US3789641A - Method of lubricating a hot steel workpiece prior to hot rolling - Google Patents

Method of lubricating a hot steel workpiece prior to hot rolling Download PDF

Info

Publication number
US3789641A
US3789641A US00306076A US3789641DA US3789641A US 3789641 A US3789641 A US 3789641A US 00306076 A US00306076 A US 00306076A US 3789641D A US3789641D A US 3789641DA US 3789641 A US3789641 A US 3789641A
Authority
US
United States
Prior art keywords
oil
hot
workpiece
lubricating
atomized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00306076A
Inventor
W Miller
R Polinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Steel Corp
Original Assignee
United States Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Steel Corp filed Critical United States Steel Corp
Application granted granted Critical
Publication of US3789641A publication Critical patent/US3789641A/en
Assigned to USX CORPORATION, A CORP. OF DE reassignment USX CORPORATION, A CORP. OF DE MERGER (SEE DOCUMENT FOR DETAILS). Assignors: UNITED STATES STEEL CORPORATION (MERGED INTO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/30Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the oil being fed or carried along by another fluid
    • F16N7/32Mist lubrication
    • F16N7/34Atomising devices for oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Definitions

  • ABSTRACT A method of lubricating a hot steel workpiece in the process of hot rolling wherein an undiluted lubricating oil is atomized and sprayed onto the hot steel surface.
  • WILLIAM G. MILLER a RAYMOND E. POL/IVS/(l E Attorney METHOD OF LUBRICATING A HOT STEEL WORKPIECE PRIOR TO HOT ROLLING provide several beneficial advantages, such as inl creased roll-life, superior surface on the rolled product, a more easily removed surface scale, and reduced power consumption.
  • lubrication of the workpiece is common practice in cold rolling operations, it has rarely been applied to hot rolling and, when it has been attempted, results have usually been disappointing.
  • lubrication of a workpiece in the process of rolling is usually accomplished by applying either an oilwater mixture, or applying undiluted oil as an atomized spray.
  • oil and water mixtures are applied to a hot workpiece, a thin steam barrier is usually formed against the hot workpiece surface which prevents the oil from adhering thereto.
  • the cooling water usuallyapplied at the rolls will readily wash the oil-water-mixture from the workpiece surface.
  • Another object of this invention is to provide a method and apparatus for'applying an undiluted lubricating oil onto a hot workpiece prior to hot rolling.
  • Still another object of this invention is to provide an apparatus for lubricating a hot workpiece which is particularly adaptable to a two-high rolling mill.
  • FIG. 1 is a schematic diagram of one embodiment of O the apparatus of this invention as utilized in combination with a conventional two-high rolling mill;
  • FIG. 2 is an enlarged sectional view of an atomizing nozzle as may be used in this invention.
  • preheated oil is atomized and sprayed onto a hot workpiece while maintaining the atomized oil particles within the approximate range 150 to 250 microns in size.
  • the minimum particle size limit of about 150 microns is necessary to avoid flashing and burn-off when the oil particles first contact the hot workpiece.
  • the upper size limit of about 250 microns is essential to assure a thin uniform oil coating on the workpiece. That is to say, if the sprayed oil particles exceed about 250 microns in size, there is a tendency to produce a spotty, non-uniform oil coverage on the workpiece.
  • the larger oil particles will not flash upon initial contact with the hot workpiece as noted above, prolonged contact with the hot workpiece may well cause the oil to eventually ignite and burn.'Therefore, it is preferred that the actual oil spray be applied as late as possible prior to the roll-bite, thereby minimizing the time between lubrication and hot rolling. Once hot rolling is commenced, the cooling water cascading down the roll surfaces will prevent oil ignition.
