US3804968A - Induction furnace - Google Patents

Induction furnace Download PDF

Info

Publication number
US3804968A
US3804968A US00264281A US26428172A US3804968A US 3804968 A US3804968 A US 3804968A US 00264281 A US00264281 A US 00264281A US 26428172 A US26428172 A US 26428172A US 3804968 A US3804968 A US 3804968A
Authority
US
United States
Prior art keywords
coil
furnace
lining
vessel
induction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00264281A
Inventor
I Mosser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Austria Metall AG
Vereinigte Metallwerke Ranshoffen Berndorf AG
Original Assignee
Vereinigte Metallwerke Ranshoffen Berndorf AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Metallwerke Ranshoffen Berndorf AG filed Critical Vereinigte Metallwerke Ranshoffen Berndorf AG
Application granted granted Critical
Publication of US3804968A publication Critical patent/US3804968A/en
Assigned to AUSTRIA METALL AKTIENGESELLSCHAFT reassignment AUSTRIA METALL AKTIENGESELLSCHAFT CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE 12/11/84 Assignors: VEREINIGTE METALLWERKE RANSHOFEN-BERNDORF AKTIENGESELLSHCAFT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/367Coil arrangements for melting furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/06Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer

Definitions

  • the furnace lining may be formed directly on this coil, and the coil is air [56] References Cited Cooled- UNITED STATES PATENTS 5 Claims, 5 Drawing Figures 3,401,226 10/1968 Renkey 13/26 '"-CONTROL i-MENTEHAPR 16 I974 3804368 INSULATION ALUMINUM iNnucTioN FURNACE FIELD OF THE INVENTION
  • the present invention relates to an induction furnace.
  • An induction furnace usually comprises a vessel adapted to receive a charge of metal or the like to be heated for smelting or a similar operation.
  • a coil formed of a hollow copper conductor surrounds this vessel and is connected to an alternating-current source. Energization of the coil creates a magnetic fieldin the vessel which generates eddy currents in the charge in order to heat it.
  • Another object is the provision of an induction furnace which is of inexpensive and simple construction, but which operates at a higher level of efficiency than the prior-art devices.
  • an aluminum conductor is substantially less expensive than a copper one, even though it will need to be somewhat heavier than a copper conductor of similar electrical capacity.
  • the elimination of a water cooling system also reduces the expense of the furnace substantially.
  • the coil is used as a base either for the cruicible lining or the crucible support.
  • the material is tamped or rammed in place right on the coil either on the inside or the outside, leaving each turn exposed on at least one side for air cooling.
  • FIG. l is a vertical section through a crucible induction furnace according to the present invention.
  • FIGS. 2 and 3 are top views of two types of air-cooled core-type or channel-type induction furnaces
  • FIG. 4 is a sectional view in enlarged scale showing a detail of the furnace of FIG. 1;
  • FIG. 5 is a perspective view of a coil according to the present invention.
  • a crucible lining 1 containing a charge 3 is surrounded by a coil 2 formed, as shown in FIG. 4 of a solid aluminum band 6 of rectangular section provided with an anodized aluminum-oxide coating 7.
  • the lining 1 is rammed in place on the coil 2.
  • the lining 1 can be rammed on the inside of the coil 2 in which case the cooling air is passed through the space 5 between the outer periphery of the coil 2 and the iron core 4.
  • FIG. 3 shows how the lining can be tamped against an independent cylinder so that the coil 2 may be free standing between the core 4 and the crucible I.
  • the lining l which forms the crucible may be formed on a support made of, for example, wood which is consumed when the furnace is heated up to simply leave the heat-resistant furnace lining.
  • the furnace may be provided as shown in FIG. 5 with a thermostat 10 which is connected through a control circuit III to the blower 8 and to the source 9 in order to reduce the current density in the coil 2 when the temperature of this coil 2 and the lining 1 rises above a predetermined limit.
  • the type of the lining and of the insulation coating 7 would determine just what the critical temperature is. This control would limit joule heat in both the conductor 6 and in the melt 3 as necessary.
  • An induction furnace comprising a vessel adapted to receive a charge of metal to be melted and a helical coil surrounding said vessel, said coil being formed of an elongated aluminum conductor provided with a heat-resistant anodized insulating coating; an alternating-current source connected to said coil; and means for forcing a current of air over said coil for cooling same.
  • An induction furnace comprising a vessel adapted to receive a charge of metal to be melted and a coil surrounding said vessel, said coil being formed of an elongated aluminum conductor provided with a heatresistant anodized insulating coating; an alternatingcurrent source connected to said coil; means for forcing a current of air over said coil for cooling same; a temperature sensor responsive to the temperature of said coil and connected to said source and to said means for forcing air over said coil for maintaining said coil below a predetermined temperature by controlling power output from said source and the output of said air-forming means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • General Induction Heating (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

An induction furnace has a coil formed of an anodized aluminum conductor whose current density is controlled according to the heat resistance of the furnace lining and of its anodized coating. The furnace lining may be formed directly on this coil, and the coil is air cooled.

