US3803687A - Bonded bronze-iron valve plate for steel cylinder barrel and method of making same - Google Patents

Bonded bronze-iron valve plate for steel cylinder barrel and method of making same Download PDF

Info

Publication number
US3803687A
US3803687A US00275730A US27573072A US3803687A US 3803687 A US3803687 A US 3803687A US 00275730 A US00275730 A US 00275730A US 27573072 A US27573072 A US 27573072A US 3803687 A US3803687 A US 3803687A
Authority
US
United States
Prior art keywords
bronze
valve plate
blank
assembly
cylinder barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00275730A
Inventor
M Alger
N Dunn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPX Corp
Original Assignee
General Signal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Signal Corp filed Critical General Signal Corp
Priority to US00275730A priority Critical patent/US3803687A/en
Application granted granted Critical
Publication of US3803687A publication Critical patent/US3803687A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/08Casting in, on, or around objects which form part of the product for building-up linings or coverings, e.g. of anti-frictional metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P13/00Making metal objects by operations essentially involving machining but not covered by a single other subclass
    • B23P13/02Making metal objects by operations essentially involving machining but not covered by a single other subclass in which only the machining operations are important
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0032Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F01B3/0044Component parts, details, e.g. valves, sealings, lubrication
    • F01B3/0052Cylinder barrel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/4927Cylinder, cylinder head or engine valve sleeve making
    • Y10T29/49272Cylinder, cylinder head or engine valve sleeve making with liner, coating, or sleeve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/1216Continuous interengaged phases of plural metals, or oriented fiber containing