  • the spray be directed perpendicularly to the workpiece with a narrow spray angle to avoid deflection of the oil particles off of the workpiece surface.
  • FIG. 1 One embodiment of the apparatus used in the practice of this invention is schematically illustrated in FIG. 1, where the numeral indicates a conventional twohigh rolling mill having an upper and lower roll 12 and 14, respectively.
  • a conventional hot workpiece W is being processed through mill 10.
  • At least one spray nozzle is provided above the workpiece W a short distance from the mill 10 on the inlet side, and at least one spray nozzle 22 is provided below nozzle 20.
  • the number of nozzles 22 and 24 will of course depend upon the width of the workpiece W and the width of the spray at the workpiece surface. When hot rolling narrow materials such as rods, strapping stock, rebar stock and the like, then one nozzle on each side of workpiece W will be more than sufficient. When rolling wider materials, such as bumper stock, several nozzles may be necessary to completely cover the workpiece surface with lubricant.
  • the undiluted lubricating oil is supplied from oil storage tank 26 via oil supply line 28. Control of the oil supply is provided by pump 30, regulator 31 and gage 32 on oil supply line 28. Unused oil is returned to tank 26 via oil return line 34.
  • Atomizing air is supplied to nozzles 20 and 22 via atomizing air line 36, while plunger air is supplied via plunger air line 38.
  • Control of atomizing air at the nozzles 20,22 is effected by providing a solenoid 40, a regulator 42 and a gage 44 on atomizing air line 36.
  • a solenoid, regulator and gage, 46, 48 and 50 respectively, are provided on plunger air line 38.
  • This nozzle shown in detail in FIG. 2, features automatic shutoff and clean-out mechanisms enabling the system to be kept under pressure at all times without clogging.
  • This nozzle is particularly desirable for use in this invention because it is readily capable of producing the essential large sized oil particles by merely controlling atomizing air pressure.
  • this nozzle will provide an economical oil output by a mere oil pressure adjustment, and the preferred narrow application band can easily be adjusted.
  • the preferred nozzle mentioned above is provided with a central opening 60 which receives the oil via oil inlet 62 and delivers it to the oil outlet opening 64.
  • Passage 66 receives atomizing air from atomizing air inlet 68 and delivers it to atomizing air outlets 70.
  • a clean-out and shut-off needle 72 is received in opening 60 and has a piston 74 attached thereto which is urged by spring 76 to the closed position. Piston 74 is moved to the open position by means of plunger air introduced through opening 78.
  • the lubricating oil preheated to a suitable temperature is pumped by pump 30, from tank 26 to the nozzles 20 and 22.
  • the pressure thereof is controlled by regulator 31.
  • Excess oil is returned to tank 26 via return line 34.
  • atomizing air is supplied to nozzles 20 and 22 via line 38 by opening solenoid 40 and regulating the pressure with regulator 42.
  • solenoid 46 is opened to activate nozzles 20 and 22 and thereby spray lubricating oil onto workpiece W.
  • the atomized oil particle size can be regulated to the desired size by suitable adjustment of the atomizing air pressure with regulater 42.
  • Suitable operating parameters are dependent upon so many variables that the limits thereof cannot be presented here. Nevertheless, these operating parameters can be readily determined experimentally. For any given system, given lubricant and given temperature, the desired lubricant particle size is readily attained by proper ratio adjustment of oil output regulator 31 and atomizing air regulator 42.
  • a method of lubricating a steel workpiece in the process of hot rolling which comprises heating the steel workpiece to a temperature above about l,600F, atomizing an undiluted lubricating oil to form particles thereof within the size range of about 150 to 250 microns, and spraying the atomized lubricating oil directly onto the hot workpiece surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Metal Rolling (AREA)
  • Nozzles (AREA)