Description

0 United States Patent 1191 1111 3,804,968 Mosser Apr. 16, 1974 [54] INDUCTION FURNACE 3,546,649 12/1970 Herrmann 336/223 3,428,771 2 1969 C1 219 10.49 X [75] Inventor: lgnaz Moss, Braunau' Ausma 3,311,695 3i1967 kaizfr 13/27 9 t t n k 3,474,179 10/1969 Allen 13/29 [73] Asslgnee xgr z' fi ggz g m i Vienna 3,183,294 5/1965 Kasper 219 1077 x Austria 22 Filed: June 19 1972 Primary Examiner-Roy N. Envall, Jr.
Attorney, Agent, or Firm-Karl F. Ross; Herbert [21] Appl. No.: 264,281 Dubno [30] Foreign Application Priority Data June 22, 1971 Austria 5391/71 ABSTRACT [52] Cl H 13/27, 219/1049, 336/223 An induction furnace has a coil formed of an anodized 51 1111. C1 F2701 11/06, HOSb 5/18 aluminum conduct WhSe current density is [53] Field of Search 13/26, 27 28 29 trolled according to the heat resistance of the furnace v 219/1049 1079; 336/223 lining and of its anodized coating. The furnace lining may be formed directly on this coil, and the coil is air [56] References Cited Cooled- UNITED STATES PATENTS 5 Claims, 5 Drawing Figures 3,401,226 10/1968 Renkey 13/26 '"-CONTROL i-MENTEHAPR 16 I974 3804368 INSULATION ALUMINUM iNnucTioN FURNACE FIELD OF THE INVENTION The present invention relates to an induction furnace.
BACKGROUND OF THE INVENTION An induction furnace usually comprises a vessel adapted to receive a charge of metal or the like to be heated for smelting or a similar operation. A coil formed of a hollow copper conductor surrounds this vessel and is connected to an alternating-current source. Energization of the coil creates a magnetic fieldin the vessel which generates eddy currents in the charge in order to heat it.
Since the most heat-resistant Class H insulators lose most of their effectiveness above about 180C it is necessary to hold the temperature of the induction coil down. Similarly since water is usually passed through the hollow conductor as a coolant it is important that the temperature of the coil be maintained below 100C, the boiling point of water, in order to prevent vaporization of the water and lime buildup in the conductor. To this end the coils are often also air-cooled in order to ensure that they do not overheat. This cooling robs a good deal of the heat from the crucible so that induction furnaces are excessively inefficient mainly due to losses resulting from cooling the coil.
Another problem with induction furnaces of the wa ter-cooled type is that should the coil become perforated somehow and the water come into contact with the melt, a violent explosion can take place.
OBJECTS OF THE INVENTION It is therefore an object of the present invention to provide an improved induction furnace.
Another object is the provision of an induction furnace which is of inexpensive and simple construction, but which operates at a higher level of efficiency than the prior-art devices.
SUMMARY OF THE INVENTION These objects are attained in an induction furnace whose coil is made of an aluminum conductor provided with an anodized heat-resistant insulating coating. This coil can be allowed to heat up to above 400C without insulation breakdown or loss of conductivity so that it need merely be air cooled. Since the temperature differential between the coil and the melt is several hundred degrees smaller than in most prior-art furnaces, the amount of energy lost to the coolant is greatly reduced.
In addition an aluminum conductor is substantially less expensive than a copper one, even though it will need to be somewhat heavier than a copper conductor of similar electrical capacity. The elimination of a water cooling system also reduces the expense of the furnace substantially.
According to another feature of the present invention the coil is used as a base either for the cruicible lining or the crucible support. In either case the material is tamped or rammed in place right on the coil either on the inside or the outside, leaving each turn exposed on at least one side for air cooling.
DESCRIPTION OF THE DRAWING The above and other objects, features, and advantages will become apparent from the following, reference being made to the accompanying drawing in which:
FIG. l is a vertical section through a crucible induction furnace according to the present invention;
FIGS. 2 and 3 are top views of two types of air-cooled core-type or channel-type induction furnaces;
FIG. 4 is a sectional view in enlarged scale showing a detail of the furnace of FIG. 1; and
FIG. 5 is a perspective view of a coil according to the present invention.
SPECIFIC DESCRIPTION As shown in FIG. I a crucible lining 1 containing a charge 3 is surrounded by a coil 2 formed, as shown in FIG. 4 of a solid aluminum band 6 of rectangular section provided with an anodized aluminum-oxide coating 7. The lining 1 is rammed in place on the coil 2.
As shown in FIG. 2 the lining 1 can be rammed on the inside of the coil 2 in which case the cooling air is passed through the space 5 between the outer periphery of the coil 2 and the iron core 4.
FIG. 3 shows how the lining can be tamped against an independent cylinder so that the coil 2 may be free standing between the core 4 and the crucible I. In this case the lining l which forms the crucible may be formed on a support made of, for example, wood which is consumed when the furnace is heated up to simply leave the heat-resistant furnace lining.
The furnace may be provided as shown in FIG. 5 with a thermostat 10 which is connected through a control circuit III to the blower 8 and to the source 9 in order to reduce the current density in the coil 2 when the temperature of this coil 2 and the lining 1 rises above a predetermined limit. The type of the lining and of the insulation coating 7 would determine just what the critical temperature is. This control would limit joule heat in both the conductor 6 and in the melt 3 as necessary.
I claim:
II. An induction furnace comprising a vessel adapted to receive a charge of metal to be melted and a helical coil surrounding said vessel, said coil being formed of an elongated aluminum conductor provided with a heat-resistant anodized insulating coating; an alternating-current source connected to said coil; and means for forcing a current of air over said coil for cooling same.
2. The furnace defined in claim 1, further comprising an oven lining formed directly on said coil.
3. The furnace defined in claim 2 wherein said lining is formed directly on the inside of said coil.
4. The furnace defined in claim 2 wherein said lining is formed directly on the outside of said coil.
5. An induction furnace comprising a vessel adapted to receive a charge of metal to be melted and a coil surrounding said vessel, said coil being formed of an elongated aluminum conductor provided with a heatresistant anodized insulating coating; an alternatingcurrent source connected to said coil; means for forcing a current of air over said coil for cooling same; a temperature sensor responsive to the temperature of said coil and connected to said source and to said means for forcing air over said coil for maintaining said coil below a predetermined temperature by controlling power output from said source and the output of said air-forming means.

