US3782450A - Heat exchanger with nests of tubes - Google Patents
Heat exchanger with nests of tubes Download PDFInfo
- Publication number
- US3782450A US3782450A US00241585A US3782450DA US3782450A US 3782450 A US3782450 A US 3782450A US 00241585 A US00241585 A US 00241585A US 3782450D A US3782450D A US 3782450DA US 3782450 A US3782450 A US 3782450A
- Authority
- US
- United States
- Prior art keywords
- tubes
- tube
- graphite
- cement
- annular space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 40
- 239000010439 graphite Substances 0.000 claims abstract description 40
- 239000004568 cement Substances 0.000 claims abstract description 39
- 239000000126 substance Substances 0.000 claims abstract description 15
- 239000000843 powder Substances 0.000 abstract description 4
- 238000005452 bending Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- 210000004907 gland Anatomy 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- -1 polytetrafluorethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/04—Arrangements for sealing elements into header boxes or end plates
- F28F9/16—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
- F28F9/162—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by using bonding or sealing substances, e.g. adhesives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/02—Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S159/00—Concentrating evaporators
- Y10S159/15—Special material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/051—Heat exchange having expansion and contraction relieving or absorbing means
- Y10S165/052—Heat exchange having expansion and contraction relieving or absorbing means for cylindrical heat exchanger
- Y10S165/063—Cylindrical heat exchanger fixed to fixed end supports
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S285/00—Pipe joints or couplings
- Y10S285/915—Mastic
Definitions
- FIGS palm 2 HEAT EXCHANGER WTTH NESTS OF TUBES The present invention relates to a heat exhanger with nests of tubes; with graphite tube plates having recesses and graphite tubes engaging with the recesses. Annular cement joints are between the plates and the tubes.
- stuffing gland designs have become known which make possible an equalization of the expansion between the tubes and the enclosure of the apparatus. These designs, however, are expensive and cannot always be kept completely tight.
- the tubes are connected rigidly by welded, soldered or cemented joints with tube plates which are movable with respect to the enclosure and are sealed by means of diaphragm seals or stuffing glands. Temperature differences between the enclosure and the tubes cause relative motion of the plate, whereby the friction forces are transmitted by the tubes.
- graphite tubes generally engage with cylindrical or conical recesses of a tube plate and the ring gaps between the tube and the holes are filled with a compound containing a hardenable synthetic resin. Hardening of the resin forms a firm and gas tight joint between the graphite tube and the tube plate.
- a drawback of such cement joints is that during the setting of the synthetic resin shrinkage stresses are generated which reduce the permissible stresses of the graphite tubes by tension or bending forces on the average of about 60 percent, so that even the relatively low strength of graphite cannot be utilized in designs.
- the problem is solved, according to the present invention, by having the depth of the recesses greater than the height of the cement joints and, preferably at least twice as great.
- the ring gap between the graphite tube and the cylindrical surface of the recess in the tube plate is filled with a cement compound which is rigidly connected only with the cylindrical surface or only with the graphite tube.
- a further embodiment of the invention provides the filling of the ring gap between the graphite tube and the cylindrical surface of the recess with an inert material in powder form.
- the invention provides ring washers which are cemented to the tube plate and are aligned with its recesses, the support surfaces of which have grooves, preferably.
- the graphite tubes are led through support discs which are preferably arranged in at least two planes.
- the invention is based on the recognition of the fact that in heat exchangers with nests of tubes according to the invention, graphite tubes which are deflected transversely to the longitudinal axis, are supported by support surfaces before the critical fracture stress is reached in the part of the tube weakened by the shrinkage stresses at the height of the annular cement joints. Bending moments, caused by tube vibrations or length changes, relative to the enclosure of the apparatus at the height of the cement joints, are limited. Maximum moments occur only in the unweakened tube parts whereby the probability of breakage of the tubes is decreased.
- the greater allowable mechanical stresses of heat exchangers with nests of tubes of graphite makes furthermore possible the use of graphite tubes with smaller wall thickness, thereby improving heat transfer.
