US3798954A - Method and apparatus for producing metal tubes by extrusion of a hollow billet - Google Patents

Method and apparatus for producing metal tubes by extrusion of a hollow billet Download PDF

Info

Publication number
US3798954A
US3798954A US00200002A US20000271A US3798954A US 3798954 A US3798954 A US 3798954A US 00200002 A US00200002 A US 00200002A US 20000271 A US20000271 A US 20000271A US 3798954 A US3798954 A US 3798954A
Authority
US
United States
Prior art keywords
billet
die
mandrel
tube
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00200002A
Inventor
A Asari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Application granted granted Critical
Publication of US3798954A publication Critical patent/US3798954A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/085Making tubes

Definitions

  • ABSTRACT Metal tubes are produced by extruding a hollow billet through an annular die opening defined by a die and a movable rod-shaped mandrel having a larger length than the tube to be produced, and by feeding the mandrel rod through the die together with the tube as it is being formed so that the tube as produced has the mandrel rod disposed therein along 'its entire length, whereby damage to the inner surface of the tube caused by scratching due to relative movement of the mandrel therewith is avoided and tubes having improved inner surface characteristics are obtained.
  • the mandrel which forms the inside surface of-the tube moves relatively over the inside surface thereof as the tube is being formed by extrusion in such a scraping manner that the life of the mandrel is shortened due to frictional wear thereof.
  • the finished condition 'of the inside surface of the tube is relatively poor because of scratches and other faults produced by the relative sliding with fric tion between the inside surface of the tube and the mandrel.
  • a lubricant to the boundary of the billet and the mandrel, with the lubricant being selected from any one of a number of suitable materials according to the material from which the billet is constructed, such as, for example, glass powder for billets which are made of steel or titanium, zirconium or aluminum alloys.
  • Another object of the present invention is to provide a method of producing metal tubes by extruding a hollow billet through a die 'with the help of a cooperating mandrel, which is not complex and does not require strict control, yet is capable of producing such tubes having innerv surface characteristics of improved quality.
  • Still another object of the present invention is to provide an apparatus for. practicing the method described immediately hereinbefore.
  • an improved method of producing metal tubes comprising the steps of preparing a hollow billet having. a central through opening of predetermined dimensions, extruding the hollow billet through an annular die opening defined by a die and a movable rod-shaped mandrel having a length greater than that of the tube being produced, feeding the mandrel rod through the die in accordance with the extrusion of the tube, and removing the mandrel rod from the tube after the tube has been completely extruded.
  • the mandrel which cooperates with the die to define an annular opening through which a tube is extruded from a hollow billet is a rod of a greater length than thetube being produced and is fed through the die together with the tube as it is extruded from the die, such that the tube is always accompanied by the mandrel rod, substantially no relative sliding occurs between the inside surface of the tube and the mandrel over the whole length of the tube, and thereby scratches'or other faults on the inside surface of the tube due to such relative sliding or friction between the tube and the mandrel are substantially avoided.
  • tubes produced by the method of this invention have a very high quality of inside surface characteristics.
  • the extrusion plant for carrying out the process according to this invention is very simplified and can readily be automated, to thereby further improve the productivity of the plant.
  • FIG. 1 is a plan view schematically showing the layout of a tube extrusion plant for practicing the method DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • a billet extrusion press 1 as explained in detail hereinbelow is provided for extruding a tube 2 therefrom in the state in which a mandrel rod is yet disposed therein onto a runout table 3.
  • the tubes placed on the table 3 are then transferred to a cooling table 4, where they may be cooled for a sufficient period of time to attain a required temperature without regard to the operation cycle of the extrusion press 1.
  • the cooled tubes 2 are fed to a mandrel stripper 5 of the push-bench or reeler type, which itself is known in the art.
  • the strippers S of the character described are conventionally used to draw out a core or other rod-like element from a tubular element, and generally accomplish their purposes without any difficulty and without causing scratches or other faults on the inside surface of the tubular element.
  • the stripper of the reeler type which employs pairs of cooperating skewed rollers, especially can be favorably employed for the present purpose of drawing the mandrel rod out from the extruded tube, by arranging a number of pairs of cooperating skewed rollers corresponding to the length of the tube.
  • the tubes 2 are transferred from the mandrel stripper 5 to a suitable product storing station, not shown, while the mandrelrods are returned to a mandrel feed table 6, where they are further cooled and prepared for their next use in the extrusion process.
  • FIG. 1 In the layout'drawing schematically shown in FIG. 1, other equipment related .to the billet extrusion press 1 are shown, such as billet heating furnaces 7, 8, 9, l0 and 1 l, a transfer device 12 for charging billets into the billet heating furnaces and another transfer device 13 for discharging the billets from the furnaces and feeding them to the billet extrusion press 1.
  • a water pump 14 is provided for cooling the extruded tubes, mandrels and other equipment.
  • Other parts of the plant which are shown include a water storage tank. 15, a compressor l6, compressed air accumulators 17, a main stop valve 18, control valves 19, a low pressure tank 20, oilhydraulic units 21-, a control room 22 and motors 23.