Definitions

  • the disclosure concerns steel cylinder barrels for piston pumps and motors having bonded non-steel valve plates.
  • the valve plate comprises a sintered iron powder matrix which is impregnated with bronze and is metallurgically and mechanically bonded to one end of the steel cylinder barrel.
  • the valve plate is made from a porous sintered iron blank which is mounted in contact with one end of a steel barrel blank in an assembly which includes a mass of bronze in the solid state.
  • the assembly is heated in a non-oxidizing atmosphere to a temperature between 1,900 P and 2,000 E to melt the bronze and cause it to infiltrate the sintered valve plate blank and bond to the steel. Thereafter, the assembly is cooled in the nonoxidizing atmosphere to solidify the bronze, followed by air cooling to room temperature. Finally, the finished valve plate is machined from the bronze-impregnated sintered preform.
  • the object of this invention is to provide a practical and reliable process for producing a valve plate which is intimately bonded to the steel cylinder barrel, and which also provides a valve plate having superior properties.
  • the new valve plate comprises a matrix of sintered iron powder which is impregnated with bronze and is metallurgically and mechanically bonded to the end of the steel cylinder barrel.
  • This type of valve plate affords an excellent bearing surface having greater strength than the bronze and better bearing characteristics than the iron.
  • the intimate bond with the steel affords the absolute seal against leakage and the resistance to errosion required in a high performance pump or motor.
  • the process for making the new valve plate commences with the formation of an assembly including a porous, sintered iron valve plate blank, a steel cylinder barrel blank having an end face which bears against the valve plate blank, and a charge of bronze in the solid state having a volume sufficient to completely fill the pores in the sintered iron blank.
  • the assembly is heated in a non-oxidizing atmosphere to a temperature between l,900 F and 2,000 F to melt the charge and cause the bronze to infiltrate the valve plate blank and bond to the steel face of the cylinder barrel blank. Thereafter, the assembly is cooled in the controlled atmosphere to solidify the bronze, and then it is air cooled to room temperature. Finally, the finished valve plate is machined from the bronze-impregnated blank.
  • FIG. 1 is a plan view of the blank-slug assembly.
  • FIG. 2 is a sectional view taken on line 2-2 of FIG. 1.
  • FIG. 3 is a sectional view taken on line 3-3 of FIG.
  • FIG. 4 is an axial sectional view of the finished cylinder barrel.
  • FIG 5 is a face view of the finished valve plate shown in FIG. 4.
  • FIG. 6 is an axial sectional view of an alternative blank-slug assembly.
  • the initial step of the preferred process concerns formation of the assembly 11 (see FIGS. 1-3) which includes a steel cylinder barrel blank 12, a sintered iron valve plate blank 13, a plurality of bronze slugs l4, and a dry sand support 15.
  • Cylinder barrel blank 12 is rough machined from SAE 52,100, 1,045 or 4,150 steel stock and is formed with a through axial bore 16, a circular series of parallel cylinder bores 17, and a flat, annular end face 18. Face 18 is left in the rough turned state since surface irregularities aid, rather than hinder, the bonding process. Moreover, it has been found that the process is not adversely affected by the formation of rust on face 18. After rough machining, blank 12 is cleaned to remove chips and then vapor degreased.
  • Degreasing is not essential because any adherent oil and grease films will be burned off before the bronze-steel bond is effected. However, since these volatiles may leave a residue on face 18 which could cause localized impairment of the bond, it is considered best to remove them initially.
  • Valve plate blank 13 is a flat annulus having a thickness on the order of 5/32 inch to 3/16 inch and provided around its periphery with a series of uniformly spaced radial slots 19 which define the dynamic pads 21 (see FIG. 5) of the finished article. It is centered with respect to barrel blank 12 by a pair of sintered iron pins 22 which extend through it and into the small diameter lower ends of two of the bores 17. Blank l3 and pins 22 are made from the fine iron powder normally used in the powdered metal industry and have a density between 4.5 and 6.0 gins/cc, and preferably on the order of 5.6 to 5.8 gms/cc.
  • these parts are porous, and, based on a pure iron density of about 7.9 gms/cc, each includes 24 percent to 43 percent, and preferably 27 percent-29 percent voids. These voids are distributed uniformly throughout the mass of each part and define capillary passages which permit complete infiltration by molten bronze. Except for their low density, blank 13 and pins 22 are formed and that the composition should be free of zinc and nickel because these metals tend to separate from the other constituents and form a brittle interface which may crack under the service conditions encountered by the completed cylinder barrel. The composition should also have as low a lead content as possible because this metal will bleed out during heat treatment of the driving splines of the finished cylinder barrel. Bronzes having the following compositions, by weight, have proven acceptable:
