US3800850A - Electron beam melting installation - Google Patents

Electron beam melting installation Download PDF

Info

Publication number
US3800850A
US3800850A US00162520A US3800850DA US3800850A US 3800850 A US3800850 A US 3800850A US 00162520 A US00162520 A US 00162520A US 3800850D A US3800850D A US 3800850DA US 3800850 A US3800850 A US 3800850A
Authority
US
United States
Prior art keywords
vacuum chamber
electron beam
pipes
consumable material
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00162520A
Other languages
English (en)
Inventor
A Tikhonovsky
J Kurapov
R Misjura
P Kucherenko
B Paton
B Movchan
A Belenky
A Teschev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3800850A publication Critical patent/US3800850A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching

Definitions

  • the molten material is gradually discharged into a metal crystallization unit, also disposed in the vacuum chamber.
  • the crystallization unit employs an L-shaped member arranged to be capable of controlled vertical movement on the circumference of a sector-shaped element.
  • the sectorshaped element is secured to a rotatable seeding or forming disk which is slowly rotated by means of a hollow shaft.
  • Molten material deposited into a recess formed by the L-shaped member crystallizes, slowly adding to the pipe or ring which is being formed.
  • the region of said recess is heated by further electron beam means to control the crystallization of molten material.
  • the hollow shaft, the intermediate vessel and the L-shaped member are expediently water-cooled to improve the performance of the installation.
  • This invention relates to electrometallurgy and more particularly to the manufacture of monolithic and mu]- tilayer rings and pipes of large diameters and lengths by the use of electron beam installations.
  • the inside surface of the pipe in said known installation is formed by a water-cooled copper rod introduced into the crystallization vessel in the direction of its centre.
  • the water-cooled copper rod being surrounded by the melt absorbs considerable heat energy, which eliminates the possibility of manufacture of large diameter pipes.
  • the rod may get jammed when the lower part of the pipe cools, and this may cause formation of ruptures and cracks on the inside surface of the pipe.
  • the purpose of the present invention is to overcome the disadvantages of the above mentioned known installation.
  • An object of the present invention is to provide an electron beam installation in which it is possible to obtain monolithic and multilayer rings and pipes of large diameters and lengths.
  • an electron beam installation for the manufacture of rings and pipes which comprises a vacuum chamber with a charging means, electron guns and a water-cooled intermediate vessel and a metal crystallization vessel arranged therein;
  • said metal crystallization vessel is made in the form of a seeding disk one side of which is rigidly secured on an end of a rotating shaft end extending through a side wall of the vacuum chamber by a fixed sector adjacent to the free side of said seeding disk and by an L-shaped barrier mounted with the possibility of movement on the cylindrical surface of the fixed sector.
  • the seeding disk is made in the form of a spiral turn and coupled with the mechanism for turning and moving the disk along the shaft longitudinal axis.
  • FIG. 1 is a general view, in part section, of the installation according to the invention.
  • FIG. 2 is a general view, in part section of the installation according to the invention employing another embodiment of the metal crystallization vessel.
  • the electron beam installation comprises a vacuum chamber 1 (FIG. 1) having vacuum pumps and an electric power source (not shown). Within vacuum chamber 1 electron guns 2, 3, 4 are arranged.
  • a charging means (not shown) is mounted on a side wall (not shown) of vacuum chamber 1 to feed consumable material 5 to the melting zone at which is directed electron gun 2 designed for melting consumable material 5.
  • a water-cooled intermediate vessel 6 is mounted in vacuum chamber 1 to receive the flowing down molten metal and second electron gun 3 is directed into the vessel 6.
  • the intermediate vessel 6 is secured to a hollow rod 7, which is extended through the side wall of vacuum chamber 1 whose inner cavity is intended to supply and to draw off cooling water to/from the intermediate vessel 6.
  • a second electron gun 3 is directed at the intermediate vessel 6.
  • a water cooled vessel 8 for the metal crystallization is arranged, the third electron gun 4 being directed to the vessel 8.