  • a billet container 37 Adjacent the die holder 33 there is provided a billet container 37 defining a billet chamber 38 in which is charged a hollow billet 39 being preformed to present a central opening which is adapted to allow penetration of a mandrel rod 40 therethrough.
  • the billet container 37 is supported by a container holder 41, which in turn is supportedby one end of a pair of press columns 42 mounted on the platen 34.
  • the columns 42 guide a cross head 43 having a stem portion 44 extending therefrom to be received in the billet chamber 38- for applying a compression force to the billet 39 charged therein through a disk 45.
  • the central portion of the crosshead 43 is'constituted as a piston-cylinder assembly including a movable element 46 presenting a shear mandrel 47 at its forward end and a piston 48 at its rear portion, which is disposed in a cylinder chamber 49 formed in the crosshead 43 for driving the movable element 46 with respect to the crosshead.
  • a movable element 46 presenting a shear mandrel 47 at its forward end and a piston 48 at its rear portion, which is disposed in a cylinder chamber 49 formed in the crosshead 43 for driving the movable element 46 with respect to the crosshead.
  • a through opening 50 adapted to allow feeding of the mandrel rod 40 therethrough.
  • the crosshead 43 is movable along the columns 42 by rams S1 being actuated by supplying pressure to cylinders 52, and can be retracted to open the billet chamber 38 for charging a billet therein or moved forward to apply a compression force to the billet charged in the billet chamber.
  • Reference numeral 53 designates a series of mandrel transfer rollers which carry the mandrel rod 40 and feed it according to the progress of the extrusion process.
  • the billet extrusion press shown in FIG. 3. is almost identical with the press shown in FIG. 2, except that in the press shown in FIG. 3, the billet container 37 is carried by the crosshead 43 through the container holder 41, which in this case is integrally formed as a part of the crosshead 43, and the die 3i is supported by a stem 7 press, the billet 39 is slid within the billet container 37 as the extrusion proceeds, while in the latter press, the billet 39 is kept substantially unmoved with respect to the billet container 37 and the die 31 is slid over the wall of the billet chamber 38.
  • FIGS. 4 to 6 show the starting, intermediate and ending conditions, respectively, of an extrusion process being carried out with the press shown in FIG. 2.
  • the billet 39 is charged in the billet chamber 38 with the crosshead 43 first being sufficiently retracted to open the chamber 38, and then the disk 45 is engaged and the crosshead 43 is moved forward to advance the disk 45 to be in close contracting relation with the billet.
  • the shear mandrel 47 is so retracted with respect to the stem portion 44 of the crosshead that it applies no shearing force to the billet.
  • the mandrel rod 40 is fed through the opening 50 of the movable element 46 in the crosshead 43 and the central opening of the billet 39 until the forward end thereofjust penetrates the opening in the die assembly 30, to attain the starting position shown in FIG. 4.
  • the cylinders 52 are actuated to advance the crosshead 43 and apply a compression force to the billet 39, whereby the billet is extruded through the annular opening defined by the die assembly 30 and the mandrel rod 40 to form the tube 36.
  • the mandrel rod 40 accompanies the tube 36 with no substantial sliding motion occurring therebetween, and it also is fed out of the die opening as shown in FIG. 5, or FIGS. 2 and 3, wherein the annular die opening at each instant is provided by the die inner periphery and each corresponding portion of the mandrel rod.
  • the cylinder 49 in the cross head 43 is actuated to advance the shear mandrel 47 with respectto the stem portion 44 and into the die opening, as shown in FIG. 6, whereby the end of the tube 36 is cut off from the remaining billet 39 which is disposed as a discard.
  • preparing a hollow billet having a central through opening of predetermined dimensions applying an external compression force to said hollow billet in an axial direction thereof across its annular cross-section for extruding said hollow billet through an annular die opening defined by a die and a rod-shaped mandrel having a greater length than that desired for a tube being produced; feeding said mandrel rod through said die with said tube being extruded so that substantially no relative motion occurs between said tube and said mandrel rod; cutting the rear end of the tube from the remaining billet by shearing in the axial direction of said'tube as said billet is being extruded through said die; and
  • a method according to claim 1 further comprischarging said hollow billet in a cylindrical chamber axially connected to said die opening; and moving said hollow billet with respect to the wall of said cylindrical chamber as awhole while applying said external compression vforce as the extrusion proceeds.
  • 3. A method according to claim 1, further comprischarging said hollow billetv in-a cylindrical chamber axially connected to said die opening maintaining said hollow billet substantially stationary with respect to the wall of said cylindrical chamber as a whole while applying said external compression force as the extrusion proceeds.
  • An apparatus for producing metal tubesby extruding a hollow billet through a die with a cooperating mandrel comprising:
  • a billet container having a cylindrical chamber for receiving a hollow billet
  • a rod-shaped mandrel of greater length than that de" sired of a tube to be produced being movably supported for movement in an axial direction through said billet chamber and said die opening for defining an annular opening between said die and said mandrel;
  • a shear mandrel being movable within said means for applying an axial compression force to said billet for applying a shearing force to an inner peripheral portion of said hollow billet in said cylindrical billet chamber as the same is being extruded through said annular opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)