Abstract

A method of lubricating a hot steel workpiece in the process of hot rolling wherein an undiluted lubricating oil is atomized and sprayed onto the hot steel surface. In order to prevent the oil from flashing and burning upon contact with the hot steel surface, the atomized oil particles are maintained within the range of about 150 to 250 microns in size.

Description

United States Patent [191 Miller et al.
METHOD OF LUBRICATING A HOT STEEL WORKPIECE PRIOR TO HOT ROLLING lnventors: William G. Miller, Penn Hills Township, Allegheny County; Raymond E. Polinski, Duquesne, both of Pa.
United States Steel Corporation, Pittsburgh, Pa.
Filed: Nov. 13, 1972 Appl. No.: 306,076
Related US. Application Data Continuation-impart of Ser. No. 75,394, Sept. 25, 1970, abandoned.
Assignee:
[ Feb. 5, 1974 3,150,548 9/1964 Roberts 72/43 3,208,253 9/1965 Roberts 72/21 3,523,437 8/1970 Bales et al. 72/43 3,605,473 9/1971 Lyon et al 72/201 3,648,497 3/1972 Long at al 72/21 Primary ExaminerCharles W. Lanham Assistant Examiner-E. M. Combs Attorney, Agent, or FirmForest C. Sexton 5 7] ABSTRACT A method of lubricating a hot steel workpiece in the process of hot rolling wherein an undiluted lubricating oil is atomized and sprayed onto the hot steel surface. In order to prevent the oil from flashing and burning upon contact with the hot steel surface, the atomized oil particles are maintained within the range of about References t0 microns in size. I UNITED STATES PATENTS 2,707,098 4/1955 Turpin 72/43 1 Claim, 2 Drawing Figures 3/ OIL 28 .SUPPY l0 TANK I ln l 2,
ATOM/ZINE Am 34 OIL SUPP) TA NK PATENTEDFEB 519 4 AIR SUPELY ATOM/ZINE INVENTORS.
WILLIAM G. MILLER a RAYMOND E. POL/IVS/(l E Attorney METHOD OF LUBRICATING A HOT STEEL WORKPIECE PRIOR TO HOT ROLLING provide several beneficial advantages, such as inl creased roll-life, superior surface on the rolled product, a more easily removed surface scale, and reduced power consumption. Although lubrication of the workpiece is common practice in cold rolling operations, it has rarely been applied to hot rolling and, when it has been attempted, results have usually been disappointing.
To be sufficiently economical for commercial processes, lubrication of a workpiece in the process of rolling is usually accomplished by applying either an oilwater mixture, or applying undiluted oil as an atomized spray. When oil and water mixtures are applied to a hot workpiece, a thin steam barrier is usually formed against the hot workpiece surface which prevents the oil from adhering thereto. In addition, the cooling water usuallyapplied at the rolls will readily wash the oil-water-mixture from the workpiece surface.
Because of the polar nature of most oils, undiluted applications thereof would not easily be washed from the workpiece surface. However, when undiluted oils are sprayed onto a hot workpiece surface in an atomized state, the oil will flash andburn-off at the usual hot rolling temperatures of l,750 to 1,950F.
Recently an improved system has been developed which overcomes the above problems. In that system, the lubricant is appplied to the backup rolls in conventional four-high rolling mills after stationary wipers have wiped the roll surface to remove any cooling water. The lubricant is then transferred from the backup rolls to the work rolls where the workpiece is lubricated. Although this system does overcome the above problems, it is obvious that it cannot be applied to a two-high rolling mill having no backup rolls, and frequently havinga non-flat surface which cannot be wiped to remove cooling water. An example thereof would be the typical two-high finishing mill having a plurality of grooves around the rolls as used to roll reinforcement bars. Hot rolling in conventional two-high mills, therefore, is almost always done without the use of a lubricant.
SUMMARY OF THE INVENTION Although undiluted lubricating oils will indeed flash and burn-off of a hot workpiece when sprayed thereon in accordance with conventional prior art practices, we have discovered that atomized oils will not burn when sprayed onto a hot workpiece if the atomized particles are sufficiently large, i.'e., at least about 150 microns in size.
It is, therefore, an object of this invention to provide a method of spraying undiluted lubricating oil onto a hot workpiece without the oil burning therefrom.
Another object of this invention is to provide a method and apparatus for'applying an undiluted lubricating oil onto a hot workpiece prior to hot rolling.
Still another object of this invention is to provide an apparatus for lubricating a hot workpiece which is particularly adaptable to a two-high rolling mill.
These and other objects will be more apparent after referring to the attached drawings and following description.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of one embodiment of O the apparatus of this invention as utilized in combination with a conventional two-high rolling mill; and
FIG. 2 is an enlarged sectional view of an atomizing nozzle as may be used in this invention.
DESCRIPTION or THE PREFERRED EMBODIMENT All prior art systems for spraying an atomized lubricant onto a workpiece to be rolled have produced and sprayed atomized particles substantially less than microns in size. When sprayed onto a hot workpiece at temperatures above about 1,600F, the atomized lubricant will flash and burn-off as noted above. The crux of this invention is predicated upon our discovery that such atomized oil particles will not burn if the particle size thereof is at least about 150 microns.
In the practice of this invention, preheated oil is atomized and sprayed onto a hot workpiece while maintaining the atomized oil particles within the approximate range 150 to 250 microns in size. As previously noted, the minimum particle size limit of about 150 microns is necessary to avoid flashing and burn-off when the oil particles first contact the hot workpiece. The upper size limit of about 250 microns is essential to assure a thin uniform oil coating on the workpiece. That is to say, if the sprayed oil particles exceed about 250 microns in size, there is a tendency to produce a spotty, non-uniform oil coverage on the workpiece.