  • Metal crystallization vessel 8 is defined by seeding disk 9 one face of which is secured to horizontal rotatable hollow shaft 10 extending through the back wall of vacuum chamber 1 and coupled with a driving mechanism (not shown); a metal sector 11 is fixed adjacent to the free face (not shown) of the seeding disk and mounted on hollow rods 12 extending through the front wall of vacuum chamber 1; an L-shaped barrier 13 is mounted on the cylindrical surface of fixed sector 11 facing at or being opened towards intermediate vessel 6. By means of hollow rods 14 extending through the upper cover (not shown) of vacuum chamber 1, L- shaped barrier 13 is connected with (not shown) mechanism for imparting a vertical movement (not shown).
  • Hollow shaft 10 and hollow rods 12, 14 are introduced into the vacuum chamber via seals and are adapted to supply and draw-off the cooling water into and from seeding disk 9, fixed sector 11 and L-shaped barrier 13 respectively.
  • the seeding disk is made in the form of a spiral turn 15 with a bench 16 whose length is equal to the internal length of wall 17 of L-shaped barrier 13.
  • the installation operates as follows.
  • a seeding pin 18 is inserted into the seeding disk 9 (FIG. 1) and arranged in front of L-shaped barrier 13.
  • the charging means feeds consumable material 5 (FIG. 1) into vacuum chamber 1 where this material is melted by a beam of electrons of electron gun 2 and flows down into intermediate vessel 6 heated by a beam of electron gun 3.
  • the intermediate vessel 6 fills up with liquid metal, it overflows on the cylindrical surface of water-cooled fixed sector 1 1, said surface being defined by seeding disk 9 at one side and L- shaped barrier 13 at the other two sides.
  • a metal bath 19 thus formed is heated by a beam of electrons of electron gun 4.
  • seeding pin 18 (which has been mounted in the area of metal bath 19 prior to melting) firmly connects billet 20 being formed with seeding disk 9.
  • Shaft and seeding disk 8 coupled therewith are made to rotate and, as a result, billet 20 begins to move away from L-shaped barrier 13.
  • the cavity formed at the cylindrical surface of fixed sector 11 is continuously filled with the metal from intermediate vessel 6 and so on.
  • L-shaped barrier 13 is radially raised by means of its vertical movement mechanism (not shown). Said barrier, sliding along the wedge-like edge of the formed annular billet raises to the height equal to the thickness of the first formed layer of billet 20. The resultant cavity is filled with the liquid metal and then the installation starts to form the second layer; and so on.
  • L-shaped barrier 13 (FIG. 2) is arranged at the cylindrical surface of water-cooled fixed sector 11 near bench 6 made in the form of a spiral turn 15 of seeding disk 9, and after crystallization of the first seed portion of liquid metal the formation of pipe billet 19 is accomplished by building up successive spiral turns.
  • An electron beam melting installation for the manufacture of rings and pipes, comprising: a vacuum chamber; charging means for feeding a consumable material into said vacuum chamber for being melted and formed into rings and pipes; electron guns arranged in said vacuum chamber and adapted for melting the consumable material; a water-cooled intermediate vessel arranged in said vacuum chamber for receiving molten consumable material and retaining the consumable material in molten state; a vessel for metal crystallization arranged in said vacuum chamber under said intermediate vessel and comprising a seeding disk one side of which is rigidly secured to an end of a rotatable shaft sealingly extending through a side wall of the vacuum chamber, a fixed sector adjacent to a free side of said seeding disk and an L-shaped barrier mounted on the cylindrical surface of the fixed sector and provided with means for causing a controlled vertical movement thereof, whereby by slow rotation of said rotatable shaft and the seeding disk, single or multilayer rings and pipes can be manufactured from said consumable material.
  • said seeding disk comprises a'spiral turn and is coupled with a mechanism for turning and moving said disk along the longitudinal axis of said shaft.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
US00162520A 1970-07-17 1971-07-14 Electron beam melting installation Expired - Lifetime US3800850A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU7001458058A SU337034A1 (ru) 1970-07-17 1970-07-17 Установка дл получени колец и труб

Publications (1)

Publication Number Publication Date
US3800850A true US3800850A (en) 1974-04-02

Family

ID=20455069

Family Applications (1)

Application Number Title Priority Date Filing Date
US00162520A Expired - Lifetime US3800850A (en) 1970-07-17 1971-07-14 Electron beam melting installation

Country Status (5)