  • the preferred slugs 14 are made of a bronze containing 85 percent copper, 10 percent tin and 5 percent lead which is purchased commercially in the nickel-free form. Although the slugs may be bronze castings, it is considered better to use sintered masses of bronze powder because this permits better control of composition.
  • assembly E1 After assembly E1 has been completed, it is placed in a furnace and supported in the illustrated upright position.
  • the furnace should contain a non-oxidizing atmosphere, such as the filtered natural gas product commonly employed to control decarburization of the steel in blank 12 during heat treatment, and, in a typical case, it would be at a temperature of about l,600 F at the time assembly 11 is introduced.
  • Furnace temperature is then raised to an elevated level above the melt ing range of the bronze and held there long enough to insure that all parts of assembly 1 I reach a temperature which will produce a good metallurgical bond between the bronze and the steel.
  • the slugs 14 melt, and the molten bronze either migrates into blank 13 through sintered iron pins 22 or flows directly onto the blank through the open bores 17. In any case, this metal is distributed throughout the mass of blank 13 by capillary action. The combined effects of the heat and the infiltration renders the blank 13 somewhat plastic; therefore, the weight of steel blank 12 is sufficient to cause blank 13 to conform to any irregularities in the face 18. As a result, the bronze which wets the upper face of blank 13 can migrate into and form a true metallurgical and a mechanical bond with the steel over the entire interface between the two blanks.
  • the furnace is allowed to cool so that the temperature of assembly 11 reduces below the melting range of the bronze.
  • this phase of the process consumes one hour, furnace temperature decreases to about 1,400 F, and the temperature of assembly 11 drops to a level below l,500 F.
  • valve plate 29 is effected simultaneously with the cylinder liner bonding step of our application Ser. No. 93,298, or Ser. No. 93,130, which have resulted in U.S. Pat. Nos. 3,709,108 and 3,707,035 respectively.
  • FIG. 6 DESCRIPTION OF THE FIG. 6 EMBODIMENT It will be noticed in FIG. 4, that a portion of the arcuate port 28 at the end of each cylinder bore 27 is formed in the barrel blank 12, and therefore is surrounded by a steel web.
  • the strength afforded by this arrangement is needed in high performance pumps which operate continuously at pressures on the order of 5,000 p.s.i. and at speeds around 4,000 r.p.m.
  • low performance units e.g., those which operate at pressures of 1,500-2,000 p.s.i. and at speeds below 3,000 r.p.m.
  • real advantages can be realized by eliminating the steel web.
  • the assembly 11a shown in FIG. 6 may be used for producing cylinder barrels for this type of service.
  • the bores 17a are drilled through barrel blank 12a with a constant diameter, and the sintered iron valve plate blank 13a is formed with a series of integral circular projections 32 which fit into the bores 17a and contain the arcuate ports 28a.
  • This de' sign offers the important advantages that it eliminates step-drilling of bores 17a and end milling of the arcuate ports 28a.
  • the blanks 12a and 13a are bonded together in exactly the same way as in the embodiment of FIGS. l-S, but here, a bond is also effected between the projections 32 and the wall of bore 17a.
  • each bore is equipped with a porous sintered iron sleeve 33 and a charge 34 of bronze of sufficient size to effect complete impregnation of the sleeve.
  • the lower end of each sleeve 33 abuts the face of the associated projection 32, so, during the bonding operations, these parts will be intimately joined. This is an added advantage because, as study of FIG.
  • a process for producing an adherent bronze-like valve plate on the end of a steel cylinder barrel for a pump or motor comprising the steps of a. fabricating a steel cylinder barrel blank having an end face and a plurality of bores extending through the end face, a porous sintered iron valve plate blank, and a charge of bronze in the solid state having a volume sufficient to fill all of the pores in the valve plate blank;
  • valve plate blank has a density between 4.5 and 6.0 gms/ce.
  • valve plate blank has a density between 5.6 and 5.8 gms/cc.
  • the charge is made of a nickel-free bronze containing, by weight, percent copper, 10 percent tin and 5 percent lead.
  • the charge of bronze comprises aplurality of slugs made of sintered, nickel-free bronze powder containing, by weight, 85 percent copper, 10 percent tin and 5 percent lead;
  • valve plate blank has a density of 5.6-5.8
  • the assembly is heated to a temperature of l,950 F and is cooled in said non-oxidizing atmosphere to a temperature between 1,400 F and l,500 F;
  • valve plate blank is formed with a series of integral projections which fit into said bores in the assembly;
  • the projections are infiltrated with bronze and bonded to the bore walls during the heating step.