Claims (5)

1. An induction furnace comprising a vessel adapted to receive a charge of metal to be melted and a helical coil surrounding said vessel, said coil being formed of an elongated aluminum conductor provided with a heat-resistant anodized insulating coating; an alternating-current source connected to said coil; and means for forcing a current of air over said coil for cooling same.
2. The furnace defined in claim 1, further comprising an oven lining formed directly on said coil.
3. The furnace defined in claim 2 wherein said lining is formed directly on the inside of said coil.
4. The furnace defined in claim 2 wherein said lining is formed directly on the outside of said coil.
5. An induction furnace comprising a vessel adapted to receive a charge of metal to be melted and a coil surrounding said vessel, said coil being formed of an elongated aluminum conductor provided with a heat-resistant anodized insulating coating; an alternating-current source connected to said coil; means for forcing a current of air over said coil for cooling same; a temperature sensor responsive to the temperature of said coil and connected to said source and to said means for forcing air over said coil for maintaining said coil below a predetermined temperature by controlling power output from said source and the output of said air-forming means.
US00264281A 1971-06-22 1972-06-19 Induction furnace Expired - Lifetime US3804968A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT539171A AT305665B (en) 1971-06-22 1971-06-22 Induction furnace

Publications (1)

Publication Number Publication Date
US3804968A true US3804968A (en) 1974-04-16

Family

ID=3575271

Family Applications (1)

Application Number Title Priority Date Filing Date
US00264281A Expired - Lifetime US3804968A (en) 1971-06-22 1972-06-19 Induction furnace

Country Status (4)

