherwise unattached to allow for differential expansion, said walls being integrally formed with fins extending between said insert and said blade walls, said walls, said insert and said fins defining in combination a plurality of flow passages for cooling fluid to flow through the blade commencing at the root end of 'the blade and passing in a spiral-like manner around and along the insert.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB3977871A GB1361256A (en) | 1971-08-25 | 1971-08-25 | Gas turbine engine blades |
US28277972A | 1972-08-22 | 1972-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3806274A true US3806274A (en) | 1974-04-23 |
Family
ID=26264234
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00282778A Expired - Lifetime US3806274A (en) | 1971-08-25 | 1972-08-22 | Gas turbine engine blades |
US00282779A Expired - Lifetime US3782852A (en) | 1971-08-25 | 1972-08-22 | Gas turbine engine blades |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00282779A Expired - Lifetime US3782852A (en) | 1971-08-25 | 1972-08-22 | Gas turbine engine blades |
Country Status (6)
Country | Link |
---|---|
US (2) | US3806274A (enrdf_load_stackoverflow) |
AU (1) | AU467301B2 (enrdf_load_stackoverflow) |
DE (1) | DE2241192C3 (enrdf_load_stackoverflow) |
FR (1) | FR2150476B1 (enrdf_load_stackoverflow) |
GB (1) | GB1361256A (enrdf_load_stackoverflow) |
SE (1) | SE378645B (enrdf_load_stackoverflow) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3902820A (en) * | 1973-07-02 | 1975-09-02 | Westinghouse Electric Corp | Fluid cooled turbine rotor blade |
US4286122A (en) * | 1978-03-13 | 1981-08-25 | U.S. Philips Corporation | Acoustic electrical conversion device with at least one capacitor electret element connected to an electronic circuit |
US4515526A (en) * | 1981-12-28 | 1985-05-07 | United Technologies Corporation | Coolable airfoil for a rotary machine |
US5097660A (en) * | 1988-12-28 | 1992-03-24 | Sundstrand Corporation | Coanda effect turbine nozzle vane cooling |
US5919031A (en) * | 1996-08-23 | 1999-07-06 | Asea Brown Boveri Ag | Coolable blade |
WO1999061756A1 (en) * | 1998-05-25 | 1999-12-02 | Asea Brown Boveri Ab | A component for a gas turbine |
US6056508A (en) * | 1997-07-14 | 2000-05-02 | Abb Alstom Power (Switzerland) Ltd | Cooling system for the trailing edge region of a hollow gas turbine blade |
US6254346B1 (en) * | 1997-03-25 | 2001-07-03 | Mitsubishi Heavy Industries, Ltd. | Gas turbine cooling moving blade |
US20050031452A1 (en) * | 2003-08-08 | 2005-02-10 | Siemens Westinghouse Power Corporation | Cooling system for an outer wall of a turbine blade |
US6923247B1 (en) * | 1998-11-09 | 2005-08-02 | Alstom | Cooled components with conical cooling passages |
US20070172354A1 (en) * | 2004-02-27 | 2007-07-26 | Mats Annerfeldt | Blade or vane for a turbomachine |
US7563072B1 (en) | 2006-09-25 | 2009-07-21 | Florida Turbine Technologies, Inc. | Turbine airfoil with near-wall spiral flow cooling circuit |
US20090185903A1 (en) * | 2006-04-21 | 2009-07-23 | Beeck Alexander R | Turbine Blade |
CN102207007A (zh) * | 2010-03-31 | 2011-10-05 | 通用电气公司 | 内部冷却通道 |
US20130034429A1 (en) * | 2010-04-14 | 2013-02-07 | Dave Carter | Blade or vane for a turbomachine |
US20140093391A1 (en) * | 2012-09-28 | 2014-04-03 | Solar Turbines Incorporated | Cooled turbine blade with trailing edge flow metering |
