US3795961A - Thermal and abrasion resistant sintered alloy - Google Patents
Thermal and abrasion resistant sintered alloy Download PDFInfo
- Publication number
- US3795961A US3795961A US00286399A US3795961DA US3795961A US 3795961 A US3795961 A US 3795961A US 00286399 A US00286399 A US 00286399A US 3795961D A US3795961D A US 3795961DA US 3795961 A US3795961 A US 3795961A
- Authority
- US
- United States
- Prior art keywords
- alloy
- sintered
- thermal
- sintered alloy
- abrasion resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0242—Making ferrous alloys by powder metallurgy using the impregnating technique
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0285—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
Definitions
- FIG. 2 A H I OEXAMPLE OF THIS INVENTION CONVENTIONAL SINTERED E FERRO-ALLOY z x CONVENTIONAL CAsT ALLOY o 0.2 a O.
- a publicly known metal such as chromium, cobalt, tungsten, etc. has not only a large abrasion resistance but also is prominent in its characteristics at elevated temperatures and is applied in various fields.
- a metal has many problems to be solved when it is used as sintered parts for a machine. That is, such a metal has a high melting point so that the sintering temperature is, of necessity, required to be elevated, and the sintering time has to be extended, and, therefore, it is naturally disadvantageous in cost.
- the present invention provides a sintered alloy having large thermal resistance and abrasion resistance suitable for use as a sliding element such as, for example, a valve sheet in which high thermal resistance and high abrasion resistance are required. That is, the present invention comprises a sintered thermal and abrasion resistant alloy comprising a molded and sintered powdery composition consisting of by weight 0.6 to 2% of carbon, 0.4 to 4% of nickel, 0.5 to 5% of molybdenum, 6 to l 1% of cobalt and the balance iron.
- FIG. 1 is a graph showing the abrasion resistance of sintered alloys of the Examples and of a conventional cast iron and a sintered iron alloy when evaluated in a valve sheet abrasion test machine;
- FIG. 2 is a graph showing the hardness at elevated temperatures of sintered alloys of the Examples'and of a conventional cast iron and a sintered iron alloy.
- the alloy of the present invention when the carbon content is less than 0.6%, by weight, the alloy becomes a ferrite-excessive structure so that a high hardness cannot be expected while, when the carbon content is more than 2%, the alloy changes to a cementite-excessive structure which is high in britteleness.
- Nickel strengthens the base structure of the alloy and improves the thermal resistance and abrasion resistance, however, the effect is small with a nickel content of less than 1%, while, when it becomes more than 4%, the base structure locally changes to martensite so that the hardness increases unnecessarily.
- Molybdenum increases the tenacity of alloy as well as the impact strength and endurance limit, and, on the other hand, improves the heat treatment property and stabilizes the structure after sintering, however, there is little effect with less than 0.5% of molybdenum and even if more than 5% is present, no effect corresponding to the increase is obtained.
- Cobalt is selected for substantially improving the thermal resistance and the abrasion resistance at elevated temperatures and has been established to be 6 to 11% on the basis of a synergistic effect with the other elements.
- the sintered alloy of the present invention from a viewpoint of providing the material with a high density and improving the lubricating property, it is very advantageous to impregnate molten lead into the alloy after the alloy is molded and sintered.
- the amount of lead impregnated has been experimentally confirmed to be preferably within the range of 0.05 to 5%. That is, with less than 0.05% the effect of impregnation is not remarkable and the impregnation of more than 5% of lead involves a problem in strength from the relation with the density of material before impregnation.
- EXAMPLE 1 1.2% of graphite powder (325 mesh), 2% of carbonyl nickel powder (-250 mesh), 2% (as molybdenum) of ferromolyb-denum powder (1 50 mesh), 10% of cobalt powder (-150 mesh) and 1.0% of zinc stearate as a lubricant were added to reduced iron powder (l00 mesh) as iron powder.
- the mixture was molded under a pressure of 4.5 ton/cm and sintered at 1,120 to 1,l C for 30 to 60 minutes in an atmosphere of decomposed ammonium gas.
- the sintered material so obtained had a density of 6.6 g/cm and a Rockwell B scale hardness of 92.
- FIG. 1 The results of the abrasion test on this sintered material using a valve sheet abrasion testing machine (rotation number 3,000 rpm, spring pressure 35 Kg, valve velocity at the time of valve closing 0.5 m/sec., width of valve 1 mm, test repeating number 8 X 10 material SUI-I 31B) are shown in FIG. 1, and the results of the measurement of hardness at elevated temperatures are shown in FIG. 2.
- EXAMPLE 2 A sintered material comprising 0.68% of carbon, 0.71% of nickel, 0.66% of molybdenum, 6.92% of cobalt and the balance iron was made under the same conditions as described in Example 1, and impregnated with molten lead.
