US3795494A - Erosion resistant wares composed predominantly of chromium bearing steel - Google Patents

Erosion resistant wares composed predominantly of chromium bearing steel Download PDF

Info

Publication number
US3795494A
US3795494A US00236164A US3795494DA US3795494A US 3795494 A US3795494 A US 3795494A US 00236164 A US00236164 A US 00236164A US 3795494D A US3795494D A US 3795494DA US 3795494 A US3795494 A US 3795494A
Authority
US
United States
Prior art keywords
coating
boron carbide
wares
coatings
chromium bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00236164A
Other languages
English (en)
Inventor
M Hordon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Corp
Original Assignee
National Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Corp filed Critical National Research Corp
Application granted granted Critical
Publication of US3795494A publication Critical patent/US3795494A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component

Definitions

  • a problem whichis often encountered in the use of wares such as described above resides in the resistance thereof to aerodynamic erosion, i.e., the deleterious abrasive phenomenon arising when fluid entrained particulate solids are impacted at high velocities against the surfaces of such wares. It has been proposed, of course,to coat such wares with an extremely hard substance such as boron carbide. Unfortunately, such boron carbide coatings, when applied to chromium bearing ferroalloys in thicknesses greater than about microns, are generally found to be severely deficient in adhesion to the substrate and are often quickly spalled and stripped from the substrate under aerodynamic erosion conditions.
  • PVD processes are readily distinguishable from chemical vapor deposition coating processes wherein an actual chemical conversion of a precursor material (such as BCI,,) to the ultimate coating (8 C) takes place in the vapor phase at or near thp substrate surface. Further details of PVD coating processes may be had by reference to the following U.S. patent literature: No. 3,579,415, Allen et al., May 18, 1971; No. 3,460,976, Allen, Aug. 12, 1969; No. 3,414,655, Allen, Dec. 12, 1968; No. 3,551,247, Feakes, Dec. 29, 1970.
  • the chromium bearing steel ware undergoing the coating method of the invention be heated to above ambient temperature during the PVD coating thereof.
  • said heating should not be so great as to deleteriously affect the strength of the ware.
  • heating to a temperature of between 250 i and 700C during the PVD coating steps will generally stantially ameliorated and highly erosion resistant.
  • boron carbide coatings are provided on chromium bean'ng steel wares.
  • chromium bearing steel wares are rendered erosion resistant by physical vacuum'vapor deposition of sequential coatings thereon, said coatings comprising, seriatim, (I) nickel or iron, (2) titanium and (3boron carbide.
  • the coatings of the invention are applied by the technique of physical vacuum vapor deposition. (PVD) which technique broadly comprises the condensation .of vapors of the respective coatingmaterials onto the stainless steel substrate under vacuum. Such PVD processes are further characterized by the fact'that the coating materials are vaporized by heating thereof such be found satisfactory.
  • PVD physical vacuum vapor deposition
  • Chromium bearing steels suitable for coating by the process of the invention are those ferro-alloys comprising between about 5 and about 20 weight percent chromium.
  • the invention is particularly applicable to wares composed of stainless steels comprising between 1 1 and 16 weight percent chromium.
  • suitable stainless steel materials are: 410, 304, AM- 355, V-57, W-545, CRM-GD, PH 15-7 Mo, Greek Ascoloy, Labelloy C, 1-1-13, 314, AF 71, etc.
  • Complete material balances of the above and other suitable stainless steels may be had by reference to the 1971 SAE Handbook, Society of Automotive Engineers, Inc., New York, N.Y., pages 240243.
  • the initial nickel or iron coating may be construed as a flash or prime coating and may be relatively extremely thin, in other words, less than 1 micron and preferably from 0.05 to 0.20 micron in thickness. While the initial nickel or iron coating may be ex tremely thin, said coating is nevertheless of extreme importance in providing the improved adhesion characteristics of the overall coatings'of the invention. While there is no intent to be bound by this explanation, it is thought that the nickel or iron coating interacts intimately with the tenacious complex oxides and spinels of the substrate chromium bearing steel surface, thereby to form a firmly adherent bond thereto while concomitantly presenting a fresh, clean and compatible surface to the titanium coating subsequently applied thereto.
  • the next layer of the triplex PVD coatings of the invention is formed of titanium metal and may have a thickness of from about 0.1 to about 25 microns. Generally speaking, the preferred thickness of the intermediate titanium coating will reside in the range of from about 10 to about 15 microns.
  • the role played by the intermediate titanium metal coating is believed to be that of reduction of deleterious residual mechanical stresses induced by thermal expansion or dilation differences between a chromium based ferro-alloy substrate and a boron carbide coating applied thereto.
  • the titanium coatings forming part of the overall coatings of the invention are believed to act as thermo-mechanical buffers between the chromium bearing steel substrate and the boron carbide exteriormost coating layer in the sense that titanium metal has a thermal coefficient of expansion intermediate that of the steel substrate and the boron carbide outer coating.
  • boron carbide can react to some extent with titanium metal so as to form titanium boride and/or complex titanium-boron carbides. Said reactions are thought to play a beneficial role in providing the markedly improved adherent coatings of the invention.
  • the outermost layer of the coatings of the invention is composed of boron carbide having a total carbon content of between 15 and 30 atomic percent and preferably between 18 and 25 atomic percent.
  • the thickness of the boron carbide coating can be between about l0gand about 50 microns and is preferably greater than about 20 microns.
  • Example having a carbon concentration of about 23 atomic percent and the other crucible containing a charge of pure wrought titanium metal Provision for the initial flash coating of nickel is made by positioning a 6 inch nickel plated tri-filament twisted tungsten wire about 4 inches over the boron carbide containing crucible. The wire is placed in series with an electric power source.