Abstract

Metal tubes are produced by extruding a hollow billet through an annular die opening defined by a die and a movable rod-shaped mandrel having a larger length than the tube to be produced, and by feeding the mandrel rod through the die together with the tube as it is being formed so that the tube as produced has the mandrel rod disposed therein along its entire length, whereby damage to the inner surface of the tube caused by scratching due to relative movement of the mandrel therewith is avoided and tubes having improved inner surface characteristics are obtained.

Description

Asari 3.l9l,4l3 1,285,328
- Assignee:
United States Patent [19] METHOD AND APPARATUS FOR PRODUCING METAL TUBES BY EXTRUSION OF A HOLLOW BILLET Inventorz Akira Asari, Osaka, Japan Kobe Steel Company Ltd., Kobe, Japan Filed: Nov. 18, 1971 Appl. No.: 200,002
Foreign Application Priority Data Nov. 19, 1970 Japan 45-10303O US. Cl 72/255, 72/265, 72/370 -Int. Cl. B2'1c 23/00 Field of Search 72/255; 265, 370, 264, 72/266 References Cited UNITED STATES PATENTS 6/1965 Stulen ..72/266 11/1918 Neuberth ,72/264 Mar. 26, 1974 FOREIGN PATENTS OR APPLICATIONS 370,627 4/1932 Great Britain 72/265 395,906 7/1933 Great Britain 72/265 Primary Examiner-Richard J. Herbst Assistant ExaminerRobert M. Rogers Attorney, Agent, or Firm-Oblon, Fisher, Spivak, Mc- Clelland & Maier [57] ABSTRACT Metal tubes are produced by extruding a hollow billet through an annular die opening defined by a die and a movable rod-shaped mandrel having a larger length than the tube to be produced, and by feeding the mandrel rod through the die together with the tube as it is being formed so that the tube as produced has the mandrel rod disposed therein along 'its entire length, whereby damage to the inner surface of the tube caused by scratching due to relative movement of the mandrel therewith is avoided and tubes having improved inner surface characteristics are obtained.
6 Claims, 7 Drawing Figures PATENT-EB MR 281974 SHEET 2 OF 3 BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates generally to theproduction of metal tubes and more particularly to a method and apparatus for producing metal tubes by extruding a hollow billet through a die and a cooperating mandrel.
2. Description of the Prior Art The production of metal tubes by extruding a hollow billet through a die and a cooperating mandrel, wherein the die and the mandrel define an annular die opening through which the hollow billet is extruded to be formed into a tube having a cross-section corresponding to the annular die opening, is well known.
conventionally, however, the mandrel which forms the inside surface of-the tube moves relatively over the inside surface thereof as the tube is being formed by extrusion in such a scraping manner that the life of the mandrel is shortened due to frictional wear thereof. In
addition, the finished condition 'of the inside surface of the tube is relatively poor because of scratches and other faults produced by the relative sliding with fric tion between the inside surface of the tube and the mandrel.
These scratches and other faults generally degrade the quality of the tubes and,'in some cases, become a serious obstacle to the tubes being satisfactorily used for accomplishing the tasks being imposed thereon. For example, fuel encasing tubes designed for use in atomic reactors are required to be perfectly free from even minute scratches and similar related defects.
In order to avoid these disadvantages of former methods of extruding metal tubes, one common practice is to supply a lubricant to the boundary of the billet and the mandrel, with the lubricant being selected from any one of a number of suitable materials according to the material from which the billet is constructed, such as, for example, glass powder for billets which are made of steel or titanium, zirconium or aluminum alloys.
However, even with the use of a lubricant, as described above, it is very difficult to completely avoid the generation of scratches or other faults on the inside surface of tubes being formed in this manner, especially in the case of tubes of hard metals such as stainless steel, titanium or zirconium alloys, and the like. Therefore, in the production of such metal tubes by this conventional extrusion process, manufacturers have been compelled to maintain very strict control and supervision during the procedure in order to provide tubes having satisfactory inside surface conditions.