Country Link
US (1) US3800850A (de)
AT (1) AT308299B (de)
DE (1) DE2135690C3 (de)
FR (1) FR2101825A5 (de)
SU (1) SU337034A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020893A (en) * 1974-12-30 1977-05-03 Paton Boris E Plant for electroslag melting of hollow ingots shaped as non-closed cylinders

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426780C2 (de) * 1994-07-28 1998-04-09 Ardenne Anlagentech Gmbh Kristallisator für Vakuumschmelzanlagen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2525133A (en) * 1945-06-22 1950-10-10 Kellogg M W Co Manufacture of composite metal articles
US3183077A (en) * 1962-01-30 1965-05-11 Bendix Balzers Vacuum Inc Process for vacuum degassing
US3226223A (en) * 1960-05-21 1965-12-28 W C Heracus G M B H Method and apparatus for melting metals by inductive heating and electron bombardment
US3342250A (en) * 1963-11-08 1967-09-19 Suedwestfalen Ag Stahlwerke Method of and apparatus for vacuum melting and teeming steel and steellike alloys
US3558846A (en) * 1966-04-04 1971-01-26 Mitsubishi Heavy Ind Ltd Method of and apparatus for constructing substantially circular cross section vessel by welding
US3642053A (en) * 1969-12-09 1972-02-15 Ppg Industries Inc Method of preparing sodium-lead alloy flakes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2525133A (en) * 1945-06-22 1950-10-10 Kellogg M W Co Manufacture of composite metal articles
US3226223A (en) * 1960-05-21 1965-12-28 W C Heracus G M B H Method and apparatus for melting metals by inductive heating and electron bombardment
US3183077A (en) * 1962-01-30 1965-05-11 Bendix Balzers Vacuum Inc Process for vacuum degassing
US3342250A (en) * 1963-11-08 1967-09-19 Suedwestfalen Ag Stahlwerke Method of and apparatus for vacuum melting and teeming steel and steellike alloys
US3558846A (en) * 1966-04-04 1971-01-26 Mitsubishi Heavy Ind Ltd Method of and apparatus for constructing substantially circular cross section vessel by welding
US3642053A (en) * 1969-12-09 1972-02-15 Ppg Industries Inc Method of preparing sodium-lead alloy flakes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020893A (en) * 1974-12-30 1977-05-03 Paton Boris E Plant for electroslag melting of hollow ingots shaped as non-closed cylinders

Also Published As

Publication number Publication date
DE2135690C3 (de) 1974-04-25
DE2135690A1 (de) 1972-01-20
DE2135690B2 (de) 1973-09-06
SU337034A1 (ru) 1977-12-05
AT308299B (de) 1973-06-25
FR2101825A5 (de) 1972-03-31

Similar Documents

Publication Publication Date Title
US2130202A (en) Continuously casting pipe
US3470939A (en) Continuous chill casting of cladding on a continuous support
KR101311580B1 (ko) 중공 주괴의 반연속 주조 방법 및 장치
US5291940A (en) Static vacuum casting of ingots
US3746077A (en) Apparatus for upward casting
US2385206A (en) Method and apparatus for producing metal bodies
CN206779401U (zh) 一种单辊法制备非晶镁合金的装置
US2752648A (en) Apparatus for the production of tubular metallic objects
US2770022A (en) Method of continuously casting molten metal
US2682691A (en) Continuous casting process and apparatus
US4188201A (en) Apparatus for forming an ingot in a rotating housing
US2380238A (en) Method and apparatus for producing cast metal bodies
US3421569A (en) Continuous casting
US3379238A (en) Polyphase electric furnace for molding ingots
US3863704A (en) Method of casting by pouring metal from a melt supply through a feeder into a mold
US3800850A (en) Electron beam melting installation
US3759310A (en) Nsumable electrode method and apparatus for providing single crystal castings using a co
KR900001325B1 (ko) 구상흑연주철관의 연속 제조 방법 및 장치
US3273212A (en) Method of operating an electric furnace
US4295516A (en) Symmetrical horizontal continuous casting
US3287769A (en) Vacuum melting and casting apparatus
GB1517409A (en) Furnace for the production of substantially spherical particles
JPH06263B2 (ja) 連続鋳造法
US3442321A (en) Device for continuous casting of refractory materials
KR100673618B1 (ko) 반고체 금속의 제조장치 및 반고체 금속의 제조방법