US9228439B2 (en) | 2012-09-28 | 2016-01-05 | Solar Turbines Incorporated | Cooled turbine blade with leading edge flow redirection and diffusion |
US9314838B2 (en) | 2012-09-28 | 2016-04-19 | Solar Turbines Incorporated | Method of manufacturing a cooled turbine blade with dense cooling fin array |
US10641103B2 (en) | 2017-01-19 | 2020-05-05 | United Technologies Corporation | Trailing edge configuration with cast slots and drilled filmholes |
US10822963B2 (en) * | 2018-12-05 | 2020-11-03 | Raytheon Technologies Corporation | Axial flow cooling scheme with castable structural rib for a gas turbine engine |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1400285A (en) * | 1972-08-02 | 1975-07-16 | Rolls Royce | Hollow cooled vane or blade for a gas turbine engine |
US4153386A (en) * | 1974-12-11 | 1979-05-08 | United Technologies Corporation | Air cooled turbine vanes |
US4278400A (en) * | 1978-09-05 | 1981-07-14 | United Technologies Corporation | Coolable rotor blade |
FR2468727A1 (fr) * | 1979-10-26 | 1981-05-08 | Snecma | Perfectionnement aux aubes de turbine refroidies |
FR2473621A1 (fr) * | 1980-01-10 | 1981-07-17 | Snecma | Aube de distributeur de turbine |
US5232343A (en) * | 1984-05-24 | 1993-08-03 | General Electric Company | Turbine blade |
GB2189553B (en) * | 1986-04-25 | 1990-05-23 | Rolls Royce | Cooled vane |
US5022817A (en) * | 1989-09-12 | 1991-06-11 | Allied-Signal Inc. | Thermostatic control of turbine cooling air |
US5279111A (en) * | 1992-08-27 | 1994-01-18 | Inco Limited | Gas turbine cooling |
RU2151303C1 (ru) * | 1996-03-14 | 2000-06-20 | АББ Унитурбо Лтд. | Охлаждаемая рабочая или сопловая лопатка газовой турбины |
DE19860787B4 (de) * | 1998-12-30 | 2007-02-22 | Alstom | Turbinenschaufel mit Kühlkanälen |
US7497655B1 (en) * | 2006-08-21 | 2009-03-03 | Florida Turbine Technologies, Inc. | Turbine airfoil with near-wall impingement and vortex cooling |
US7722326B2 (en) * | 2007-03-13 | 2010-05-25 | Siemens Energy, Inc. | Intensively cooled trailing edge of thin airfoils for turbine engines |
US10443407B2 (en) * | 2016-02-15 | 2019-10-15 | General Electric Company | Accelerator insert for a gas turbine engine airfoil |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE853534C (de) * | 1943-02-27 | 1952-10-27 | Maschf Augsburg Nuernberg Ag | Luftgekuehlte Gasturbinenschaufel |
US2888243A (en) * | 1956-10-22 | 1959-05-26 | Pollock Robert Stephen | Cooled turbine blade |
US3057597A (en) * | 1959-08-20 | 1962-10-09 | Jr Andre J Meyer | Modification and improvements to cooled blades |
US3370829A (en) * | 1965-12-20 | 1968-02-27 | Avco Corp | Gas turbine blade construction |
US3527544A (en) * | 1968-12-12 | 1970-09-08 | Gen Motors Corp | Cooled blade shroud |
US3606574A (en) * | 1969-10-23 | 1971-09-20 | Gen Electric | Cooled shrouded turbine blade |
US3628880A (en) * | 1969-12-01 | 1971-12-21 | Gen Electric | Vane assembly and temperature control arrangement |
US3635587A (en) * | 1970-06-02 | 1972-01-18 | Gen Motors Corp | Blade cooling liner |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3540810A (en) * | 1966-03-17 | 1970-11-17 | Gen Electric | Slanted partition for hollow airfoil vane insert |
US3560107A (en) * | 1968-09-25 | 1971-02-02 | Gen Motors Corp | Cooled airfoil |
-
1971
- 1971-08-25 GB GB3977871A patent/GB1361256A/en not_active Expired
-
1972
- 1972-08-22 US US00282778A patent/US3806274A/en not_active Expired - Lifetime