  • specimen undergoing the coating operation is cleaned by vapor blasting, placed ina heater equipped specimen holder suspended about 10 inches above the source crucibles and positioned so as to maintain the exposed surface of the specimen substantially parallel to the open ends of the crucibles.
  • the vacuum chamber is closed to the atmosphere, pumped to a pressure of about 1 X, 10 torr and the specimen heated to a temperature of between 400 and 500C. Coating of the specimen isthen undertaken employing the following regimen:
  • a flash coating of nickel is applied by flowing a current of between 0.6 to 1.2 KW power through the nickel coated tungsten wire for a period of about 4 minutes;
  • titanium deposition substantially immediately follows (a) by impinging a 2.4 KW electron beam onto the surface of the titanium charge contained in one of the crucibles for a period of 5 minutes; and substantially immediately after (b) the electron beam serving the titanium source is shut down and the electron beam serving the boron carbide source initiated at a power input of 8 KW and for a period of 10 minutes. Following the above coating procedure the specimen is cooled to about room temperature, in vacuo, the vacuum chamber vented to the atmosphere and the specimen removed fromthe vacuum chamber.
  • Control specimens were also produced comprising duplex coatings consisting of the titanium and boron carbide coatings only, i.e., without the initial flash coating of nickel.
  • the coating procedures employed for the control coated specimens were essentially the same as outlined above for the production of the coatings of the instant invention with the sole exception that step (a) of the above procedure was not accomplished. Accordingly, the nickel plated tungsten wire was not activated.
  • Type 304 steel is an austenitic nickel/chromium/iron/al'loy steel having a chromium content of about 17l9 weight percent.
  • Type 410 steel is a martensitic chromium steel having a chromium content of about 12.25 weight percent.
  • AM-355 is a semiaustenitic precipitation hardening steel having a chromium content of about 15.5 weight percent.
  • the thicknesses of the coatings applied to the triplex coated specimens were determined to be: nickel coating about 0.1 micron; titanium intermediate coating about 6.5 microns; boron carbide coatings about 40 microns. In the case of the control duplex coated samples the titanium coating had a thickness of about 6.5
  • the boron carbide coating a thickness of about 30 microns. Attempts to produce boron carbide coatings on the duplex coated specimens of equivalent thickness to those of the triplex coated specimens failed due to immediate lack of adhesion of the duplex coatings on the stainless steel specimens upon cooling thereof in the vacuum chamber. Accordingly, in the case of the control group, it was necessary to reduce the boron carbide coating thickness to the aforementioned 30 micron thickness in order to obtain specimens having reasonably adherent and defect-free coatings. The manner in which the thinner control group boron carbide coatings were produced on the duplex coated specimens was by reducing the time of coating from the original 10 minutes to about 7 minutes.
  • Scotch tape test a r'by 2 inch strip of a commercially available celluloid mending tape is applied to the coated specimen, rolled manually so as to remove all air bubbles and provide a continuous interfacing between the coating and the tape adhesive and allowed to stand for about 1 rninuteJThe tape is then stripped rapidly from the coating and any non-adherent portions of the coating are thereby stripped from the stainless steel substrate. Any amount of the metal carbide coating adhering to the tape is taken as a failure of the test.
  • the boiling water immersion test is undertaken simply by placing the coated specimens into a boiling demineralized water bath for a period of about 1 hour. Deficient coatings are at least partially removed by this treatment and their absence is readily noted upon removal of the specimens from the bath. Again, substantially any coating removal during the immersion period is construed as a failure of the test.
  • the accelerated erosion testing of the specimens is carried out by weighing the coated virgin specimens and then subjecting the coated surfaces to controlled sand blasting. in accomplishing this the coated surface of the specimen is held perpendicular to the axis of a boron carbide sand blasting nozzle at a stand-off distance of about 6 inches.
  • the specimen is thenblasted with silicon carbide grit having a particle size population ranging from about 25 to microns for 10-100 seconds.
  • the specimen is then cleaned lightly to remove adherent grit therefrom and re-weighed.
  • the thickness of coating removed from the specimens due f 6 to erosion is calculated from the weight loss, taking into 0.
  • said erosion data iS having a total carbon concentration of between expressed in terms of the Erosion Improvement Factor d 3() t i percent d a thick s f betw n which factor represents the ratios of erosion time re- 5 10 and 50 microns quired to remove 25.4 microns of the boron carbide coating compared to the time required to remove 25.4 2.
  • the coated ware of claim 1 wherein the coating microns of a bare stainless steel standard.
  • layer of (a) is nickel and has a thickness of between M TABLE Boiling Stainless Water Erosion Steel Scotch Tape Immersion Improvement Substrate Coating Type Test Test Factor 304 duplex Ti/B c Fail Fail 6.0 triplex Ni/Ti/B C Pass Pass 6.7 4l0 duplex THE, C Pass Fail 3.5 triplex Ni/Ti/B C Pass Pass 4.2 AM-355 duplex Ti/B, C Pass Fail 2.8 triplex Ni/Ti/B C Pass Pass 3.4
  • the coated ware of claim 1 wherein the boron carhaving a thickness of less than 1 micron and being bide layer of (c) has a total carbon concentration of becomposed of a metal chosen from the group contween 18 and 25 atomic percent. sisting of nickel and iron; 6.
  • the coated ware of claim 1 having the form of a b. an intermediate titanium metal layer bonded to turbine compressor blade.
  • said first layer and having a thickness of between 0.1 and 25 microns;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
US00236164A 1972-03-20 1972-03-20 Erosion resistant wares composed predominantly of chromium bearing steel Expired - Lifetime US3795494A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23616472A 1972-03-20 1972-03-20