Country Link
US (1) US3804968A (en)
AT (1) AT305665B (en)
CH (1) CH557630A (en)
DE (1) DE2228892A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191875A (en) * 1977-11-10 1980-03-04 Cunningham Ronald J Fan speed control used in induction cooking apparatus
US4421967A (en) * 1980-07-21 1983-12-20 Vs Systems, Inc. Windmill driven eddy current heater
US4820892A (en) * 1985-08-22 1989-04-11 Tetra Pak International Ab Heating arrangement for packing containers holding liquid contents
US5408073A (en) * 1993-02-20 1995-04-18 Samsung Electronics Co., Ltd. Overheat prevention circuit for electromagnetic induction heating cooker
GB2320573A (en) * 1996-12-19 1998-06-24 Ceramaspeed Ltd Electric heater and sensor
US6353213B1 (en) * 1998-08-07 2002-03-05 Bmg Holdings, Llc Voltage transformer type water heating unit
US20030196911A1 (en) * 2002-04-22 2003-10-23 Palmer Forrest M. Process and apparatus for smelting aluminum
CN102564124A (en) * 2011-07-28 2012-07-11 郑坚明 Industrial electromagnetic smelting furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183294A (en) * 1962-04-09 1965-05-11 Ohio Crankshaft Co Temperature control apparatus
US3311695A (en) * 1964-10-09 1967-03-28 Ohio Crankshaft Co Coil assembly for an induction melting furnace and method of making same
US3401226A (en) * 1965-10-24 1968-09-10 Dresser Ind Induction furnace having a composite lining composed of refractory brick
US3428771A (en) * 1964-11-20 1969-02-18 British Titan Products Plasma producing apparatus
US3474179A (en) * 1966-06-22 1969-10-21 Ass Elect Ind Metal melting or smelting apparatus
US3546649A (en) * 1968-05-29 1970-12-08 Metalloxyd Gmbh Convoluted conductor assembly and method of making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183294A (en) * 1962-04-09 1965-05-11 Ohio Crankshaft Co Temperature control apparatus
US3311695A (en) * 1964-10-09 1967-03-28 Ohio Crankshaft Co Coil assembly for an induction melting furnace and method of making same
US3428771A (en) * 1964-11-20 1969-02-18 British Titan Products Plasma producing apparatus
US3401226A (en) * 1965-10-24 1968-09-10 Dresser Ind Induction furnace having a composite lining composed of refractory brick
US3474179A (en) * 1966-06-22 1969-10-21 Ass Elect Ind Metal melting or smelting apparatus
US3546649A (en) * 1968-05-29 1970-12-08 Metalloxyd Gmbh Convoluted conductor assembly and method of making the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191875A (en) * 1977-11-10 1980-03-04 Cunningham Ronald J Fan speed control used in induction cooking apparatus
US4421967A (en) * 1980-07-21 1983-12-20 Vs Systems, Inc. Windmill driven eddy current heater
US4820892A (en) * 1985-08-22 1989-04-11 Tetra Pak International Ab Heating arrangement for packing containers holding liquid contents
US5408073A (en) * 1993-02-20 1995-04-18 Samsung Electronics Co., Ltd. Overheat prevention circuit for electromagnetic induction heating cooker
GB2320573A (en) * 1996-12-19 1998-06-24 Ceramaspeed Ltd Electric heater and sensor
US6353213B1 (en) * 1998-08-07 2002-03-05 Bmg Holdings, Llc Voltage transformer type water heating unit
US20030196911A1 (en) * 2002-04-22 2003-10-23 Palmer Forrest M. Process and apparatus for smelting aluminum
US6855241B2 (en) * 2002-04-22 2005-02-15 Forrest M. Palmer Process and apparatus for smelting aluminum
CN102564124A (en) * 2011-07-28 2012-07-11 郑坚明 Industrial electromagnetic smelting furnace

Also Published As

Publication number Publication date
CH557630A (en) 1974-12-31
DE2228892A1 (en) 1972-12-28
AT305665B (en) 1973-03-12

Similar Documents

Publication Publication Date Title
US5686006A (en) Induction cooker with coil support having spiral-shaped housing for spiral coil
US3804968A (en) Induction furnace
JP2000515235A (en) Induction furnace for melting glass in cold crucibles
US2570311A (en) Electric induction furnace
US3713060A (en) Transformer having improved heat dissipating system
JPS5653868A (en) Heating device of ladle
CA1125382A (en) Induction heater with a cryostat and a cooled baffle
US1971195A (en) Vacuum induction apparatus
US4041236A (en) Furnace having ceramic heating elements
CN103591793B (en) A kind of vacuum sintering furnace
US3046320A (en) Induction furnace coil
US5430758A (en) Magnetic yoke for an induction crucible furnace
US1795926A (en) Induction furnace
CN208175025U (en) Water-cooled electromagnetic spiral coil
US3239201A (en) Heat treating and quenching apparatus
US1328336A (en) Artificially-cooled high-frequency coil
US3192303A (en) Method of reducing overheating in melting troughs and similar devices in melting and holding furnaces
US2093368A (en) Slow electromagnetic device having the same or similar temperature coefficients of resistance materials in differential windings
US2517098A (en) Induction furnace
US3474179A (en) Metal melting or smelting apparatus
SU965029A1 (en) High-frequency device for heating compressed gas
US2164024A (en) Electric arc furnace
CN202818666U (en) Cooling-free induction coil
SU1085024A1 (en) Chamber for heating articles
CN209401457U (en) A kind of high power three-phase furnace transformer

Legal Events

Date Code Title Description
AS Assignment

Owner name: AUSTRIA METALL AKTIENGESELLSCHAFT

Free format text: CHANGE OF NAME;ASSIGNOR:VEREINIGTE METALLWERKE RANSHOFEN-BERNDORF AKTIENGESELLSHCAFT;REEL/FRAME:004432/0638

Effective date: 19850604