- 1972-08-22 DE DE2241192A patent/DE2241192C3/de not_active Expired
- 1972-08-22 US US00282779A patent/US3782852A/en not_active Expired - Lifetime
- 1972-08-23 AU AU45872/72A patent/AU467301B2/en not_active Expired
- 1972-08-24 FR FR7230138A patent/FR2150476B1/fr not_active Expired
- 1972-08-24 SE SE7210988A patent/SE378645B/xx unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE853534C (de) * | 1943-02-27 | 1952-10-27 | Maschf Augsburg Nuernberg Ag | Luftgekuehlte Gasturbinenschaufel |
US2888243A (en) * | 1956-10-22 | 1959-05-26 | Pollock Robert Stephen | Cooled turbine blade |
US3057597A (en) * | 1959-08-20 | 1962-10-09 | Jr Andre J Meyer | Modification and improvements to cooled blades |
US3370829A (en) * | 1965-12-20 | 1968-02-27 | Avco Corp | Gas turbine blade construction |
US3527544A (en) * | 1968-12-12 | 1970-09-08 | Gen Motors Corp | Cooled blade shroud |
US3606574A (en) * | 1969-10-23 | 1971-09-20 | Gen Electric | Cooled shrouded turbine blade |
US3628880A (en) * | 1969-12-01 | 1971-12-21 | Gen Electric | Vane assembly and temperature control arrangement |
US3635587A (en) * | 1970-06-02 | 1972-01-18 | Gen Motors Corp | Blade cooling liner |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3902820A (en) * | 1973-07-02 | 1975-09-02 | Westinghouse Electric Corp | Fluid cooled turbine rotor blade |
US4286122A (en) * | 1978-03-13 | 1981-08-25 | U.S. Philips Corporation | Acoustic electrical conversion device with at least one capacitor electret element connected to an electronic circuit |
US4515526A (en) * | 1981-12-28 | 1985-05-07 | United Technologies Corporation | Coolable airfoil for a rotary machine |
US5097660A (en) * | 1988-12-28 | 1992-03-24 | Sundstrand Corporation | Coanda effect turbine nozzle vane cooling |
US5919031A (en) * | 1996-08-23 | 1999-07-06 | Asea Brown Boveri Ag | Coolable blade |
US6254346B1 (en) * | 1997-03-25 | 2001-07-03 | Mitsubishi Heavy Industries, Ltd. | Gas turbine cooling moving blade |
US6056508A (en) * | 1997-07-14 | 2000-05-02 | Abb Alstom Power (Switzerland) Ltd | Cooling system for the trailing edge region of a hollow gas turbine blade |
WO1999061756A1 (en) * | 1998-05-25 | 1999-12-02 | Asea Brown Boveri Ab | A component for a gas turbine |
US6382907B1 (en) | 1998-05-25 | 2002-05-07 | Abb Ab | Component for a gas turbine |
US6923247B1 (en) * | 1998-11-09 | 2005-08-02 | Alstom | Cooled components with conical cooling passages |
US20050031452A1 (en) * | 2003-08-08 | 2005-02-10 | Siemens Westinghouse Power Corporation | Cooling system for an outer wall of a turbine blade |
US6955525B2 (en) | 2003-08-08 | 2005-10-18 | Siemens Westinghouse Power Corporation | Cooling system for an outer wall of a turbine blade |
US20070172354A1 (en) * | 2004-02-27 | 2007-07-26 | Mats Annerfeldt | Blade or vane for a turbomachine |
US7674092B2 (en) | 2004-02-27 | 2010-03-09 | Siemens Aktiengesellschaft | Blade or vane for a turbomachine |
US20090185903A1 (en) * | 2006-04-21 | 2009-07-23 | Beeck Alexander R | Turbine Blade |
US8092175B2 (en) * | 2006-04-21 | 2012-01-10 | Siemens Aktiengesellschaft | Turbine blade |
US7563072B1 (en) | 2006-09-25 | 2009-07-21 | Florida Turbine Technologies, Inc. | Turbine airfoil with near-wall spiral flow cooling circuit |
CN102207007A (zh) * | 2010-03-31 | 2011-10-05 | 通用电气公司 | 内部冷却通道 |
US20110243711A1 (en) * | 2010-03-31 | 2011-10-06 | General Electric Company | Interior cooling channels |