Abstract

The disclosure concerns steel cylinder barrels for piston pumps and motors having bonded non-steel valve plates. The valve plate comprises a sintered iron powder matrix which is impregnated with bronze and is metallurgically and mechanically bonded to one end of the steel cylinder barrel. The valve plate is made from a porous sintered iron blank which is mounted in contact with one end of a steel barrel blank in an assembly which includes a mass of bronze in the solid state. The assembly is heated in a nonoxidizing atmosphere to a temperature between 1,900* F and 2,000* F to melt the bronze and cause it to infiltrate the sintered valve plate blank and bond to the steel. Thereafter, the assembly is cooled in the non-oxidizing atmosphere to solidify the bronze, followed by air cooling to room temperature. Finally, the finished valve plate is machined from the bronze-impregnated sintered preform.

Description

United States Patent 1 Alger, Jr. et al.
[ BONDED BRONZE-IRON VALVE PLATE FOR STEEL CYLINDER BARREL AND METHOD OF MAKING SAME [75] Inventors: Martin J. Alger, Jr.; Nelson H.
Dunn, both of Watertown, NY.
[73] Assignee: General Signal Corporation,
Watertown, NY.
[22] Filed: July 27, 1972 [21] Appl. No.: 275,730
Related U.S. Application Data [62] Division of Ser. No. 93,297, Nov. 27, 1970, Pat. No.
[52] U.S. Cl 29/l56.4 WL, 29/1821, 75/208 R [51] Int. Cl B23p 15/00 [58] Field of Search29/l56.4 WL, 182.1, 149.5 PM;
[56] References Cited UNITED STATES PATENTS 3,332,774 7/1967 Tuttle 29/1495 PM 3,326,678 6/1967 Talmage 3,125,441 3/1964 Lalferty et a1. 29/l82.l
2,778,742 1/1957 Shipe 29/l82.l
2,759,846 8/1956 Vosler 29/182.l
2,753,859 7/1956 Bartlett 29/l82.1
2,227,307 12/1940 Hildabolt 75/208 R Apr. 16, 1974 3,414,391 12/1968 Brab ..29/182.1
FOREIGN PATENTS OR APPLICATIONS 308,819 2/1930 Great Britain 29/182.l
Primary Examiner-Charles W. Lanham Assistant Examiner-D. C. Crane Attorney, Agent, or Firm-Harold S. Wynn [57] ABSTRACT The disclosure concerns steel cylinder barrels for piston pumps and motors having bonded non-steel valve plates. The valve plate comprises a sintered iron powder matrix which is impregnated with bronze and is metallurgically and mechanically bonded to one end of the steel cylinder barrel. The valve plate is made from a porous sintered iron blank which is mounted in contact with one end of a steel barrel blank in an assembly which includes a mass of bronze in the solid state. The assembly is heated in a non-oxidizing atmosphere to a temperature between 1,900 P and 2,000 E to melt the bronze and cause it to infiltrate the sintered valve plate blank and bond to the steel. Thereafter, the assembly is cooled in the nonoxidizing atmosphere to solidify the bronze, followed by air cooling to room temperature. Finally, the finished valve plate is machined from the bronze-impregnated sintered preform.
10 Claims, 6 Drawing Figures BONDED BRONZE-IRON VALVE PLATE FOR STEEL CYLINDER BARREL AND METHOD OF MAKING SAME CROSS-REFERENCE TO RELATED APPLICATION This application is a division of Application Ser. No. 93,297, filed Nov. 27, 1970, now U.S. Pat. No. 3,709,107.
BACKGROUND AND SUMMARY OF THE INVENTION In hydraulic pumps and motors of the rotary cylinder barrel, longitudinally reciprocating piston type, oil usually is transferred to and from the cylinder bores through a rotary valve at one end of the cylinder barrel. This valve comprises a stationary element containing arcuate high and low pressure ports which subtend anglesslightly less than 180, and an element which rotates with the cylinder barrel and contains a circular series of small arcuate ports, each of which communicates with one of the cylinder bores in the barrel. Since the valving elements are in continuous sliding engagement with each other during operation, it is desirable, if not a practical necessity in the case of high speed, high pressure hydraulic units, to make one of the two elements of bronze. This arrangement can be incorporated in several ways, but it is evident that the best approach for units which employ steel cylinder barrels is to use a bronze rotary valving element and to bond it directly to the end of the cylinder barrel. However, use of this design has been limited by the lack of a satisfactory process for producing a bond between the steel and the bronze.
The object of this invention is to provide a practical and reliable process for producing a valve plate which is intimately bonded to the steel cylinder barrel, and which also provides a valve plate having superior properties. According to the invention, the new valve plate comprises a matrix of sintered iron powder which is impregnated with bronze and is metallurgically and mechanically bonded to the end of the steel cylinder barrel. This type of valve plate affords an excellent bearing surface having greater strength than the bronze and better bearing characteristics than the iron. And, the intimate bond with the steel affords the absolute seal against leakage and the resistance to errosion required in a high performance pump or motor.
The process for making the new valve plate commences with the formation of an assembly including a porous, sintered iron valve plate blank, a steel cylinder barrel blank having an end face which bears against the valve plate blank, and a charge of bronze in the solid state having a volume sufficient to completely fill the pores in the sintered iron blank. The assembly is heated in a non-oxidizing atmosphere to a temperature between l,900 F and 2,000 F to melt the charge and cause the bronze to infiltrate the valve plate blank and bond to the steel face of the cylinder barrel blank. Thereafter, the assembly is cooled in the controlled atmosphere to solidify the bronze, and then it is air cooled to room temperature. Finally, the finished valve plate is machined from the bronze-impregnated blank.
BRIEF DESCRIPTION OF THE DRAWING The preferred embodiment of the invention and several alternatives are described herein with reference to the accompanying drawing in which:
FIG. 1 is a plan view of the blank-slug assembly.
FIG. 2 is a sectional view taken on line 2-2 of FIG. 1.
FIG. 3 is a sectional view taken on line 3-3 of FIG.
FIG. 4 is an axial sectional view of the finished cylinder barrel.