Furthermore, when a lubricant is used in the extrusion process, relatively complicated methods and devices are required for applying the lubricant to the boundary of the hollow billet and the mandrel, as well as for removing the layer of the lubricant remaining on the inside surface of the tubes being produced, especially when glass powder is used as the lubricant. These complicated procedures and the complex apparatus associated therewith which are tied in with the use of a lubricant adversely affect the productivity of an extrusion plant and thereby increase the cost of the prod ucts. Thus, while it has heretofore been possible to successfully produce metal tubes of the character described having adequate inner surface qualities, the
methods which have necessarily been resorted to have not been altogether satisfactory for various reasons.
SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to providea method and apparatus forproducing metal tubes by extruding hollow billets through a die opening with the cooperation of a mandrel, wherein, however, the generation of scratches or other faults on the inside surface of the tube being formed due to relative frictional sliding motion between the tube and the mandrel is effectively avoided.
Another object of the present invention is to provide a method of producing metal tubes by extruding a hollow billet through a die 'with the help of a cooperating mandrel, which is not complex and does not require strict control, yet is capable of producing such tubes having innerv surface characteristics of improved quality.
Still another object of the present invention is to provide an apparatus for. practicing the method described immediately hereinbefore.
The foregoing and other objects are attained, according to one aspect of this invention, by an improved method of producing metal tubes comprising the steps of preparing a hollow billet having. a central through opening of predetermined dimensions, extruding the hollow billet through an annular die opening defined by a die and a movable rod-shaped mandrel having a length greater than that of the tube being produced, feeding the mandrel rod through the die in accordance with the extrusion of the tube, and removing the mandrel rod from the tube after the tube has been completely extruded. According to this invention, since the mandrel which cooperates with the die to define an annular opening through which a tube is extruded from a hollow billet is a rod of a greater length than thetube being produced and is fed through the die together with the tube as it is extruded from the die, such that the tube is always accompanied by the mandrel rod, substantially no relative sliding occurs between the inside surface of the tube and the mandrel over the whole length of the tube, and thereby scratches'or other faults on the inside surface of the tube due to such relative sliding or friction between the tube and the mandrel are substantially avoided. Thus, tubes produced by the method of this invention have a very high quality of inside surface characteristics.
Since relative sliding between the tube and the mandrel is prevented, the extrusion is performed, more smoothly and with less power than heretofore required for the conventional extrusion processes. Furthermore, the mandrel'is relieved from severe frictional sliding under relatively high temperatures over the inside surface of the tube being formed, so that the life of the mandrel rod is substantially longer than previous mandrels employed in the prior devices and techniques- By employing a number of the mandrel rods in cooperation with an extrusion press, it is possible to construct a circuit for the extrusion processes through which the mandrel rods are circulated, wherein the extrusionpress can be operated essentially at its highest rate with no regard tothe problems usually concerning operators of apparatus operating under the former processes, such as withdrawing, cooling or changing of the mandrels. Thus, it is possible with the present in vention to obtain a high productivity in the extrusion plant.
Furthermore, since it is not necessary either to supply or remove lubricant as required in the former practice,
the extrusion plant for carrying out the process according to this invention is very simplified and can readily be automated, to thereby further improve the productivity of the plant.
BRIEF DESCRIPTION OF THE DRAWINGS Various other objects, features and attendant advantages of the present invention will be more fully appreciated as the same becomes better understood from the following detailed description when considered in connection with the accompanying drawings, wherein like reference characters designate like or corresponding parts throughout the several views, and in which:
FIG. 1 is a plan view schematically showing the layout of a tube extrusion plant for practicing the method DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS Referring now to the drawings, and more particularly to FIG. 1, there is shown an example of a layout of a tube extrusion plant designed for practicing the method of this invention, wherein a billet extrusion press 1 as explained in detail hereinbelow is provided for extruding a tube 2 therefrom in the state in which a mandrel rod is yet disposed therein onto a runout table 3. The tubes placed on the table 3 are then transferred to a cooling table 4, where they may be cooled for a sufficient period of time to attain a required temperature without regard to the operation cycle of the extrusion press 1. Next, the cooled tubes 2 are fed to a mandrel stripper 5 of the push-bench or reeler type, which itself is known in the art.
The strippers S of the character described are conventionally used to draw out a core or other rod-like element from a tubular element, and generally accomplish their purposes without any difficulty and without causing scratches or other faults on the inside surface of the tubular element. The stripper of the reeler type, which employs pairs of cooperating skewed rollers, especially can be favorably employed for the present purpose of drawing the mandrel rod out from the extruded tube, by arranging a number of pairs of cooperating skewed rollers corresponding to the length of the tube.
After the mandrel rods have been removed, the tubes 2 are transferred from the mandrel stripper 5 to a suitable product storing station, not shown, while the mandrelrods are returned to a mandrel feed table 6, where they are further cooled and prepared for their next use in the extrusion process.
In the layout'drawing schematically shown in FIG. 1, other equipment related .to the billet extrusion press 1 are shown, such as billet heating furnaces 7, 8, 9, l0 and 1 l, a transfer device 12 for charging billets into the billet heating furnaces and another transfer device 13 for discharging the billets from the furnaces and feeding them to the billet extrusion press 1. A water pump 14 is provided for cooling the extruded tubes, mandrels and other equipment. Other parts of the plant which are shown include a water storage tank. 15, a compressor l6, compressed air accumulators 17, a main stop valve 18, control valves 19, a low pressure tank 20, oilhydraulic units 21-, a control room 22 and motors 23.
in a die holder 33 and directly abutting on a press platen 34 having acentral opening 35 through which an extruded tube 36 is fed out. Adjacent the die holder 33 there is provided a billet container 37 defining a billet chamber 38 in which is charged a hollow billet 39 being preformed to present a central opening which is adapted to allow penetration of a mandrel rod 40 therethrough. The billet container 37 is supported by a container holder 41, which in turn is supportedby one end of a pair of press columns 42 mounted on the platen 34.
The columns 42 guide a cross head 43 having a stem portion 44 extending therefrom to be received in the billet chamber 38- for applying a compression force to the billet 39 charged therein through a disk 45. The central portion of the crosshead 43 is'constituted as a piston-cylinder assembly including a movable element 46 presenting a shear mandrel 47 at its forward end and a piston 48 at its rear portion, which is disposed in a cylinder chamber 49 formed in the crosshead 43 for driving the movable element 46 with respect to the crosshead. Along the axis of the movable element 46,
there is formed a through opening 50 adapted to allow feeding of the mandrel rod 40 therethrough. The crosshead 43 is movable along the columns 42 by rams S1 being actuated by supplying pressure to cylinders 52, and can be retracted to open the billet chamber 38 for charging a billet therein or moved forward to apply a compression force to the billet charged in the billet chamber. Reference numeral 53 designates a series of mandrel transfer rollers which carry the mandrel rod 40 and feed it according to the progress of the extrusion process.
The billet extrusion press shown in FIG. 3.is almost identical with the press shown in FIG. 2, except that in the press shown in FIG. 3, the billet container 37 is carried by the crosshead 43 through the container holder 41, which in this case is integrally formed as a part of the crosshead 43, and the die 3i is supported by a stem 7 press, the billet 39 is slid within the billet container 37 as the extrusion proceeds, while in the latter press, the billet 39 is kept substantially unmoved with respect to the billet container 37 and the die 31 is slid over the wall of the billet chamber 38.
FIGS. 4 to 6 show the starting, intermediate and ending conditions, respectively, of an extrusion process being carried out with the press shown in FIG. 2.
