US3783902A - Fluidic surface device and nozzle system for the formation of jets in the device - Google Patents
Fluidic surface device and nozzle system for the formation of jets in the device Download PDFInfo
- Publication number
- US3783902A US3783902A US00238260A US3783902DA US3783902A US 3783902 A US3783902 A US 3783902A US 00238260 A US00238260 A US 00238260A US 3783902D A US3783902D A US 3783902DA US 3783902 A US3783902 A US 3783902A
- Authority
- US
- United States
- Prior art keywords
- nozzle
- throttle
- throttles
- outlet nozzle
- outlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C1/00—Circuit elements having no moving parts
- F15C1/02—Details, e.g. special constructional devices for circuits with fluid elements, such as resistances, capacitive circuit elements; devices preventing reaction coupling in composite elements ; Switch boards; Programme devices
- F15C1/06—Constructional details; Selection of specified materials ; Constructional realisation of one single element; Canal shapes; Jet nozzles; Assembling an element with other devices, only if the element forms the main part
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/218—Means to regulate or vary operation of device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2224—Structure of body of device
Definitions
- a fluidic circuit element includes a nozzle assembly in the form of a nozzle supplied from a supply source of fluid by way of one or more throttles separated from each other and from the nozzle by intermediate chambers. The spacing between the throttles and between the last throttle and nozzle are less than the smallest transverse dimensions of the throttles.
- a symmetrical jet is produced by a single arrangement of this type, or alternatively an asymmetrical jet may be produced by employing a similar series of throttles and outlet nozzle of larger dimensions cooperating with the first system.
- the nozzle system is shown and disclosed in combination with a wall attachment device.
- Previous arrangements for steadying and aligning the current in front of a nozzle are well known.
- flow grids have been employed to align the flow of current of the fluid, the grids distributing the fluid uniformally over the cross sectional area of the feed regardless of the direction they are fed thereto.
- sieves or porous materials have been employed in other arrangements, such devices operating in the same manner as the flow grids.
- Devices employing long capillary fed zones have also been employed for compensating for asymmetrical profile of the fluid applied to the device.
- the form of the jet issuing from the nozzle depends substantially upon the form of the nozzle.
- nozzles have been suggested in the form of sharp edged diaphrams having flat or rounded faces.
- asymmetrical jets have been produced by employing asymmetrical supply chambers in front of the nozzles.
- Other arrangements have employed interference sources, such as projecting edges, offset corners, or surfaces for guiding or repelling the current, for the production of desired asymmetry of the jet.
- Symmetry of a jet has also been achieved by focusing techniques by means of additional jets or currents, for example, by means of a ring nozzle surrounding the nozzle to be controlled.
- Asymmetry of a jet may also be accomplished in the same manner by employing interfering jets.
- the fluid jet to be aligned may also be preshaped by means of a moving nozzle, the fluid subsequently flowing through a sharp edged diaphram.
- Other ar-v rangements have employed lateral control jets to effect the preshaping of the fluid jet in front of the main nozzle of the jet element.
- the invention is thus directed to the provision of a nozzle system which can readily be produced, and which is designed so that its characteristics are readily reproducible during manufacture, and in which the direction and flow profile of the jet are substantially independent of the direction and flow profile of the current of the fluid in front of the nozzle system (i.e., the fluid applied to the nozzle system).
- the objects of the invention are achieved by providing one or more throttles, arranged in cascade, and aligned with each other in front of one or more outlet nozzles.
- the spacing between the throttles and also between the last throttle and the outlet nozzle are greater than the smallest throttle dimension.
- the term dimension as applied to the throttles and nozzles refers to the dimensions thereof transverse to the flow of fluid therethrough.
- the formation of the jet can be influenced by different dimensions of the throttles, as
- each throttle may have several openings.
- two openings are provided on each throttle, two outlet nozzles are provided cooperating therewith.
- An asymmetrical jet may be produced in the overall nozzle system by employing different dimensions in the two partial nozzle systems.
- the outlet nozzle of the system preferably is in the form of a Borda mouthpiece.
- the dimensions of the aligned throttles, as well as the dimensions of the outlet nozzle, can be equal, in the formation of the jet issuing from the nozzle system. It is advantageous, however, to make the dimensions of the throttles smaller than the dimensions of the outlet nozzle aligned therewith.