- the ratio of the depth of the recess to the height of the cement joint is determined by the maximally permissible deflection of the tubes and the tube tolerance. If the tubes are stressed in the flexural mode, they bear against the edges of the recesses and thereby limit the allowable stress of the cemented tube portions. If the tube tolerances are large or if the tube plates have only slight height, it is advantageous, according to the invention, to limit the lateral deflection of the tubes by filling the ring gap between the graphite tube and the cylindrical surface of the tube plate recess with cement or a material in powder form. Before applying the cement material, the graphite tubes or the cylindrical surfaces of the recesses must be coated with layers which do not form a firm bond with the cements used.
- Suitable substances for the preparation of these layers are, for instance, polytetrafluorethylene, lacquers, fats and silicon compounds.
- the generation of detrimental stress in the graphite tubes is avoided by the pretreatment, and the graphite tube is relieved of stress considerably at the height of the annular cement joint, even for a smaller ratio of the depth of the recess to the height of the cement.
- FIG. 1 illustrates a known method of fastening of graphite tubes in a tube plate
- FIGS. 2 6 illustrate heat exchangers with nests of tubes according to the invention.
- FIG. 1 shows a prior art graphite tube plate with a bore 2 and a partially cylindrical and partially conical recess 3.
- the graphite tube 4 engages and rests against the tube plate 1.
- the ring or annular gap 5 is fllled with a cement substance containing phenolic resin, graphite powder and an acidic catalyst, the setting of which results in a 3 rigid connection between the graphite tube and the tube plate.
- shrinkage stresses are set up in the cement mass which, in turn, causes a strength reducing stress in the graphite tube and the tube plate.
- the tube plate 1 shows cylindrical bores or through holes 2 into which sleeves 8 are inserted from below for receiving the graphite tubes 4.
- the maximum bending moments are shifted from the cement joints 9 to the edge 7.
- FIGS. 4 and 5 are advantageous.
- the conical part of the graphite tube 4 is rigidly connected with the tube bottom 1 by the cement joint 5.
- the cylindrical part of the recess is filled with the cement substance 10 and the outer cylindrical surface of the graphite tube has a thin layer of polytetrafluorethylene 11 by which a rigid bond of the cement with the graphite tube is prevented.
- This design permits only small transversal deflections even for short free ring gaps.
- washers 12 are cemented, bycement 13, to the tube plate 1.
- the graphite tubes 4 have, at the height of the washers 12, a layer of silicon grease 11 by which a bonding of the tubes, with the cement substance, is prevented.
- a rigid connection between the tube plate 1 and the grahite tube 4 exists only in the region of the conical recess.
- the washers 12 have grooves at their contact surfaces which prevent the propagation, into the tube plate, of cracks formed in the washers.
- FIG. 6 two support plates 15 are arranged in two planes above the tube plate 1. in the event of transversal deflections of a tube, it comes to rest against the support plate and relieves the cement joint 5. Passage of fluids outside of tubes 4 is shown by the arrows.
- a heat exchanger comprising a plurality of graphite tubes, a graphite plate arranged transversely of the tubes and having recesses each of which receive an end of a respective one of the tubes, the relative diameters of the ends of the tubes and the recesses being such that an annular space is defined between the end of each of the tubes and the recess in which the tube is received, a cement substance filling each annular space and cementing the tube into the recess over only a portion of the axial dimension of the annular space beginning at the free end of the tube, the remainder of the axial dimension of the annular space being free over at least a portion of its radial dimension.
- a heat exchanger according to claim 1 in which the portion of the annular space which is filled by the cement substance extends from the free end of the tube a distance no greater than one-half the total axial dimension of the annular space.