In the beginning, the billet 39 is charged in the billet chamber 38 with the crosshead 43 first being sufficiently retracted to open the chamber 38, and then the disk 45 is engaged and the crosshead 43 is moved forward to advance the disk 45 to be in close contracting relation with the billet. In this condition, the shear mandrel 47 is so retracted with respect to the stem portion 44 of the crosshead that it applies no shearing force to the billet. Next, the mandrel rod 40 is fed through the opening 50 of the movable element 46 in the crosshead 43 and the central opening of the billet 39 until the forward end thereofjust penetrates the opening in the die assembly 30, to attain the starting position shown in FIG. 4.
Now the cylinders 52 are actuated to advance the crosshead 43 and apply a compression force to the billet 39, whereby the billet is extruded through the annular opening defined by the die assembly 30 and the mandrel rod 40 to form the tube 36. As the tube 36 is being formed and fed out through the die opening, the mandrel rod 40 accompanies the tube 36 with no substantial sliding motion occurring therebetween, and it also is fed out of the die opening as shown in FIG. 5, or FIGS. 2 and 3, wherein the annular die opening at each instant is provided by the die inner periphery and each corresponding portion of the mandrel rod.
When a predetermined length of the tube has been extruded, the cylinder 49 in the cross head 43 is actuated to advance the shear mandrel 47 with respectto the stem portion 44 and into the die opening, as shown in FIG. 6, whereby the end of the tube 36 is cut off from the remaining billet 39 which is disposed as a discard.
As a result of the extrusion process described above, there is obtained a tube 36 having the mandrel rod 40 extending throughout the entire length thereof, as shown in FIG. 7. These tubes, including the mandrel rods, are cooledand supplied to the mandrel stripper a hollow billet through a die with the cooperation of a mandrel, comprising the steps of:
preparing a hollow billet having a central through opening of predetermined dimensions; applying an external compression force to said hollow billet in an axial direction thereof across its annular cross-section for extruding said hollow billet through an annular die opening defined by a die and a rod-shaped mandrel having a greater length than that desired for a tube being produced; feeding said mandrel rod through said die with said tube being extruded so that substantially no relative motion occurs between said tube and said mandrel rod; cutting the rear end of the tube from the remaining billet by shearing in the axial direction of said'tube as said billet is being extruded through said die; and
removing said mandrel rod from the said tube after said tube has been completely extruded. 2. A method according to claim 1, further comprischarging said hollow billet in a cylindrical chamber axially connected to said die opening; and moving said hollow billet with respect to the wall of said cylindrical chamber as awhole while applying said external compression vforce as the extrusion proceeds. 3. A method according to claim 1, further comprischarging said hollow billetv in-a cylindrical chamber axially connected to said die opening maintaining said hollow billet substantially stationary with respect to the wall of said cylindrical chamber as a whole while applying said external compression force as the extrusion proceeds.
4. An apparatus for producing metal tubesby extruding a hollow billet through a die with a cooperating mandrel, comprising:
a die having an opening therein;
a billet container having a cylindrical chamber for receiving a hollow billet;
means for supporting said billet container and said die so that said die opening and said cylindrical chamber are axially connected; I t
a rod-shaped mandrel of greater length than that de" sired of a tube to be produced being movably supported for movement in an axial direction through said billet chamber and said die opening for defining an annular opening between said die and said mandrel;
means for applying an axial compression force to a I billet in said cylindrical chamber for extruding said billet through said annular opening and moving said rod-shaped mandrel therethrough with -said tube being extruded; and
a shear mandrel being movable within said means for applying an axial compression force to said billet for applying a shearing force to an inner peripheral portion of said hollow billet in said cylindrical billet chamber as the same is being extruded through said annular opening.
5. An apparatus according to claim 4, wherein said die and said billet container are firmly connected together and said compression force applying means is an actuator having an annular stem receivable in said cylindrical billet chamber.
6. An apparatus according to claim 4 wherein said die is movably received in said cylindrical billet chamber and said billet container is axially movable by said axial compression force. I
* i i t t