- a particularly useful embodiment of the invention is provided by successively decreasing the dimensions of the throttles from the source of fluid toward the outlet nozzle, and in this arrangement the outlet nozzle preferably has greater dimensions than the throttle just preceding the outlet nozzle.
- the present invention provides an advantage that jets of the form necessary for use in jet elements may be formed, and that sharp focusing of the jets may be readily achieved by simple techniques and by employing simple geometric configurations in the device. If the nozzle system is to be employed, for example, in a wall attachment device, the arrangement according to the invention permits the use of short outlets and walls necessary for adhesion and alignment of the jet, as well as meeting the other requirements of high sensitivity with simultaneous operational stability of the wall attachment devices. These objectives may be achieved without sacrificing the miniaturization of the elements.
- the distance between the main nozzle and the walls of a wall attachment device can be increased, thereby providing room for the arrangement of several signal input devices between the nozzle and the walls, the input signal devices being adequately separated so that input signals applied thereto are decoupled.
- jet elements according to the invention can be readily miniaturized bysimple techniques, and without impairing the above characteristics.
- FIG. 1 is a top view with the top plate removed, of a wall attachment device incorporating a nozzle system according to the invention
- FIG. 2 is a modified cross sectional view of a portion of the element of FIG. 1 taken along the lines A-A, and including a portion of the top plate thereon;
- FIG. 3 is a view of a modification of the nozzle system according to the invention, employing several throttles arranged in cascade form.
- FIG. 1 therein is illustrated a wall attachment fluidic circuit element incorporating a nozzle system according to the invention.
- the contours of the wall attachment device are illustrated by the heavy lines, such as lines 29, which denote the walls of the device.
- the device may have a bottom plate 30 and a top plate 31 between which the walls 29, for example in the form of straps or bars, extend, according to the contours illustrated in FIG. 1, to form the device.
- the nozzle system in FIG. 1 incorporates an outlet nozzle 1, aligned throttles 2 and 3, a chamber 4 between the outlet nozzle 1 and the throttle 2, a chamber 5 between the throttle 2 and the throttle 3, and a supply chamber 6 of any desired form.
- the supply chamber is provided with one or more input connections, such as inputs 13 and 14, for the supply of feed fluid there through as indicated by the arrows 20.
- the dimensions of the throttles and nozzle and their relative spacing has been discussed above.
- the wall attachment device also includes nozzles 7 and 8 for the application of control signals as indicated by the arrows 16 and 17 respectively, walls 9 and 10 as necessary for the attachment and for the alignment of the jet and mixing nozzles 11 and 12 for the signal outputs as indicated by the arrows l8 and 19 respectively.
- the feed fluid 20 enters the supply chamber 6, as noted above, by way of connections 13 and 14, and flows through the throttle 3 into the chamber 5, and thence through the throttle 2 into the chamber 4. Alternatively, one of the throttles may be omitted if desired, or additional throttles and intermediate chambers may also be provided if desired. From the chamber 4, the fluid flows through the outlet nozzle 1, aligned with the throttles 2 and 3, and forms the main jet in the interaction region 15 of the device.
- the angled walls 9 and 10 of the device are staggered with respect to the outlet nozzle 1, so that the wall 9 is closer to the main jet than the wall 10 (i.e., the dimension s is smaller than the dimension s as illustrated in FIG. 1). Consequently, the main jet, in the absence of control signals, becomes attached to the wall 9 due to the Coanda effect, and an output signal 18 is received by the mixing nozzle 11.
- the main jet may be deflected by control jets issuing from either of the nozzles 7 and 8, to be released from the wall 9 and attached to the wall 10, so that the jet is directed to the mixing nozzle 12 for the formation of the output signal 19.
- the control jets are directed into the interaction region 15, as illustrated in FIG. ll.
- the shape and alignment of the main jet is produced as a result of the dimensions and gradations of the cross sections of the outlet nozzle 1 and of the throttles 2 and 3, as well as of the respective distances between the outlet nozzle 1 and the throttles 2 and 3 and the desired shape of the intermediate chambers 4 and 5.
- the outlet nozzle 1, as above stated, is preferably-in the form of a Borda mouthpiece, i.e., having a reentrant tube in the chamber 4.
- the jet emanating from the outlet nozzle 1 of the nozzle system is axially symmetrical and is accurately aligned and formed, and can be deflected by jets of small energy emanating from the nozzles 7 or 8.