- a heat exchanger according to claim 1 in which the remainder of the axial dimension of the annular space contains the cement substance over only a portion of its radial dimension beginning at and adhering to the wall of the tube or the wall of the recess defining the annular space.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19712119820 DE2119820C3 (de) | 1971-04-23 | Rohrbündelwarmeaustauscher |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3782450A true US3782450A (en) | 1974-01-01 |
Family
ID=5805636
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00241585A Expired - Lifetime US3782450A (en) | 1971-04-23 | 1972-04-06 | Heat exchanger with nests of tubes |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3782450A (OSRAM) |
| FR (1) | FR2134335B1 (OSRAM) |
| GB (1) | GB1349232A (OSRAM) |
| IT (1) | IT957229B (OSRAM) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4266577A (en) * | 1979-07-25 | 1981-05-12 | Usui Kokusai Sangyo Kabushiki Kaisha | Collared fuel injection pipe for engines |
| US4495987A (en) * | 1983-02-18 | 1985-01-29 | Occidental Research Corporation | Tube and tube sheet assembly |
| US4519445A (en) * | 1982-12-02 | 1985-05-28 | United Kingdom Atomic Energy Authority | Tube-in-shell heat exchangers |
| US4735261A (en) * | 1982-09-13 | 1988-04-05 | Plascore, Inc. | Plastic heat exchanger |
| US4872504A (en) * | 1982-09-13 | 1989-10-10 | Plascore, Inc. | Modular heat exchanger housing |
| US4894070A (en) * | 1987-11-13 | 1990-01-16 | Foseco International Limited | Filtration of fluid media |
| US5209525A (en) * | 1990-03-28 | 1993-05-11 | Ngk Insulators, Ltd. | Bonded ceramic structure |
| US5228512A (en) * | 1991-04-02 | 1993-07-20 | Modine Manufacturing Company | Aluminum charge air cooler and method of making the same |
| US5327959A (en) * | 1992-09-18 | 1994-07-12 | Modine Manufacturing Company | Header for an evaporator |
| US5975193A (en) * | 1992-05-22 | 1999-11-02 | Showa Aluminum Corporation | Heat exchanger |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3133665C2 (de) * | 1981-08-26 | 1984-06-07 | Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart | Verbindung von Rohren eines Wärmetauscherblocks mit einem Anschlußkasten, insbesondere für einen Verdampfer |
| FR2599637B1 (fr) * | 1986-06-09 | 1990-05-11 | Lorraine Carbone | Procede d'assemblage, sous forme de faisceau, de membranes tubulaires minerales destinees aux techniques separatives |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1992504A (en) * | 1933-04-10 | 1935-02-26 | Abbott L Penniman | Surface condenser |
| CA538135A (en) * | 1957-03-12 | O. Everhart John | Threaded joint-sealing gasket rings for molded pipe | |
| US2956787A (en) * | 1957-05-28 | 1960-10-18 | Union Carbide Corp | Heat interchanger |
| US3182720A (en) * | 1961-12-27 | 1965-05-11 | Westinghouse Electric Corp | Heat exchange apparatus |
| US3327777A (en) * | 1964-11-09 | 1967-06-27 | Union Carbide Corp | Heat interchanger |
| US3701548A (en) * | 1970-06-25 | 1972-10-31 | John S Mcguire | Pipe joint system |
-
1971
- 1971-11-29 FR FR7142728A patent/FR2134335B1/fr not_active Expired
-
1972
- 1972-03-02 GB GB990172A patent/GB1349232A/en not_active Expired
- 1972-04-06 US US00241585A patent/US3782450A/en not_active Expired - Lifetime
- 1972-04-21 IT IT7335/72A patent/IT957229B/it active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA538135A (en) * | 1957-03-12 | O. Everhart John | Threaded joint-sealing gasket rings for molded pipe | |
| US1992504A (en) * | 1933-04-10 | 1935-02-26 | Abbott L Penniman | Surface condenser |