Claims (6)

1. A method of producing metal tubes by extruding a hollow billet through a die with the cooperation of a mandrel, comprising the steps of: preparing a hollow billet having a central through opening of predetermined dimensions; applying an external compression force to said hollow billet in an axial direction thereof across its annular cross-section for extruding said hollow billet through an annular die opening defined by a die and a rod-shaped mandrel having a greater length than that desired for a tube being produced; feeding said mandrel rod through said die with said tube being extruded so that substantially no relative motion occurs between said tube and said mandrel rod; cutting the rear end of the tube from the remaining billet by shearing in the axial direction of said tube as said billet is being extruded through said die; and removing said mandrel rod from the said tube after said tube has been completely extruded.
2. A method according to claim 1, further comprising: charging said hollow billet in a cylindrical chamber axially connected to said die opening; and moving said hollow billet with respect to the wall of said cylindrical chamber as a whole while applying said external compression force as the extrusion proceeds.
3. A method according to claim 1, further comprising: charging said hollow billet in a cylindrical chamber axially connected to said die opening maintaining said hollow billet substantially stationary with respect to the wall of said cylindrical chamber as a whole while applying said external compression force as the extrusion proceeds.
4. An apparatus for producing metal tubes by extruding a hollow billet through a die with a cooperating mandrel, comprising: a die having an opening therein; a billet container having a cylindrical chamber for receiving a hollow billet; means for supporting said billet container and said die so that said die opening and said cylindrical chamber are axially connected; a rod-shaped mandrel of greater length than that desired of a tube to be produced being movably supported for movement in an axial direction through said billet chamber and said die opening for defining an annular opening between said die and said mandrel; means for applying an axial compression force to a billet in said cylindrical chamber for extruding said billet through said annular opening and moving said rod-shaped mandrel therethrough with said tube being extruded; and a shear mandrel being movable within said means for applying an axial compression force to said billet for applying a shearing force to an inner peripheral portion of said hollow billet in said cylindrical billet chamber as the same is being extruded through said annular opening.
5. An apparatus according to claiM 4, wherein said die and said billet container are firmly connected together and said compression force applying means is an actuator having an annular stem receivable in said cylindrical billet chamber.
6. An apparatus according to claim 4 wherein said die is movably received in said cylindrical billet chamber and said billet container is axially movable by said axial compression force.
US00200002A 1970-11-19 1971-11-18 Method and apparatus for producing metal tubes by extrusion of a hollow billet Expired - Lifetime US3798954A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10303070 1970-11-19

Publications (1)

Publication Number Publication Date
US3798954A true US3798954A (en) 1974-03-26

Family

ID=14343236

Family Applications (1)

Application Number Title Priority Date Filing Date
US00200002A Expired - Lifetime US3798954A (en) 1970-11-19 1971-11-18 Method and apparatus for producing metal tubes by extrusion of a hollow billet

Country Status (4)

Country Link
US (1) US3798954A (en)
DE (1) DE2157086A1 (en)
FR (1) FR2117109A5 (en)
GB (1) GB1352456A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223548A (en) * 1978-03-23 1980-09-23 Swiss Aluminium Ltd. Process and device for extruding hollow sections
WO2010000233A1 (en) * 2008-07-02 2010-01-07 Tekfor Cologne Gmbh Method for the production of pipe material
WO2010115405A1 (en) * 2009-04-07 2010-10-14 Tekfor Cologne Gmbh Method for producing pipe material
CN103121042A (en) * 2013-02-06 2013-05-29 和龙双昊高新技术有限公司 Cold extrusion molding device for aluminum alloy seamless tube
CN103143581A (en) * 2013-02-06 2013-06-12 和龙双昊高新技术有限公司 Cold state aluminum alloy profile extrusion equipment
US20130239640A1 (en) * 2011-09-07 2013-09-19 Shear Form, Inc. Processing of Hollow Sections
US9346089B2 (en) 2012-10-12 2016-05-24 Manchester Copper Products, Llc Extrusion press systems and methods
US9364987B2 (en) 2012-10-12 2016-06-14 Manchester Copper Products, Llc Systems and methods for cooling extruded materials
US9545653B2 (en) 2013-04-25 2017-01-17 Manchester Copper Products, Llc Extrusion press systems and methods
US9676016B2 (en) 2013-09-23 2017-06-13 Manchester Copper Products, Llc Systems and methods for drawing materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1285328A (en) * 1917-11-16 1918-11-19 George E Neuberth Machine for making seamless tubing of metal, pulp, or other materials.
GB370627A (en) * 1931-03-20 1932-04-14 Fielding & Platt Ltd Improvements in the production of tubes and other hollow sections by extrusion
GB395906A (en) * 1931-12-14 1933-07-27 Krupp Fried Grusonwerk Ag Improvements in or relating to presses for extruding metal tubes
US3191413A (en) * 1962-08-28 1965-06-29 Baldwin Lima Hamilton Corp Extrusion apparatus with removable die insert