- the main jet emanating from the nozzle 1 has a high degree of precision with respect to its axial symmetry, slight displacement of the angled walls 9 and 10, as indicated by the displacement s and s respectively, relative to the outlet nozzle 1, is permissible. These minor displacements make it possible to make the walls 9 and 10 relatively short, while still enabling stable adhesion of the main jet to Walls, and this in turn increases the sensitivity of the elements with respect to the control signals 16 andv 17.
- the high degree of axial symmetry of the jet also permits the distance between the outlet nozzle 1 and the walls 9 and 10 to be increased, thereby providing sufficient room adjacent the interaction region 15 for the most favorable and suitable alignment of the control nozzles 7 and 8, while still permitting the nozzles to be decoupled.
- control nozzles 7 and 8 may be directed to the interaction region on the same side thereof, thereby effecting greater decoupling than in conventional arrangements in which the space limitations of the interaction region require oppositely disposed control nozzles.
- FIG. 3 this figure illustrates a modification of the nozzle system according to the invention, in orderto provide an asymmetrical outlet jet.
- an additional set of throttles 22 and 23, and an additional nozzle 21 are provided.
- the throttles 2 and 3, the outlet nozzle 1, and the intermediate chamber 4 are aligned as in the arrangement of FIG. 1.
- chamber 5 is enlarged in a direction transverse to the flow of the fluid, and another throttle 23 is provided in the same wall as the throttle 3, the throttle 23 being larger than the throttle 3.
- the throttle 23 is aligned with a throttle 22 in an ex tension of the wall in which the throttle 2' extends, the throttle 22 being larger than the throttle 2 and extending into an intermediate chamber 24 separated by wall 28 from the chamber 4.
- the outlet nozzle 21 is aligned with the throttles 22 and 23, and extends from the chamber 24 into the interaction region.
- the arrangement in addition to the particularly useful outlet nozzle, the arrangement also employs a particularly useful arrangement for the mixing nozzle which does not employ a separating wedge.
- the outlet nozzle 1 and the mixing nozzles 11 and 12 are separated from each other by a mixing nozzle chamber in which the free fluid jet can be formed. This permits extensive decoupling between the control inputs and the signal outputs, and insures the free wiring of the elements.
- Bistable storage elements having signal inputs on each side of the interaction region and monostable elements, in which the OR function is caused by a two inlet jet element, can be distinguished on the basis of their logical properties. Monostability in a monostable element can be achieved by an asymmetrical displacement of the walls, as above discussed. A substantial difference between the two types of elements, i.e., bistable storage elements and monostable storage elements, resides in the manner of ventilation of the interaction region.
- the interaction region is ventilated from both sides, i.e., between the control inlet nozzles and the main jet, while in a monostable element the interaction region is ventilated on only one side, i.e., on the side opposite the control inputs.
- fluid from the supply chamber 6 passes through one partial nozzle system, i.e., through throttles 2 and 3, chambers 4 and 5, and outlet nozzle 1 to form the outlet jet indicated by the arrow 25.
- the fluid from the supply chamber 6 also passes through the other partial nozzle system consisting of throttles 22 and 23, chambers 5 and 24 and outlet nozzle 21, to form the jet indicated by arrow 26.
- the jets 25 and 26 Due to the different dimensions of the partial nozzle systems, the jets 25 and 26 have different energies as they issue from the two outlet nozzles 11 and 21, and consequently a resultant asymmetrical jet, indicated by the arrow 27, is formed due to the mixing of the jet 25 and 26.
- the formation of the resultant jet 27 is influenced by the arrangement of the throttles 2,3,22 and 23 and outlet nozzles l and 21, and also by the shape of the intermediate chambers 4, 5 and 24, as well as by the presence of the separating wall 28.
- a nozzle system for forming ajet in a fluidic circuit device comprising an outlet nozzle, a source of supply fluid, a throttle between said source and said outlet nozzle, and an intermediate chamber between said throttle and said outlet nozzle, said throttle and outlet nozzle constituting the only openings in said chamber, the spacing between said throttle and said outlet nozzle being greater than the smallest transverse dimension of said throttle, whereby the shape of a jet issuing from said outlet nozzle is a function of the dimensions of said throttle, and the shape and dimension of said intermediate chamber.