- the sintered material so obtained had a density of 6.4 g/cm and a Rockwell B scale hardness of 90.
- the lead content was 0.07%.
- EXAMPLE 3 A sintered material comprising 1.83% of carbon, 3.88% of nickel, 4.79% of molybdenum, 10.62% of cobalt and the balance iron was made under the same conditions as described in Example 1 and impregnated with lead.
- the sintered material so obtained had a density of 6.7 g/cm and a hardness on the Rockwell B scale of 94.
- the lead content was 4.7%.
- Ferro alloy Carbon 1%, chromium 3%, the balance II'OI'I.
- Cast iron Carbon 3.02%, silicon 2.01%, manganese 0.48%, chromium 0.81%, the balance iron.
- a thermal and abrasion resistant sintered alloy consisting essentially of a molded and sintered composition comprising from 0.6 to 2% of carbon, from 0.5
- the sintered alloy of claim 1 exhibiting a hardness from 6 to l 1% of cobalt, by weight, the balance being (HV) on the order of 500 over the temperature range "On.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP46066978A JPS4832708A (enrdf_load_stackoverflow) | 1971-09-02 | 1971-09-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3795961A true US3795961A (en) | 1974-03-12 |
Family
ID=13331606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00286399A Expired - Lifetime US3795961A (en) | 1971-09-02 | 1972-09-05 | Thermal and abrasion resistant sintered alloy |
Country Status (3)
Country | Link |
---|---|
US (1) | US3795961A (enrdf_load_stackoverflow) |
JP (1) | JPS4832708A (enrdf_load_stackoverflow) |
DE (1) | DE2243196A1 (enrdf_load_stackoverflow) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3977838A (en) * | 1973-06-11 | 1976-08-31 | Toyota Jidosha Kogyo Kabushiki Kaisha | Anti-wear ferrous sintered alloy |
US3982907A (en) * | 1972-03-30 | 1976-09-28 | Nippon Piston Ring Co., Ltd. | Heat and wear resistant sintered alloy |
US4080205A (en) * | 1972-07-13 | 1978-03-21 | Toyota Jidosha Kogyo Kabushiki Kaisha | Sintered alloy having wear-resistance at high temperature |
US4123265A (en) * | 1974-02-21 | 1978-10-31 | Nippon Piston Ring Co., Ltd. | Method of producing ferrous sintered alloy of improved wear resistance |
WO1990004042A1 (en) * | 1988-10-03 | 1990-04-19 | Gaf Chemicals Corporation | Iron/cobalt alloy filaments |
DE19506340A1 (de) * | 1994-02-23 | 1995-08-24 | Nissan Motor | Gesinterte Eisenlegierung, die gegen Abrieb bei hoher Temperatur beständig ist und Verfahren zu ihrer Herstellung |
US5489324A (en) * | 1992-11-27 | 1996-02-06 | Toyota Jidosha Kabushiki Kaisha | Fe-based sintered alloy having wear resistance |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51110119A (ja) * | 1975-03-25 | 1976-09-29 | Nissan Motor | Nainenkikannobenza |
JPS51112410A (en) * | 1975-03-29 | 1976-10-04 | Nippon Piston Ring Co Ltd | Valve seats made of iron-based sintered alloy for internal combustion engines |
JPS51117910A (en) * | 1975-04-10 | 1976-10-16 | Nippon Piston Ring Co Ltd | Iron based sintered alloy piston ring |
JPS51135805A (en) * | 1975-05-20 | 1976-11-25 | Okamoto Hideo | Sleeve and cylinder liner |
JPS5277807A (en) * | 1976-07-28 | 1977-06-30 | Nippon Piston Ring Co Ltd | Sintered ferroalloy for manufacturing valve seat |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2562543A (en) * | 1950-01-06 | 1951-07-31 | Allegheny Ludlum Steel | Shock resistant alloy steel |
US2662010A (en) * | 1952-03-29 | 1953-12-08 | Gen Electric | Cast tool steel |
US3471343A (en) * | 1965-05-07 | 1969-10-07 | Max Koehler | Process for the production of sinter iron materials |
US3495957A (en) * | 1965-03-15 | 1970-02-17 | Mitsubishi Metal Corp | Lead-impregnated,iron-base,sinteredalloy materials for current-collecting slider shoes |
-
1971
- 1971-09-02 JP JP46066978A patent/JPS4832708A/ja active Pending
-
1972
- 1972-09-01 DE DE2243196A patent/DE2243196A1/de active Pending
- 1972-09-05 US US00286399A patent/US3795961A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2562543A (en) * | 1950-01-06 | 1951-07-31 | Allegheny Ludlum Steel | Shock resistant alloy steel |