FIG 5 is a face view of the finished valve plate shown in FIG. 4.
FIG. 6 is an axial sectional view of an alternative blank-slug assembly.
DESCRIPTION OF THE EMBODIMENT OF FIGS.
The initial step of the preferred process concerns formation of the assembly 11 (see FIGS. 1-3) which includes a steel cylinder barrel blank 12, a sintered iron valve plate blank 13, a plurality of bronze slugs l4, and a dry sand support 15. Cylinder barrel blank 12 is rough machined from SAE 52,100, 1,045 or 4,150 steel stock and is formed with a through axial bore 16, a circular series of parallel cylinder bores 17, and a flat, annular end face 18. Face 18 is left in the rough turned state since surface irregularities aid, rather than hinder, the bonding process. Moreover, it has been found that the process is not adversely affected by the formation of rust on face 18. After rough machining, blank 12 is cleaned to remove chips and then vapor degreased. Degreasing is not essential because any adherent oil and grease films will be burned off before the bronze-steel bond is effected. However, since these volatiles may leave a residue on face 18 which could cause localized impairment of the bond, it is considered best to remove them initially.
Valve plate blank 13 is a flat annulus having a thickness on the order of 5/32 inch to 3/16 inch and provided around its periphery with a series of uniformly spaced radial slots 19 which define the dynamic pads 21 (see FIG. 5) of the finished article. It is centered with respect to barrel blank 12 by a pair of sintered iron pins 22 which extend through it and into the small diameter lower ends of two of the bores 17. Blank l3 and pins 22 are made from the fine iron powder normally used in the powdered metal industry and have a density between 4.5 and 6.0 gins/cc, and preferably on the order of 5.6 to 5.8 gms/cc. In other words, these parts are porous, and, based on a pure iron density of about 7.9 gms/cc, each includes 24 percent to 43 percent, and preferably 27 percent-29 percent voids. These voids are distributed uniformly throughout the mass of each part and define capillary passages which permit complete infiltration by molten bronze. Except for their low density, blank 13 and pins 22 are formed and that the composition should be free of zinc and nickel because these metals tend to separate from the other constituents and form a brittle interface which may crack under the service conditions encountered by the completed cylinder barrel. The composition should also have as low a lead content as possible because this metal will bleed out during heat treatment of the driving splines of the finished cylinder barrel. Bronzes having the following compositions, by weight, have proven acceptable:
3. 80 percent copper, percent tin, 10 percent lead b 89 percent copper, 11 percent tin c 90 percent copper, 10 percent tin However, the preferred slugs 14 are made of a bronze containing 85 percent copper, 10 percent tin and 5 percent lead which is purchased commercially in the nickel-free form. Although the slugs may be bronze castings, it is considered better to use sintered masses of bronze powder because this permits better control of composition.
After assembly E1 has been completed, it is placed in a furnace and supported in the illustrated upright position. The furnace should contain a non-oxidizing atmosphere, such as the filtered natural gas product commonly employed to control decarburization of the steel in blank 12 during heat treatment, and, in a typical case, it would be at a temperature of about l,600 F at the time assembly 11 is introduced. Furnace temperature is then raised to an elevated level above the melt ing range of the bronze and held there long enough to insure that all parts of assembly 1 I reach a temperature which will produce a good metallurgical bond between the bronze and the steel. Although bonding can be effected at an assembly temperature on the order of 1,900 F, experience indicates that a temperature of l,950 F is needed in order to provide the degree of bonding reliability required for a production process. The furnace temperature and length of time this temperature must be maintained in order to achieve the required assembly temperature must be determined empirically because these factors vary with furnace design and loading, i.e., the number of assemblies 11 being processed at the same time. The final selection involves a compromise since higher temperatures shorten holding time but also cause excessive evaporation of bronze and, because of localized hot spots, involve some risk of melting portions of steel blank 12. Our studies show that furnace temperature above 2,000 F are too risky and are not really demanded by practical production considerations. For example, using a standard heattreating furnace capable of holding thirty assemblies 11, we found that acceptable bonds were produced reliably at a furnace temperature of l,990 F which was maintained for one hour.
During the heating cycle just mentioned, the slugs 14 melt, and the molten bronze either migrates into blank 13 through sintered iron pins 22 or flows directly onto the blank through the open bores 17. In any case, this metal is distributed throughout the mass of blank 13 by capillary action. The combined effects of the heat and the infiltration renders the blank 13 somewhat plastic; therefore, the weight of steel blank 12 is sufficient to cause blank 13 to conform to any irregularities in the face 18. As a result, the bronze which wets the upper face of blank 13 can migrate into and form a true metallurgical and a mechanical bond with the steel over the entire interface between the two blanks.
At the end of the heating cycle, i.e., after all parts of assembly 11 have reached the selected bonding temperature, the furnace is allowed to cool so that the temperature of assembly 11 reduces below the melting range of the bronze. Typically, this phase of the process consumes one hour, furnace temperature decreases to about 1,400 F, and the temperature of assembly 11 drops to a level below l,500 F. These conditions insure solidification of the bronze and permit opening of the furnace without risk of explosion of the controlled atmosphere. Therefore, assembly 11 is now removed from the furnace and allowed to air cool to room temperature. When the bonded blanks l2 and 13 have cooled sufficiently, they are removed from sand bed 15, sand blasted, and then transfonned into the finished cylinder barrel shown in FIGS. 4 and 5. The finishing steps include:
1. Machining the inner and outer peripheral surfaces 23 and 24, respectively, and the front face 25.
2. Cutting and heat treating driving splines 26,
3. Boring and honing cylinder bores 27, and end milling the arcuate port 28 at the valve plate end of each bore.
4. Machining bonded valve plate 29 to form land 31.
5. Grinding and lapping the faces of dynamic pads 21 and land 31.
Although the foregoing description treats only the process steps of the invention, it should be understood that, in the complete commercial process, bonding of valve plate 29 is effected simultaneously with the cylinder liner bonding step of our application Ser. No. 93,298, or Ser. No. 93,130, which have resulted in U.S. Pat. Nos. 3,709,108 and 3,707,035 respectively.
DESCRIPTION OF THE FIG. 6 EMBODIMENT It will be noticed in FIG. 4, that a portion of the arcuate port 28 at the end of each cylinder bore 27 is formed in the barrel blank 12, and therefore is surrounded by a steel web. The strength afforded by this arrangement is needed in high performance pumps which operate continuously at pressures on the order of 5,000 p.s.i. and at speeds around 4,000 r.p.m. However, in the case of low performance units, e.g., those which operate at pressures of 1,500-2,000 p.s.i. and at speeds below 3,000 r.p.m., real advantages can be realized by eliminating the steel web. The assembly 11a shown in FIG. 6 may be used for producing cylinder barrels for this type of service.
As shown in FIG. 6, the bores 17a are drilled through barrel blank 12a with a constant diameter, and the sintered iron valve plate blank 13a is formed with a series of integral circular projections 32 which fit into the bores 17a and contain the arcuate ports 28a. This de' sign offers the important advantages that it eliminates step-drilling of bores 17a and end milling of the arcuate ports 28a. The blanks 12a and 13a are bonded together in exactly the same way as in the embodiment of FIGS. l-S, but here, a bond is also effected between the projections 32 and the wall of bore 17a.
The assembly of FIG. 6 also is designed to effect simultaneous bonding of bronze-iron liners in the bores 17a in accordance with the teachings of application Ser. No. 93,297, now U.S. Pat. No. 3,709,107 men tioned above. For this purpose, each bore is equipped with a porous sintered iron sleeve 33 and a charge 34 of bronze of sufficient size to effect complete impregnation of the sleeve. The lower end of each sleeve 33 abuts the face of the associated projection 32, so, during the bonding operations, these parts will be intimately joined. This is an added advantage because, as study of FIG. 6 will show, the arrangement affords a lined and faced cylinder barrel in which all contact between high pressure oil and the bronze-steel interfaces is precluded. Thus, the design affords even better insurance against leakage than the prior proposal of US. Pat. No. 3,169,488, granted Feb. 16, 1965.
We claim:
1. A process for producing an adherent bronze-like valve plate on the end of a steel cylinder barrel for a pump or motor comprising the steps of a. fabricating a steel cylinder barrel blank having an end face and a plurality of bores extending through the end face, a porous sintered iron valve plate blank, and a charge of bronze in the solid state having a volume sufficient to fill all of the pores in the valve plate blank;
b. uniting said blanks and charge in an assembly in which the valve plate blank is in contact with said end face of the barrel blank and the charge is in the form of slugs of bronze in the respective bores and disposed above the valve plate blank so that when melted the bronze can flow into the valve plate blank;
c. heating said assembly in a non-oxidizing atmosphere to a temperature between 1,900 F and 2,000 F to melt the charge and cause the bronze to infiltrate the valve plate blank and bond to the end face of the cylinder barrel blank:
d. cooling said assembly in the presence of the nonoxidizing atmosphere to solidify the bronze;
e. further cooling the assembly to room temperature;
and
f. machining the final valve plate from the bronze impregnated, sintered iron blank.
2. The process defined in claim 1 in which the valve plate blank has a density between 4.5 and 6.0 gms/ce.
3. The process defined in claim 1 in which the valve plate blank has a density between 5.6 and 5.8 gms/cc.
4. The process defined in claim 1 in which a. the cylinder barrel blank is made of SAE 52,100,
1,045 or 4,150 steel; and
b. the charge is made of a nickel-free bronze containing, by weight, percent copper, 10 percent tin and 5 percent lead.
5. The process defined in claim 1 in which the assembly is heated to a temperature of 1,950 F.
6. The process defined in claim 1 in which a. the assembly is cooled in the non-oxidizing atmosphere to a temperature between 1,400 F and 1,500 F; and
b. said further cooling is effected in air.
7. The process defined in claim 1 in which the slugs are made of sintered bronze powder.
8. The process defined in claim 1 in which a. the cylinder barrel blank is made of SAE 52,100,
1,045 or 4,150 steel;
b. the charge of bronze comprises aplurality of slugs made of sintered, nickel-free bronze powder containing, by weight, 85 percent copper, 10 percent tin and 5 percent lead;
c. the valve plate blank has a density of 5.6-5.8
gms/cc;
d. the assembly is heated to a temperature of l,950 F and is cooled in said non-oxidizing atmosphere to a temperature between 1,400 F and l,500 F; and
e. said further cooling is effected in air.
9. The process defined in claim 1 in which a. the cylinder barrel blank is formed with a circular series of bores which open through said end face;
b. the valve plate blank is formed with a series of integral projections which fit into said bores in the assembly; and
c. the projections are infiltrated with bronze and bonded to the bore walls during the heating step.
10. The process defined in claim 9 in which each projection is pierced by a port.
* I #II