US8636463B2 (en) * | 2010-03-31 | 2014-01-28 | General Electric Company | Interior cooling channels |
CN102207007B (zh) * | 2010-03-31 | 2015-04-29 | 通用电气公司 | 内部冷却通道 |
US9181808B2 (en) * | 2010-04-14 | 2015-11-10 | Siemens Aktiengesellschaft | Blade or vane for a turbomachine |
US20130034429A1 (en) * | 2010-04-14 | 2013-02-07 | Dave Carter | Blade or vane for a turbomachine |
US20140093391A1 (en) * | 2012-09-28 | 2014-04-03 | Solar Turbines Incorporated | Cooled turbine blade with trailing edge flow metering |
US9206695B2 (en) * | 2012-09-28 | 2015-12-08 | Solar Turbines Incorporated | Cooled turbine blade with trailing edge flow metering |
US9228439B2 (en) | 2012-09-28 | 2016-01-05 | Solar Turbines Incorporated | Cooled turbine blade with leading edge flow redirection and diffusion |
US9314838B2 (en) | 2012-09-28 | 2016-04-19 | Solar Turbines Incorporated | Method of manufacturing a cooled turbine blade with dense cooling fin array |
US10641103B2 (en) | 2017-01-19 | 2020-05-05 | United Technologies Corporation | Trailing edge configuration with cast slots and drilled filmholes |
US10822963B2 (en) * | 2018-12-05 | 2020-11-03 | Raytheon Technologies Corporation | Axial flow cooling scheme with castable structural rib for a gas turbine engine |
Also Published As
Publication number | Publication date |
---|---|
DE2241192B2 (de) | 1977-07-21 |
AU467301B2 (en) | 1975-11-27 |
FR2150476A1 (enrdf_load_stackoverflow) | 1973-04-06 |
GB1361256A (en) | 1974-07-24 |
DE2241192A1 (de) | 1973-03-08 |
US3782852A (en) | 1974-01-01 |
DE2241192C3 (de) | 1978-03-09 |
SE378645B (enrdf_load_stackoverflow) | 1975-09-08 |
AU4587272A (en) | 1974-03-07 |
FR2150476B1 (enrdf_load_stackoverflow) | 1979-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3806274A (en) | Gas turbine engine blades | |
US3527543A (en) | Cooling of structural members particularly for gas turbine engines | |
JP4063938B2 (ja) | ガスタービンエンジンの動翼の冷却通路の乱流器構造 | |
US3628880A (en) | Vane assembly and temperature control arrangement | |
US5975850A (en) | Turbulated cooling passages for turbine blades | |
US3635585A (en) | Gas-cooled turbine blade | |
US3540810A (en) | Slanted partition for hollow airfoil vane insert | |
US5215431A (en) | Cooled turbine guide vane | |
US5370499A (en) | Film cooling of turbine airfoil wall using mesh cooling hole arrangement | |
US3527544A (en) | Cooled blade shroud | |
US5156526A (en) | Rotation enhanced rotor blade cooling using a single row of coolant passageways | |
US4775296A (en) | Coolable airfoil for a rotary machine | |
JP4063937B2 (ja) | ガスタービンエンジン内の翼の冷却通路の乱流促進構造 | |
US3017159A (en) | Hollow blade construction | |
US6607355B2 (en) | Turbine airfoil with enhanced heat transfer | |
US3849025A (en) | Serpentine cooling channel construction for open-circuit liquid cooled turbine buckets | |
US4105364A (en) | Vane for a gas turbine engine having means for impingement cooling thereof | |
US6213714B1 (en) | Cooled airfoil | |
US4021139A (en) | Gas turbine guide vane | |
US3475107A (en) | Cooled turbine nozzle for high temperature turbine | |
US3388888A (en) | Cooled turbine nozzle for high temperature turbine | |
US3420502A (en) | Fluid-cooled airfoil | |
JP2006077767A (ja) | オフセットされたコリオリタービュレータブレード | |
US3528751A (en) | Cooled vane structure for high temperature turbine | |
US3844678A (en) | Cooled high strength turbine bucket |