- the nozzle system of claim 1 further comprising a second outlet nozzle, said second outlet nozzle having greater transverse dimensions than said first mentioned nozzle, second throttle means aligned with said second outlet nozzle and having greater transverse dimensions than said first mentioned throttle, and a second intermediate chamber between said second throttle means and second outlet nozzle, and wall means separating said second chamber and said first mentioned chamber.
- nozzle system of claim ll further comprising a second throttle positioned between said supply and said first mentioned throttle, and a second intermediate chamber between said second throttle and said first mentioned throttle, said first mentioned and second throttles constituting the only openings in said intermediate chamber, the distance between said second throttle andv said first mentioned throttle being greater than the smallest transverse dimension of said second nozzle, said outlet nozzle, first mentioned throttle and second throttle being aligned.
- a nozzle system for forming jets in a fluidic circuit device comprising a first outlet nozzle, a second outlet nozzle having transverse dimensions greater than said first nozzle, a source of supply fluid, first and secondthrottles between said source and said first and second nozzles respectively and aligned with said first and second nozzles respectively, and first and second intermediate chambers between said first and second throttles respectively and said first and second outlet nozzles respectively, the distances between said first and second nozzles and said first and second throttles being greater than the smallest transverse dimensions of said first and second throttles respectively.
- the nozzle system of claim further comprising a third throttle between said source and said first throttle and aligned with said first throttle and said first outlet nozzle, a fourth throttle between said source and said second throttle and aligned with said second throttle and second outlet nozzle, and a common intermediate chamber spacing said third and fourth throttles from said first and second throttles.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Nozzles (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DD154207A DD98732A1 (en, 2012) | 1971-04-05 | 1971-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3783902A true US3783902A (en) | 1974-01-08 |
Family
ID=5483664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00238260A Expired - Lifetime US3783902A (en) | 1971-04-05 | 1972-03-27 | Fluidic surface device and nozzle system for the formation of jets in the device |
Country Status (10)
Country | Link |
---|---|
US (1) | US3783902A (en, 2012) |
AT (1) | AT321005B (en, 2012) |
BG (1) | BG22415A3 (en, 2012) |
CH (1) | CH545425A (en, 2012) |
CS (1) | CS152981B2 (en, 2012) |
DD (1) | DD98732A1 (en, 2012) |
FR (1) | FR2133408A5 (en, 2012) |
HU (1) | HU170184B (en, 2012) |
PL (1) | PL71161B1 (en, 2012) |
RO (1) | RO60859A (en, 2012) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999048104A1 (de) * | 1998-03-19 | 1999-09-23 | Siemens Aktiengesellschaft | Vorrichtung und verfahren zum abblasen von dampf |
US6418968B1 (en) * | 2001-04-20 | 2002-07-16 | Nanostream, Inc. | Porous microfluidic valves |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3390693A (en) * | 1965-06-28 | 1968-07-02 | Electro Optical Systems Inc | Pure fluid amplifier |
US3398758A (en) * | 1965-09-30 | 1968-08-27 | Mattel Inc | Pure fluid acoustic amplifier having broad band frequency capabilities |
US3461895A (en) * | 1966-05-20 | 1969-08-19 | Bowles Eng Corp | Fluid pressure attenuator |
US3520316A (en) * | 1963-12-12 | 1970-07-14 | Bowles Eng Corp | Pressure-to-pressure transducer |
US3563259A (en) * | 1968-03-15 | 1971-02-16 | Bowles Eng Corp | Fluidic liquid level sensor |
US3636964A (en) * | 1968-11-20 | 1972-01-25 | Consiglio Nazionale Ricerche | Compressed air feed system for pure fluid devices |