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1285328A (en) * 1917-11-16 1918-11-19 George E Neuberth Machine for making seamless tubing of metal, pulp, or other materials.
GB370627A (en) * 1931-03-20 1932-04-14 Fielding & Platt Ltd Improvements in the production of tubes and other hollow sections by extrusion
GB395906A (en) * 1931-12-14 1933-07-27 Krupp Fried Grusonwerk Ag Improvements in or relating to presses for extruding metal tubes
US3191413A (en) * 1962-08-28 1965-06-29 Baldwin Lima Hamilton Corp Extrusion apparatus with removable die insert

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4223548A (en) * 1978-03-23 1980-09-23 Swiss Aluminium Ltd. Process and device for extruding hollow sections
WO2010000233A1 (en) * 2008-07-02 2010-01-07 Tekfor Cologne Gmbh Method for the production of pipe material
WO2010115405A1 (en) * 2009-04-07 2010-10-14 Tekfor Cologne Gmbh Method for producing pipe material
US20130239640A1 (en) * 2011-09-07 2013-09-19 Shear Form, Inc. Processing of Hollow Sections
US11358197B2 (en) 2011-09-07 2022-06-14 Shear Form, Inc. Processing of hollow sections
US9776232B2 (en) * 2011-09-07 2017-10-03 Shear Form, Inc. Processing of hollow sections
US11305322B2 (en) 2012-10-12 2022-04-19 Manchester Copper Products, Llc Extrusion press systems and methods
US9346089B2 (en) 2012-10-12 2016-05-24 Manchester Copper Products, Llc Extrusion press systems and methods
US9364987B2 (en) 2012-10-12 2016-06-14 Manchester Copper Products, Llc Systems and methods for cooling extruded materials
US10478879B2 (en) 2012-10-12 2019-11-19 Manchester Copper Products, Llc Extrusion press systems and methods
CN103121042A (en) * 2013-02-06 2013-05-29 和龙双昊高新技术有限公司 Cold extrusion molding device for aluminum alloy seamless tube
CN103143581A (en) * 2013-02-06 2013-06-12 和龙双昊高新技术有限公司 Cold state aluminum alloy profile extrusion equipment
US9545653B2 (en) 2013-04-25 2017-01-17 Manchester Copper Products, Llc Extrusion press systems and methods
US10478878B2 (en) 2013-04-25 2019-11-19 Manchester Copper Products, Llc Extrusion press systems and methods
US11318513B2 (en) 2013-04-25 2022-05-03 Manchester Copper Products, Llc Extrusion press systems and methods
US9676016B2 (en) 2013-09-23 2017-06-13 Manchester Copper Products, Llc Systems and methods for drawing materials

Also Published As

Publication number Publication date
FR2117109A5 (en) 1972-07-21
GB1352456A (en) 1974-05-08
DE2157086A1 (en) 1972-06-15

Similar Documents

Publication Publication Date Title
US3798954A (en) Method and apparatus for producing metal tubes by extrusion of a hollow billet
RU2374721C2 (en) Method and device for making lead-acid accumulator terminal, and terminal made using said method and device
US4365497A (en) Intermediate frame type indirect extrusion press
US3528275A (en) Method and apparatus for extruding hollow articles
US3563079A (en) Indirect extrusion with skull skimming
US2063563A (en) Manufacture of extruded metal shapes by hot hydraulic extrusion
US2337804A (en) Tube-extrusion apparatus
US2142704A (en) Method of metal flow and equalized temperature and in extrusion apparatus therefor
US4223548A (en) Process and device for extruding hollow sections
ES345393A1 (en) Metal tube extrusion press with a plurality of mandrels
US3449935A (en) Apparatus and method of metal extrusion
US3977225A (en) Forging method
US3217527A (en) Metal extrusion press with mandrel cooling device
US2110965A (en) Reducing the diameter of hollow metal articles
GB938521A (en) A method for the indirect extrusion of metal and means for carrying out the method
US3083827A (en) Extrusion press with multiple-station billet container unit
US2672234A (en) Extrusion press
US3722246A (en) Hot perforating mill
US2896783A (en) Mandrel positioning and ram arresting apparatus
US3243984A (en) Extrusion press for hollow extrusions
WO2009008819A1 (en) A system operable to extrude metallic materials
US3143989A (en) Metal tube sizing apparatus
GB791417A (en) An extrusion press having means for severing the extruded product from the discard
US2920760A (en) Extrusion press
US2930482A (en) Apparatus for torsion-breaking extrusion residue from finished product