Publications (1)

Publication Number Publication Date
US3795494A true US3795494A (en) 1974-03-05

Family

ID=22888391

Family Applications (1)

Application Number Title Priority Date Filing Date
US00236164A Expired - Lifetime US3795494A (en) 1972-03-20 1972-03-20 Erosion resistant wares composed predominantly of chromium bearing steel

Country Status (6)

Country Link
US (1) US3795494A (enExample)
CA (1) CA1001500A (enExample)
DE (1) DE2311347A1 (enExample)
FR (1) FR2176896B1 (enExample)
GB (1) GB1380237A (enExample)
IL (1) IL41624A (enExample)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260658A (en) * 1979-06-21 1981-04-07 Kobe, Inc. Erosion resistant surface
US4269872A (en) * 1979-06-21 1981-05-26 Kobe, Inc. Method of producing an erosion resistant surface
WO1983000184A1 (en) * 1981-07-02 1983-01-20 Turbine Metal Technology Inc Centrifugal pump
US5607779A (en) * 1992-12-22 1997-03-04 Citizen Watch Co., Ltd. Hard carbon coating-clad base material
US6372381B1 (en) * 1999-02-05 2002-04-16 Rayovac Corporation Duplex-coated cathode cans, and electrochemical cells made therewith
US20060141242A1 (en) * 2003-06-03 2006-06-29 The Boeing Company Method for preparing pre-coated, metallic components and components prepared thereby
US20070269676A1 (en) * 2006-05-19 2007-11-22 Singer Kevin M Diffusion barrier layer and method of making the same, and wear resistant article with the diffusion barrier layer and method of making the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3318999A1 (de) * 1983-05-25 1984-11-29 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Beschichteter metallischer gegenstand sowie verfahren zu dessen herstellung
US4594294A (en) * 1983-09-23 1986-06-10 Energy Conversion Devices, Inc. Multilayer coating including disordered, wear resistant boron carbon external coating
US4716083A (en) * 1983-09-23 1987-12-29 Ovonic Synthetic Materials Company Disordered coating
GB8626330D0 (en) * 1986-11-04 1986-12-31 Atomic Energy Authority Uk Ion assisted coatings
AU625072B2 (en) * 1988-07-13 1992-07-02 Warner-Lambert Company Shaving razors
US5088202A (en) * 1988-07-13 1992-02-18 Warner-Lambert Company Shaving razors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2048276A (en) * 1932-04-21 1936-07-21 Bruno S Teschner Plated metal having carbide surface
US2963782A (en) * 1954-04-20 1960-12-13 Union Carbide Corp Flexible compsoite article
US3017689A (en) * 1958-03-27 1962-01-23 United States Steel Corp Anti-skid tread plate
US3235346A (en) * 1960-11-22 1966-02-15 Valley Co Inc Composite bodies comprising a continuous framework and an impregnated metallic material and methods of their production
US3260579A (en) * 1962-02-14 1966-07-12 Hughes Tool Co Hardfacing structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2048276A (en) * 1932-04-21 1936-07-21 Bruno S Teschner Plated metal having carbide surface
US2963782A (en) * 1954-04-20 1960-12-13 Union Carbide Corp Flexible compsoite article
US3017689A (en) * 1958-03-27 1962-01-23 United States Steel Corp Anti-skid tread plate
US3235346A (en) * 1960-11-22 1966-02-15 Valley Co Inc Composite bodies comprising a continuous framework and an impregnated metallic material and methods of their production
US3260579A (en) * 1962-02-14 1966-07-12 Hughes Tool Co Hardfacing structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260658A (en) * 1979-06-21 1981-04-07 Kobe, Inc. Erosion resistant surface
US4269872A (en) * 1979-06-21 1981-05-26 Kobe, Inc. Method of producing an erosion resistant surface
WO1983000184A1 (en) * 1981-07-02 1983-01-20 Turbine Metal Technology Inc Centrifugal pump
US4826401A (en) * 1981-07-02 1989-05-02 Tmt Research Development Inc. Centrifugal pump
US5607779A (en) * 1992-12-22 1997-03-04 Citizen Watch Co., Ltd. Hard carbon coating-clad base material
US6074766A (en) * 1992-12-22 2000-06-13 Citizen Watch Co., Ltd. Hard carbon coating-clad base material
US6180263B1 (en) 1992-12-22 2001-01-30 Citizen Watch Co., Ltd. Hard carbon coating-clad base material
US6372381B1 (en) * 1999-02-05 2002-04-16 Rayovac Corporation Duplex-coated cathode cans, and electrochemical cells made therewith
US20060141242A1 (en) * 2003-06-03 2006-06-29 The Boeing Company Method for preparing pre-coated, metallic components and components prepared thereby
US20070269676A1 (en) * 2006-05-19 2007-11-22 Singer Kevin M Diffusion barrier layer and method of making the same, and wear resistant article with the diffusion barrier layer and method of making the same