US3654947A (en) * | 1970-10-01 | 1972-04-11 | Fluidic Ind Inc | Fluid switching device |
US3703907A (en) * | 1970-10-30 | 1972-11-28 | George B Richards | Fluid amplifiers |
-
1971
- 1971-04-05 DD DD154207A patent/DD98732A1/xx unknown
- 1971-09-28 AT AT838471A patent/AT321005B/de not_active IP Right Cessation
- 1971-10-08 BG BG18732A patent/BG22415A3/xx unknown
- 1971-11-03 CH CH1602171A patent/CH545425A/de not_active IP Right Cessation
- 1971-11-26 HU HUME1443A patent/HU170184B/hu unknown
- 1971-11-29 CS CS830171A patent/CS152981B2/cs unknown
- 1971-12-17 FR FR7145546A patent/FR2133408A5/fr not_active Expired
-
1972
- 1972-01-07 RO RO69320A patent/RO60859A/ro unknown
- 1972-03-27 US US00238260A patent/US3783902A/en not_active Expired - Lifetime
- 1972-03-31 PL PL1972154499A patent/PL71161B1/pl unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3520316A (en) * | 1963-12-12 | 1970-07-14 | Bowles Eng Corp | Pressure-to-pressure transducer |
US3390693A (en) * | 1965-06-28 | 1968-07-02 | Electro Optical Systems Inc | Pure fluid amplifier |
US3398758A (en) * | 1965-09-30 | 1968-08-27 | Mattel Inc | Pure fluid acoustic amplifier having broad band frequency capabilities |
US3461895A (en) * | 1966-05-20 | 1969-08-19 | Bowles Eng Corp | Fluid pressure attenuator |
US3563259A (en) * | 1968-03-15 | 1971-02-16 | Bowles Eng Corp | Fluidic liquid level sensor |
US3636964A (en) * | 1968-11-20 | 1972-01-25 | Consiglio Nazionale Ricerche | Compressed air feed system for pure fluid devices |
US3654947A (en) * | 1970-10-01 | 1972-04-11 | Fluidic Ind Inc | Fluid switching device |
US3703907A (en) * | 1970-10-30 | 1972-11-28 | George B Richards | Fluid amplifiers |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999048104A1 (de) * | 1998-03-19 | 1999-09-23 | Siemens Aktiengesellschaft | Vorrichtung und verfahren zum abblasen von dampf |
US6418968B1 (en) * | 2001-04-20 | 2002-07-16 | Nanostream, Inc. | Porous microfluidic valves |
US6499499B2 (en) * | 2001-04-20 | 2002-12-31 | Nanostream, Inc. | Flow control in multi-stream microfluidic devices |
US6748978B2 (en) | 2001-04-20 | 2004-06-15 | Nanostream, Inc. | Microfluidic devices with porous regions |
Also Published As
Publication number | Publication date |
---|---|
DD98732A1 (en, 2012) | 1973-07-12 |
CS152981B2 (en, 2012) | 1974-02-22 |
BG22415A3 (en, 2012) | 1977-02-20 |
AT321005B (de) | 1975-03-10 |
PL71161B1 (en, 2012) | 1974-04-30 |
FR2133408A5 (en, 2012) | 1972-11-24 |
HU170184B (en, 2012) | 1977-04-28 |
CH545425A (de) | 1973-12-15 |
RO60859A (en, 2012) | 1976-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3117593A (en) | Multi-frequency fluid oscillator | |
US3614962A (en) | Impact modulator having cascaded control nozzles | |
US3570515A (en) | Aminar stream cross-flow fluid diffusion logic gate | |
US3159168A (en) | Pneumatic clock | |
US3529614A (en) | Fluid logic components | |
US3182675A (en) | Pure fluid velocity modulated amplifier | |
US3276463A (en) | Fluid conversion systems | |
GB1064173A (en) | Improvements in and relating to pure fluid systems | |
US3181545A (en) | Stable fluid amplifiers | |
US3192938A (en) | Fluid multi-stable device | |
US4000757A (en) | High gain fluid amplifier | |
US3171422A (en) | Control apparatus | |
US3232305A (en) | Fluid logic apparatus | |
US3323532A (en) | Fluid jet momentum comparator | |
US3174497A (en) | Fluid power amplifier not-gate | |
US3266514A (en) | Signal summing point device for hybrid fluid and electronic controls | |
US3448752A (en) | Fluid oscillator having variable volume feedback loops | |
US3469593A (en) | Fluidic device | |
US3783902A (en) | Fluidic surface device and nozzle system for the formation of jets in the device | |
US3452772A (en) | Pressure operated vortex controlled fluid analog amplifier | |
US3503423A (en) | Fluidic signal selector | |
US3413994A (en) | Variable gain proportional amplifier | |
US3457935A (en) | Fluid amplifiers | |
US3493004A (en) | Logic and gate for fluid circuits | |
US3446228A (en) | Opposed jet pure fluid amplifier |