Although the larger oil particles will not flash upon initial contact with the hot workpiece as noted above, prolonged contact with the hot workpiece may well cause the oil to eventually ignite and burn.'Therefore, it is preferred that the actual oil spray be applied as late as possible prior to the roll-bite, thereby minimizing the time between lubrication and hot rolling. Once hot rolling is commenced, the cooling water cascading down the roll surfaces will prevent oil ignition.
Because the oil particles sprayed in accordance with this invention are quite large and massive in contrast to conventional atomized sprays, it is preferred that the spray be directed perpendicularly to the workpiece with a narrow spray angle to avoid deflection of the oil particles off of the workpiece surface.
Many small two-high rolling mills have enclosed, bell-shaped guide boxes which serve to guide the work piece through a predetermined portion of the work rolls. Since these guide boxes are necessarily close to the rolls, it may be difficult on some mills to suitably position the spray nozzles 20 and 22 between such a guide box and the rolls. Nevertheless, the spray nozzles should be positioned therebetween rather than ahead of the guide box so that the time between lubrication and rolling is minimized thereby minimizing the chances of oil ignition. The guide box may present another problem in that the confined-space therein is usually quite hot and, frequently,.any oil spray that is deflected thereinto will readily'flash. Therefore, when working close to such a guide box, we have found it necessary to position the nozzles at a slight angle away from the guide box to minimize lubricant spray entering the hot confined space therein.
One embodiment of the apparatus used in the practice of this invention is schematically illustrated in FIG. 1, where the numeral indicates a conventional twohigh rolling mill having an upper and lower roll 12 and 14, respectively. A conventional hot workpiece W is being processed through mill 10.
In accordance with this invention, at least one spray nozzle is provided above the workpiece W a short distance from the mill 10 on the inlet side, and at least one spray nozzle 22 is provided below nozzle 20. The number of nozzles 22 and 24 will of course depend upon the width of the workpiece W and the width of the spray at the workpiece surface. When hot rolling narrow materials such as rods, strapping stock, rebar stock and the like, then one nozzle on each side of workpiece W will be more than sufficient. When rolling wider materials, such as bumper stock, several nozzles may be necessary to completely cover the workpiece surface with lubricant.
The undiluted lubricating oil is supplied from oil storage tank 26 via oil supply line 28. Control of the oil supply is provided by pump 30, regulator 31 and gage 32 on oil supply line 28. Unused oil is returned to tank 26 via oil return line 34.
Atomizing air is supplied to nozzles 20 and 22 via atomizing air line 36, while plunger air is supplied via plunger air line 38. Control of atomizing air at the nozzles 20,22 is effected by providing a solenoid 40, a regulator 42 and a gage 44 on atomizing air line 36. In a like manner, a solenoid, regulator and gage, 46, 48 and 50 respectively, are provided on plunger air line 38.
For optimum results, we have preferred to use commercially available nozzles manufactured by Spray Systems, Inc., and identified as Model l/4 JAU. This nozzle, shown in detail in FIG. 2, features automatic shutoff and clean-out mechanisms enabling the system to be kept under pressure at all times without clogging. This nozzle is particularly desirable for use in this invention because it is readily capable of producing the essential large sized oil particles by merely controlling atomizing air pressure. In addition, this nozzle will provide an economical oil output by a mere oil pressure adjustment, and the preferred narrow application band can easily be adjusted.
As shown in FIG. 2, the preferred nozzle mentioned above is provided with a central opening 60 which receives the oil via oil inlet 62 and delivers it to the oil outlet opening 64. Passage 66 receives atomizing air from atomizing air inlet 68 and delivers it to atomizing air outlets 70. A clean-out and shut-off needle 72 is received in opening 60 and has a piston 74 attached thereto which is urged by spring 76 to the closed position. Piston 74 is moved to the open position by means of plunger air introduced through opening 78.
In operation, the lubricating oil preheated to a suitable temperature, is pumped by pump 30, from tank 26 to the nozzles 20 and 22. The pressure thereof is controlled by regulator 31. Excess oil is returned to tank 26 via return line 34. At the same time, atomizing air is supplied to nozzles 20 and 22 via line 38 by opening solenoid 40 and regulating the pressure with regulator 42. To commence spraying, solenoid 46 is opened to activate nozzles 20 and 22 and thereby spray lubricating oil onto workpiece W. After the desired oil output is obtained by regulating regulator 31, the atomized oil particle size can be regulated to the desired size by suitable adjustment of the atomizing air pressure with regulater 42.
Suitable operating parameters are dependent upon so many variables that the limits thereof cannot be presented here. Nevertheless, these operating parameters can be readily determined experimentally. For any given system, given lubricant and given temperature, the desired lubricant particle size is readily attained by proper ratio adjustment of oil output regulator 31 and atomizing air regulator 42.
For example, in our system, having the Model 1/4 JAU nozzles with 0.028 inch oil orifices, and utilizing a lubricant having a viscosity of approximately 200 SUS (Saybolt Universal Seconds) at F, the following oil and air parameters at each nozzle will produce oil particles within the range to 250 microns:
Oil Rate Oil Pressure Air Rate Air Pressure l0 gm./min 1% psi 0.25 ft/min. Y4 psi l8 gm./min. 1% psi 0.30 ft"/min I psi 34 gm./min. 2 psi 0.40 ft"/min. l' psi Because of differences in viscosities between lubricants and differences in piping frictions from one system to the next, each system and lubricant used should be calibrated for nozzle output at various oil pressures.
We claim:
1. A method of lubricating a steel workpiece in the process of hot rolling which comprises heating the steel workpiece to a temperature above about l,600F, atomizing an undiluted lubricating oil to form particles thereof within the size range of about 150 to 250 microns, and spraying the atomized lubricating oil directly onto the hot workpiece surface.