Claims (10)

1. A process for producing an adherent bronze-like valve plate on the end of a steel cylinder barrel for a pump or motor comprising the steps of a. fabricating a steel cylinder barrel blank having an end face and a plurality of bores extending Through the end face, a porous sintered iron valve plate blank, and a charge of bronze in the solid state having a volume sufficient to fill all of the pores in the valve plate blank; b. uniting said blanks and charge in an assembly in which the valve plate blank is in contact with said end face of the barrel blank and the charge is in the form of slugs of bronze in the respective bores and disposed above the valve plate blank so that when melted the bronze can flow into the valve plate blank; c. heating said assembly in a non-oxidizing atmosphere to a temperature between 1,900* F and 2,000* F to melt the charge and cause the bronze to infiltrate the valve plate blank and bond to the end face of the cylinder barrel blank: d. cooling said assembly in the presence of the non-oxidizing atmosphere to solidify the bronze; e. further cooling the assembly to room temperature; and f. machining the final valve plate from the bronze impregnated, sintered iron blank.
2. The process defined in claim 1 in which the valve plate blank has a density between 4.5 and 6.0 gms/cc.
3. The process defined in claim 1 in which the valve plate blank has a density between 5.6 and 5.8 gms/cc.
4. The process defined in claim 1 in which a. the cylinder barrel blank is made of SAE 52,100, 1,045 or 4, 150 steel; and b. the charge is made of a nickel-free bronze containing, by weight, 85 percent copper, 10 percent tin and 5 percent lead.
5. The process defined in claim 1 in which the assembly is heated to a temperature of 1,950* F.
6. The process defined in claim 1 in which a. the assembly is cooled in the non-oxidizing atmosphere to a temperature between 1,400* F and 1,500* F; and b. said further cooling is effected in air.
7. The process defined in claim 1 in which the slugs are made of sintered bronze powder.
8. The process defined in claim 1 in which a. the cylinder barrel blank is made of SAE 52,100, 1,045 or 4, 150 steel; b. the charge of bronze comprises a plurality of slugs made of sintered, nickel-free bronze powder containing, by weight, 85 percent copper, 10 percent tin and 5 percent lead; c. the valve plate blank has a density of 5.6-5.8 gms/cc; d. the assembly is heated to a temperature of 1,950* F and is cooled in said non-oxidizing atmosphere to a temperature between 1,400* F and 1,500* F; and e. said further cooling is effected in air.
9. The process defined in claim 1 in which a. the cylinder barrel blank is formed with a circular series of bores which open through said end face; b. the valve plate blank is formed with a series of integral projections which fit into said bores in the assembly; and c. the projections are infiltrated with bronze and bonded to the bore walls during the heating step.
10. The process defined in claim 9 in which each projection is pierced by a port.
US00275730A 1970-11-27 1972-07-27 Bonded bronze-iron valve plate for steel cylinder barrel and method of making same Expired - Lifetime US3803687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00275730A US3803687A (en) 1970-11-27 1972-07-27 Bonded bronze-iron valve plate for steel cylinder barrel and method of making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9329770A 1970-11-27 1970-11-27
US00275730A US3803687A (en) 1970-11-27 1972-07-27 Bonded bronze-iron valve plate for steel cylinder barrel and method of making same

Publications (1)

Publication Number Publication Date
US3803687A true US3803687A (en) 1974-04-16

Family

ID=26787368

Family Applications (1)

Application Number Title Priority Date Filing Date
US00275730A Expired - Lifetime US3803687A (en) 1970-11-27 1972-07-27 Bonded bronze-iron valve plate for steel cylinder barrel and method of making same

Country Status (1)

Country Link
US (1) US3803687A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445258A (en) * 1982-01-26 1984-05-01 General Signal Corporation Method of sealing interfaces of bearing surfaces to steel barrels of piston pumps
US5085127A (en) * 1990-03-29 1992-02-04 Sundstrand Corporation Cavitation resistant hydraulic cylinder block porting faces
US5943942A (en) * 1996-11-19 1999-08-31 Sundstrand Corporation Copper-based alloy casting process
US6180183B1 (en) 1996-11-19 2001-01-30 Hamilton Sundstrand Corporation Copper-based alloy casting process
US6557455B2 (en) * 2000-10-02 2003-05-06 Caterpillar Inc. Two piece barrel design for a hydraulic oil pump
US20070028608A1 (en) * 2004-02-11 2007-02-08 George Kadlicko Rotary hydraulic machine and controls
CN102756253A (en) * 2012-06-25 2012-10-31 大耐泵业有限公司 Device for removing and installing horizontal barrel pump cores
CN104819126A (en) * 2015-03-02 2015-08-05 广东美芝制冷设备有限公司 Bearing for compressor, and preparation method as well as compressor and refrigeration equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB308819A (en) * 1928-03-31 1930-02-20 Gen Electric Improvements in and relating to multiple metals and methods of manufacturing the same
US2227307A (en) * 1939-03-02 1940-12-31 Gen Motors Corp Bearing structure
US2753859A (en) * 1952-03-07 1956-07-10 Thompson Prod Inc Valve seat insert
US2759846A (en) * 1952-09-05 1956-08-21 Gen Motors Corp Method of impregnating porous metal parts with a lower melting point metal
US2778742A (en) * 1953-05-25 1957-01-22 Gen Motors Corp Method of impregnating a porous ferrous part with copper
US3125441A (en) * 1964-03-17 Materials
US3326678A (en) * 1964-02-03 1967-06-20 Talmage Charles Robert Method of infiltrating a metal powder compact
US3332774A (en) * 1963-12-18 1967-07-25 Motor Wheel Corp Method of making a sintered impregnated metal brake drum
US3414391A (en) * 1963-12-13 1968-12-03 Porter Prec Products Inc Ferrous die element formed of powdered metal impregnated with copper