Also Published As

Publication number Publication date
CA1001500A (en) 1976-12-14
GB1380237A (en) 1975-01-08
IL41624A (en) 1975-12-31
IL41624A0 (en) 1973-06-29
FR2176896B1 (enExample) 1977-02-04
FR2176896A1 (enExample) 1973-11-02
DE2311347A1 (de) 1973-10-11

Similar Documents

Publication Publication Date Title
US5866271A (en) Method for bonding thermal barrier coatings to superalloy substrates
US3795494A (en) Erosion resistant wares composed predominantly of chromium bearing steel
US6964791B2 (en) High-temperature articles and method for making
US4916022A (en) Titania doped ceramic thermal barrier coatings
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
US4880614A (en) Ceramic thermal barrier coating with alumina interlayer
US5015502A (en) Ceramic thermal barrier coating with alumina interlayer
US3928026A (en) High temperature nicocraly coatings
US4145481A (en) Process for producing elevated temperature corrosion resistant metal articles
JP4831381B2 (ja) セラミック超合金物品
US4714624A (en) High temperature oxidation/corrosion resistant coatings
EP1391531A2 (en) Thermal barrier coating with nitride particles
JPH08225959A (ja) 超合金物品への断熱被膜の被覆方法及び断熱被膜
US20100021289A1 (en) Method for applying a NiA1 based coating by an electroplating technique
EP0194391B1 (en) Yttrium and yttrium-silicon bearing nickel-base superalloys especially useful as compatible coatings for advanced superalloys
Shankar et al. Vacuum plasma sprayed metallic coatings
Yuan et al. A new spallation mechanism of thermal barrier coatings on aero-engine turbine blades
Immarigeon et al. Erosion testing of coatings for aero engine compressor components
Boone Physical vapour deposition processes
Okazaki et al. Collaborative research on thermo-mechanical and isothermal low-cycle fatigue strength of Ni-base superalloys and protective coatings at elevated temperatures in the society of materials science, Japan (JSMS)
JPH02503576A (ja) 被覆した近αチタン品物
EP1832669A1 (en) Bond coat process for thermal barrier coating.
WO1988009396A1 (en) COATED NEAR -alpha TITANIUM ARTICLES
EP0194392B1 (en) Nickel-base superalloys especially useful as compatible protective environmental coatings for advanced superalloys
Sánchez et al. Application of quasicrystalline materials as thermal barriers in aeronautics and future perspectives of use for these materials