Claims (1)

1. A method of lubricating a steel workpiece in the process of hot rolling which comprises heating the steel workpiece to a temperature above about 1,600*F, atomizing an undiluted lubricating oil to form particles thereof within the size range of about 150 to 250 microns, and spraying the atomized lubricating oil directly onto the hot workpiece surface.
US00306076A 1970-09-25 1972-11-13 Method of lubricating a hot steel workpiece prior to hot rolling Expired - Lifetime US3789641A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7539470A 1970-09-25 1970-09-25
US30607672A 1972-11-13 1972-11-13

Publications (1)

Publication Number Publication Date
US3789641A true US3789641A (en) 1974-02-05

Family

ID=26756799

Family Applications (1)

Application Number Title Priority Date Filing Date
US00306076A Expired - Lifetime US3789641A (en) 1970-09-25 1972-11-13 Method of lubricating a hot steel workpiece prior to hot rolling

Country Status (7)

Country Link
US (1) US3789641A (en)
AU (1) AU450187B2 (en)
BE (1) BE772701A (en)
DE (1) DE2147625A1 (en)
FR (1) FR2107967B1 (en)
GB (1) GB1342153A (en)
NL (1) NL7112701A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841126A (en) * 1972-03-22 1974-10-15 Kobe Steel Ltd Method of lubricating a work, especially a wire in a warm forging process
US4214470A (en) * 1977-01-14 1980-07-29 Hi-Draw Machinery Ltd. Method and apparatus for cooling drawn wire
ES2176084A1 (en) * 1999-06-14 2002-11-16 Outokumpu Oy Method for improving lubrication in rolling
US7204112B1 (en) * 2002-12-30 2007-04-17 Dana Corporation Method of lubricating a workpiece for hydroforming
US20110111124A1 (en) * 2008-06-18 2011-05-12 Sms Siemag Aktiengesellschaft Method and device for lubricating rollers and a rolled strip of a rolling stand
CN104768667A (en) * 2012-09-03 2015-07-08 西马克·西马格公司 Method and device for dynamically supplying coolant to a cooling device for cooling metal strip or other rolled stock
US20160325327A1 (en) * 2014-01-08 2016-11-10 Primetals Technologies Austria Gnbh Lubrication using spray nozzles having multiple oil inlet openings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461684B1 (en) * 2001-09-28 2002-10-08 The Goodyear Tire & Rubber Company Spray coating onto wires

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707098A (en) * 1951-11-27 1955-04-26 Steel Company Means for lubricating sheet metal during rolling
US3150548A (en) * 1961-06-26 1964-09-29 United States Steel Corp Method and apparatus for controlling the thickness of rolled strip
US3208253A (en) * 1963-05-10 1965-09-28 United States Steel Corp Control of rolling mill lubricant
US3523437A (en) * 1967-12-07 1970-08-11 United States Steel Corp Method of cold reducing
US3605473A (en) * 1969-03-21 1971-09-20 Nat Steel Corp Method and apparatus for hot rolling ferrous metal workpieces
US3648497A (en) * 1970-02-18 1972-03-14 United States Steel Corp Apparatus for automatically supplying oil to a hot strip mill