| US2956787A (en) * | 1957-05-28 | 1960-10-18 | Union Carbide Corp | Heat interchanger |
| US3182720A (en) * | 1961-12-27 | 1965-05-11 | Westinghouse Electric Corp | Heat exchange apparatus |
| US3327777A (en) * | 1964-11-09 | 1967-06-27 | Union Carbide Corp | Heat interchanger |
| US3701548A (en) * | 1970-06-25 | 1972-10-31 | John S Mcguire | Pipe joint system |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4266577A (en) * | 1979-07-25 | 1981-05-12 | Usui Kokusai Sangyo Kabushiki Kaisha | Collared fuel injection pipe for engines |
| US4735261A (en) * | 1982-09-13 | 1988-04-05 | Plascore, Inc. | Plastic heat exchanger |
| US4872504A (en) * | 1982-09-13 | 1989-10-10 | Plascore, Inc. | Modular heat exchanger housing |
| US4519445A (en) * | 1982-12-02 | 1985-05-28 | United Kingdom Atomic Energy Authority | Tube-in-shell heat exchangers |
| US4495987A (en) * | 1983-02-18 | 1985-01-29 | Occidental Research Corporation | Tube and tube sheet assembly |
| US4894070A (en) * | 1987-11-13 | 1990-01-16 | Foseco International Limited | Filtration of fluid media |
| US5209525A (en) * | 1990-03-28 | 1993-05-11 | Ngk Insulators, Ltd. | Bonded ceramic structure |
| US5228512A (en) * | 1991-04-02 | 1993-07-20 | Modine Manufacturing Company | Aluminum charge air cooler and method of making the same |
| US5975193A (en) * | 1992-05-22 | 1999-11-02 | Showa Aluminum Corporation | Heat exchanger |
| US5327959A (en) * | 1992-09-18 | 1994-07-12 | Modine Manufacturing Company | Header for an evaporator |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1349232A (en) | 1974-04-03 |
| IT957229B (it) | 1973-10-10 |
| FR2134335A1 (OSRAM) | 1972-12-08 |
| FR2134335B1 (OSRAM) | 1974-08-19 |
| DE2119820B2 (de) | 1976-12-16 |
| DE2119820A1 (de) | 1972-11-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3782450A (en) | Heat exchanger with nests of tubes | |
| US3712647A (en) | Pipe connection | |
| US3794361A (en) | Pipe couplings | |
| US3923314A (en) | Non-rigid seal for joining silicon carbide tubes and tube sheets in heat exchangers | |
| JP2003185021A (ja) | 浅いs字型メタルシール | |
| EP0190701B1 (en) | Joint structure for a tube support plate and a tube | |
| US5236231A (en) | Brittle lined pipe connector | |
| CN1077970C (zh) | 用于金属管的带内衬的螺纹接头 | |
| EP1422488B1 (en) | A heat exchanger with a silicon carbide set of tubes and double tube plates in enamelled steel | |
| NO158236B (no) | Fremgangsmaate og innretning for oppvarming av en vaeske. | |
| US5977487A (en) | High voltage insulator of ceramic material having shrink-fit cap and method of making | |
| US3837226A (en) | Sight glass assembly and a method of producing the same | |
| US5074697A (en) | Releasable connector for interconnecting two parts subjected to high stresses | |
| CN110594504A (zh) | 一种自紧式复合密封结构 | |
| US1497952A (en) | Method of making air-tight joints | |
| US4838581A (en) | Joint structure for a tube support plate and a tube | |
| WO2022020117A1 (en) | Corrosion resistant heat exchanger and tube sheet therefor | |
| US2281594A (en) | Sealing tubes to tube sheets of heat exchangers, and the like | |
| US4875712A (en) | Joint structure for a tube support plate and a tube | |
| US2537466A (en) | Lining for vessels | |
| US3659139A (en) | Hollow electrode assembly of carbon having densed graphite junction nipple | |
| GB2317934A (en) | A seal for an annulus between inner and outer pipes | |
| CN210441708U (zh) | 换热器 | |
| US4930546A (en) | Heat-insulating metal-ceramic structure | |
| US3378283A (en) | Tube joints |