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125441A (en) * 1964-03-17 Materials
GB308819A (en) * 1928-03-31 1930-02-20 Gen Electric Improvements in and relating to multiple metals and methods of manufacturing the same
US2227307A (en) * 1939-03-02 1940-12-31 Gen Motors Corp Bearing structure
US2753859A (en) * 1952-03-07 1956-07-10 Thompson Prod Inc Valve seat insert
US2759846A (en) * 1952-09-05 1956-08-21 Gen Motors Corp Method of impregnating porous metal parts with a lower melting point metal
US2778742A (en) * 1953-05-25 1957-01-22 Gen Motors Corp Method of impregnating a porous ferrous part with copper
US3414391A (en) * 1963-12-13 1968-12-03 Porter Prec Products Inc Ferrous die element formed of powdered metal impregnated with copper
US3332774A (en) * 1963-12-18 1967-07-25 Motor Wheel Corp Method of making a sintered impregnated metal brake drum
US3326678A (en) * 1964-02-03 1967-06-20 Talmage Charles Robert Method of infiltrating a metal powder compact

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445258A (en) * 1982-01-26 1984-05-01 General Signal Corporation Method of sealing interfaces of bearing surfaces to steel barrels of piston pumps
US5085127A (en) * 1990-03-29 1992-02-04 Sundstrand Corporation Cavitation resistant hydraulic cylinder block porting faces
US5943942A (en) * 1996-11-19 1999-08-31 Sundstrand Corporation Copper-based alloy casting process
US6180183B1 (en) 1996-11-19 2001-01-30 Hamilton Sundstrand Corporation Copper-based alloy casting process
US6557455B2 (en) * 2000-10-02 2003-05-06 Caterpillar Inc. Two piece barrel design for a hydraulic oil pump
US20070028608A1 (en) * 2004-02-11 2007-02-08 George Kadlicko Rotary hydraulic machine and controls
US7992484B2 (en) 2004-02-11 2011-08-09 Haldex Hydraulics Corporation Rotary hydraulic machine and controls
US9115770B2 (en) 2004-02-11 2015-08-25 Concentric Rockford Inc. Rotary hydraulic machine and controls
CN102756253A (en) * 2012-06-25 2012-10-31 大耐泵业有限公司 Device for removing and installing horizontal barrel pump cores
CN102756253B (en) * 2012-06-25 2016-12-21 大耐泵业有限公司 Device for removing and installing horizontal barrel pump cores
CN104819126A (en) * 2015-03-02 2015-08-05 广东美芝制冷设备有限公司 Bearing for compressor, and preparation method as well as compressor and refrigeration equipment

Similar Documents

Publication Publication Date Title
US3808659A (en) Bonded bronze-iron liners for steel cylinder barrel and method of making same
US7066235B2 (en) Method for manufacturing clad components
US2588422A (en) Application of spray metal linings for aluminum engine cylinders of or for reciprocating engines
US3709107A (en) Steel cylinder barrel having bonded bronze-iron valve plate
US4169637A (en) Drill bushings, pump seals and similar articles
US5425306A (en) Composite insert for use in a piston
US3709108A (en) Steel cylinder barrel having bonded bronze-iron liners
US3803687A (en) Bonded bronze-iron valve plate for steel cylinder barrel and method of making same
US2299192A (en) Method of making sintered articles
US2193088A (en) Poppet valve blank and method of making same
CN101670439A (en) Method for producing a workpiece from composite material and workpiece made of composite material
US2158461A (en) Method of making bearings
GB2245318A (en) Rolling bearing
US4241483A (en) Method of making drill, bushings, pump seals and similar articles
JPH02279730A (en) Method and device for making thin friction plate
US4277544A (en) Powder metallurgical articles and method of bonding the articles to ferrous base materials
US2064155A (en) Valve and seat for internal combustion engines
CN111468734B (en) Method for manufacturing thrust ring of sliding thrust bearing
US3707035A (en) Method of producing steel cylinder barrels having bonded bronze cylinder liners
US3707034A (en) Method of producing steel cylinder barrels having bonded bronze valve plates
US4787129A (en) Metal of manufacturing a composite journal bushing
US4155756A (en) Hollow bodies produced by powder extrusion of aluminum-silicon alloys
US2260247A (en) Method of making bearings
US2503533A (en) Process of making bearings
GB1602785A (en) Drill bushing pump seal or similar articles and method of making same