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707098A (en) * 1951-11-27 1955-04-26 Steel Company Means for lubricating sheet metal during rolling
US3150548A (en) * 1961-06-26 1964-09-29 United States Steel Corp Method and apparatus for controlling the thickness of rolled strip
US3208253A (en) * 1963-05-10 1965-09-28 United States Steel Corp Control of rolling mill lubricant
US3523437A (en) * 1967-12-07 1970-08-11 United States Steel Corp Method of cold reducing
US3605473A (en) * 1969-03-21 1971-09-20 Nat Steel Corp Method and apparatus for hot rolling ferrous metal workpieces
US3648497A (en) * 1970-02-18 1972-03-14 United States Steel Corp Apparatus for automatically supplying oil to a hot strip mill

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841126A (en) * 1972-03-22 1974-10-15 Kobe Steel Ltd Method of lubricating a work, especially a wire in a warm forging process
US4214470A (en) * 1977-01-14 1980-07-29 Hi-Draw Machinery Ltd. Method and apparatus for cooling drawn wire
ES2176084A1 (en) * 1999-06-14 2002-11-16 Outokumpu Oy Method for improving lubrication in rolling
US7204112B1 (en) * 2002-12-30 2007-04-17 Dana Corporation Method of lubricating a workpiece for hydroforming
US20110111124A1 (en) * 2008-06-18 2011-05-12 Sms Siemag Aktiengesellschaft Method and device for lubricating rollers and a rolled strip of a rolling stand
US9254513B2 (en) 2008-06-18 2016-02-09 Sms Group Gmbh Method and device for lubricating rollers and a rolled strip of a rolling stand
CN104768667A (en) * 2012-09-03 2015-07-08 西马克·西马格公司 Method and device for dynamically supplying coolant to a cooling device for cooling metal strip or other rolled stock
US20160325327A1 (en) * 2014-01-08 2016-11-10 Primetals Technologies Austria Gnbh Lubrication using spray nozzles having multiple oil inlet openings
US10780475B2 (en) * 2014-01-08 2020-09-22 Primetals Technologies Austria GmbH Lubrication using spray nozzles having multiple oil inlet openings

Also Published As

Publication number Publication date
FR2107967B1 (en) 1975-02-07
GB1342153A (en) 1973-12-25
DE2147625A1 (en) 1972-03-30
BE772701A (en) 1972-03-15
FR2107967A1 (en) 1972-05-12
AU3329671A (en) 1973-03-15
NL7112701A (en) 1972-03-28
AU450187B2 (en) 1974-07-04

Similar Documents

Publication Publication Date Title
US3605473A (en) Method and apparatus for hot rolling ferrous metal workpieces
US3789641A (en) Method of lubricating a hot steel workpiece prior to hot rolling
GB1359486A (en) Methods and apparatus for producing composite metal material
US3763679A (en) Apparatus for applying lubricant to a workpiece in a hot strip mill
US3656330A (en) System for distributing liquid over a surface
US4467629A (en) Method of flattening steel strip in rolling mill
US3803888A (en) Method of reducing rolling mill roll wear
EP1068035A1 (en) Method for the continuous casting of a thin strip and device for carrying out said method
US3523437A (en) Method of cold reducing
DE69514542T2 (en) COATING MATERIALS WITH WAXY SUBSTANCES
DE602004010108T2 (en) HOT ROLLING-GREASE PROCEDURE
US3331230A (en) Method for the manufacture of tin plate
US3834199A (en) Method and machine for corrugating or pleating sheet metal
US2319309A (en) Apparatus for rolling metal strip
US6189358B1 (en) Two stand tandem for rolling line
JP3278328B2 (en) Method of applying lubricant to rolling dies
DE2605011C2 (en) Method and device for descaling during continuous forming, in particular rolling, of elongated, metallic material, in particular steel
EP3733317B1 (en) Rolling of a product
US3318126A (en) Method of rolling steel strip material
EP0035627B1 (en) Method of regrinding a roll
US2199627A (en) Method of drawing metal
PL70966B1 (en)
US5468402A (en) Lubricant for use in hot rolling of stainless steel
GB1316845A (en) Method and apparatus for applying lubricant to a workpiece in a rolling mill
DE886585C (en) Descaling device for workpieces

Legal Events

Date Code Title Description
AS Assignment

Owner name: USX CORPORATION, A CORP. OF DE, STATELESS

Free format text: MERGER;ASSIGNOR:UNITED STATES STEEL CORPORATION (MERGED INTO);REEL/FRAME:005060/0960

Effective date: 19880112