US2662010A (en) * | 1952-03-29 | 1953-12-08 | Gen Electric | Cast tool steel |
US3495957A (en) * | 1965-03-15 | 1970-02-17 | Mitsubishi Metal Corp | Lead-impregnated,iron-base,sinteredalloy materials for current-collecting slider shoes |
US3471343A (en) * | 1965-05-07 | 1969-10-07 | Max Koehler | Process for the production of sinter iron materials |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3982907A (en) * | 1972-03-30 | 1976-09-28 | Nippon Piston Ring Co., Ltd. | Heat and wear resistant sintered alloy |
US4080205A (en) * | 1972-07-13 | 1978-03-21 | Toyota Jidosha Kogyo Kabushiki Kaisha | Sintered alloy having wear-resistance at high temperature |
US3977838A (en) * | 1973-06-11 | 1976-08-31 | Toyota Jidosha Kogyo Kabushiki Kaisha | Anti-wear ferrous sintered alloy |
US4123265A (en) * | 1974-02-21 | 1978-10-31 | Nippon Piston Ring Co., Ltd. | Method of producing ferrous sintered alloy of improved wear resistance |
WO1990004042A1 (en) * | 1988-10-03 | 1990-04-19 | Gaf Chemicals Corporation | Iron/cobalt alloy filaments |
US5489324A (en) * | 1992-11-27 | 1996-02-06 | Toyota Jidosha Kabushiki Kaisha | Fe-based sintered alloy having wear resistance |
US5503654A (en) * | 1992-11-27 | 1996-04-02 | Toyota Jidosha Kabushiki Kaisha | Fe-based alloy powder and adapted for sintering, Fe-based sintered alloy having wear resistance, and process for producing the same |
US5512080A (en) * | 1992-11-27 | 1996-04-30 | Toyota Jidosha Kabushiki Kaisha | Fe-based alloy powder adapted for sintering, Fe-based sintered alloy having wear resistance, and process for producing the same |
DE19506340A1 (de) * | 1994-02-23 | 1995-08-24 | Nissan Motor | Gesinterte Eisenlegierung, die gegen Abrieb bei hoher Temperatur beständig ist und Verfahren zu ihrer Herstellung |
DE19506340C2 (de) * | 1994-02-23 | 1999-02-11 | Nissan Motor | Sinterlegierung und Verfahren zur Herstellung eines Sinterkörpers daraus |
Also Published As
Publication number | Publication date |
---|---|
JPS4832708A (enrdf_load_stackoverflow) | 1973-05-02 |
DE2243196A1 (de) | 1973-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3795961A (en) | Thermal and abrasion resistant sintered alloy | |
US4035159A (en) | Iron-base sintered alloy for valve seat | |
US3827863A (en) | Thermal and abrasion resistant sintered alloy | |
CA1278200C (en) | Wear-resistant, sintered iron alloy and process for producing the same | |
US4075999A (en) | Hard facing alloy for engine valves and the like | |
US5221321A (en) | Fe-base sintered alloy for valve seats for use in internal combustion engines | |
US3918923A (en) | Wear resistant sintered alloy | |
US3806325A (en) | Sintered alloy having wear resistance at high temperature comprising fe-mo-c alloy skeleton infiltrated with cu or pb base alloys,sb,cu,or pb | |
US3793691A (en) | Thermal and abrasion resistant sintered alloy | |
US4123265A (en) | Method of producing ferrous sintered alloy of improved wear resistance | |
US4363662A (en) | Abrasion resistant ferro-based sintered alloy | |
US3982907A (en) | Heat and wear resistant sintered alloy | |
US3837816A (en) | Thermal and abrasion resistant sintered alloy | |
JPS6038461B2 (ja) | 耐摩性に優れた焼結合金 | |
US4332616A (en) | Hard-particle dispersion type sintered-alloy for valve seat use | |
US3790352A (en) | Sintered alloy having wear resistance at high temperature | |
JP2763826B2 (ja) | 弁座用焼結合金 | |
US3802852A (en) | Sintered alloys having wear resistance at high temperature comprising a sintered femo-c alloy skeleton infiltrated with cu or pb base alloys or sb | |
US2757221A (en) | Thermocouple element composition | |
US3812565A (en) | SINTERED FE{13 CR{13 C{13 {8 MO{13 V{13 Ni{9 {11 ALLOYS IMPREGNATED WITH Pb OR Rb-BASE ALLOYS | |
US4526617A (en) | Wear resistant ferro-based sintered alloy | |
US3758281A (en) | Msintered alloy and wear resisting sliding parts manufactured therefro | |
US5895516A (en) | Bearing alloy for high-temperature application | |
US2786756A (en) | Titanium alloys | |
JPS6164855A (ja) | バルブシ−ト用鉄系焼結合金 |